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Abstract
In this work we study the Ulam–Hyers stability of a differential equation. Its proof is
based on the Banach fixed point theorem in some space of continuous functions
equipped with the norm ‖ · ‖∞. Moreover, we get some results on the Ulam–Hyers
stability of a weakly singular Volterra integral equation using the Banach contraction
principle in the space of continuous functions C([a,b]).
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1 Introduction and mathematical preliminaries
In 1922, Banach gave his famous result,the Banach contraction principle, in the concept
of the fixed point theory [1, 2]. Later, most of the authors introduced many works in var-
ious spaces using this fixed point theorem or its generalization. Up to now, several de-
velopments have occurred in this area, especially the study of the stability problem of a
functional equation. The origin of this subject returns to a question of Ulam [3] in 1940,
which was related to the stability of group homomorphisms. Hyers [4] was the first re-
searcher who gave the affirmative partial answer to Ulam’s question. This type of stability
is known as the Ulam–Hyers stability. It has attracted attention of many authors who have
published various results on the stability of some classes of functional equations via fixed
point approach. For more details on Ulam–Hyers stability, we recommend [5–15].

This paper concerns the study of the Ulam–Hyers stability of a differential equation and
a weakly singular Volterra integral equation. In the first case, given an initial condition
and an equation u′ = f (·, u), where u is defined from I ⊂R into R

n, we show that when f is
continuous and k-Lipschitz for some k and when u takes its values on a certain ball B, we
get the Ulam–Hyers stability. In the second case, we show that we can prove Ulam–Hyers
stability when the kernel is composed of a singular part which verifies certain properties in
a space Lq, (q > 1) and a continuous function on a part of R3 with a given certain condition
on the third variable.
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Our paper is organized as follows. First, we give some tools needed in the proofs of
our main results which will be given in other sections. In Sect. 2, we deal with Ulam–
Hyers stability of a differential equation. In the last section, we use the Banach contraction
principle to present the Ulam–Hyers stability of certain nonlinear integral equation of
Volterra type, where the kernel contains a singular part. Comparing with many papers
such as [16–19] in the literature, we believe that our fixed point approach brings new
and different perspective to show that some differential and integral equations have the
Hyers–Ulam stability.

Theorem 1.1 ([1, 2]) Let (X, d) be a complete metric space and A : X → X be a contraction,
i.e., there exists λ ∈ [0, 1) such that

d(Au, Av) ≤ λd(u, v), ∀u, v ∈ X.

Then there exists a unique element u0 ∈ X such that Au0 = u0. Moreover, limn→∞ Anu = u0

and

d(u0, u) ≤ 1
1 – λ

d(u, Au), ∀u ∈ X.

Definition 1.2 ([20, 21]) Let (X, d) be a metric space and A : X → X be an operator. The
fixed point equation

Au = u (1.1)

is said to be generalized Ulam–Hyers stable if there exists an increasing function φ : R+ →
R

+ continuous in 0 with φ(0) = 0 such that, for each α > 0 and for each mapping u satisfying

d(u, Au) ≤ α,

there exists a solution u0 of (1.1) such that

d(u, u0) ≤ φ(α).

If φ(x) = ax for each x ∈R
+, then equation (1.1) is called Ulam–Hyers stable.

Definition 1.3 ([22]) A function f : A →R
m, A ⊂R

n is said to be k-Lipschitz, k ≥ 0, if

∣
∣f (a) – f (b)

∣
∣ ≤ k|a – b|

for every pair of points a, b ∈ A. We say that a function is Lipschitz if it is k-Lipschitz for
some k.

Definition 1.4 ([2]) A function f : A → R
m, A ⊂ R × R

m, (x, u) �→ f (x, u) is said to be
locally Lipschitz with respect to u if, for all (x0, u0) ∈ A, there exist a neighborhood V of
(x0, u0) in A and a constant k ≥ 0 such that, for all (x, u), (x, u′) ∈ V , we have

|f (x, u) – f
(

x, u′)| ≤ k
∣
∣u – u′∣∣.
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2 Ulam–Hyers stability of a differential equation
Our result in this section concerns the Ulam–Hyers stability for the differential equation

u′ = f (x, u), (x, u) ∈ U , x0 ∈ I, u(x0) = y0, (2.1)

where (x0, y0) ∈ U , u : I ⊂R →R
n is a function, U is an open set in R×R

n, and f : U →R
n

is a continuous function.
Let V be a neighborhood of (x0, y0). Assume that f is a k-Lipschitz with respect to

u on V . Let T0 > 0, r0 > 0, and C0 = [x0 – T0, x0 + T0] × B(y0, r0) ⊂ V , where B(y0, r0)
is the closed ball. One can easily see that f is bounded on the compact set C0 and
ρ = sup(x,u)∈C0 |f (x, u(x))|.

Let μ = min(T0, r0
ρ

), where r0 and T0 are chosen so that 0 < μ < 1
k . Denote by F the set of

continuous functions on [x0 – μ, x0 + μ] × B(y0, r0) and equip this set with the usual ‖ · ‖∞
norm.

Theorem 2.1 Let ε be a positive real number. If u ∈ F is a function such that

∥
∥u′(x) – f

(

x, u(x)
)∥
∥∞ ≤ ε, u(x0) = y0, (2.2)

then there exist θ0 > 0 and unique u0 ∈ F such that

u′
0(x) = f

(

x, u0(x)
)

, u0(x0) = y0 (2.3)

and

∥
∥u(x) – u0(x)

∥
∥∞ ≤ θ0ε, ∀x ∈ [x0 – μ, x0 + μ]. (2.4)

That is, the differential equation (2.1) is locally Ulam–Hyers stable.

Proof The proof will be given in four steps.
• Step 1:

Consider the operator T : F → F defined by

Tu(x) = y0 +
∫ x

x0

f
(

s, u(s)
)

ds.

T is well defined. Indeed, let u ∈ F for any x ∈ [x0 – μ, x0 + μ]. Then we have

∥
∥Tu(x) – y0

∥
∥∞ =

∥
∥
∥
∥

∫ x

x0

f
(

s, u(s)
)

ds
∥
∥
∥
∥∞

≤
∫ x

x0

∥
∥f

(

s, u(s)
)∥
∥∞ ds

≤ ρ

∫ x

x0

ds

≤ ρ(x – x0)

≤ r0.
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That is, Tu(x) ∈ B(y0, r0).
• Step 2:

Let u ∈ F . We have the following equivalence:

u is a solution of equation (2.1) ⇐⇒ u is a fixed point of the operator T .

We will show this equivalence.
(⇒) If u is a solution of the differential equation (2.1), since the function

s �→ f (s, u(s)) is continuous, we can integrate with respect to s the equation
u′(s) = f (s, u(s)), s ∈ [x0 – μ, x0 + μ]. Then we have

∫ x

x0

f
(

s, u(s)
)

ds =
∫ x

x0

u′(s) ds = u(x) – u(x0) = u(x) – y0,

which means that Tu = u.
(⇐) Now, we suppose that u is a fixed point of the operator T . Then

Tu = u and y0 +
∫ x

x0

f
(

s, u(s)
)

ds = u(x), ∀x ∈ [x0 – μ, x0 + μ].

Since f is continuous on U , u is also continuous on U and differentiable and
u′(x) = f (x, u(x)). Moreover,

u(x0) = y0 +
∫ x0

x0

f
(

s, u(s)
)

ds = y0.

• Step 3:
In this step, we prove that the operator T is a contraction. Let u, v ∈ F . Then we have

∥
∥Tu(x) – Tv(x)

∥
∥∞ =

∥
∥
∥
∥

∫ x

x0

(

f
(

s, u(s)
)

– f
(

s, v(s)
))

ds
∥
∥
∥
∥∞

≤
∫ x

x0

∥
∥f

(

s, u(s)
)

– f
(

s, v(s)
)∥
∥∞ ds

≤ k
∫ x

x0

∥
∥u(s) – v(s)

∥
∥∞ ds

≤ k‖u – v‖∞
∣
∣
∣
∣

∫ x

x0

ds
∣
∣
∣
∣

≤ k‖u – v‖∞|x – x0|.

Taking the sup on x over [x0 – μ, x0 + μ], we get

‖Tu – Tv‖∞ ≤ kμ‖u – v‖∞,

that is,

‖Tu – Tv‖∞ ≤ λ‖u – v‖∞.
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As 0 < λ = kμ < 1, then T is a contraction. From Theorem 1.1, there exists a unique
element u∗ ∈ F such that Tu∗ = u∗ and

∥
∥u∗ – u

∥
∥∞ =

1
1 – λ

‖Tu – u‖∞, ∀u ∈ F . (2.5)

Moreover, from Step 2, we find

(

u∗)′ = f
(

x, u∗(x)
)

and u∗(x0) = y0. (2.6)

• Step 4:
Let ε be a positive real number and u be a point in F such that

∥
∥u′(x) – f

(

x, u(x)
)∥
∥∞ ≤ ε, u(x0) = y0. (2.7)

Using (2.7) and integrating with respect to s over [x0 – μ, x0 + μ], we get

∥
∥u(x) – Tu(x)

∥
∥∞ ≤ εμ, ∀x ∈ [x0 – μ, x0 + μ].

On the other hand, we obtain the following inequalities:

∥
∥u∗ – u

∥
∥∞ ≤ ∥

∥u∗ – Tu
∥
∥∞ + ‖Tu – u‖∞

≤ ∥
∥Tu∗ – Tu

∥
∥∞ + ‖Tu – u‖∞

≤ kμ
∥
∥u∗ – u

∥
∥∞ + εμ,

that is,

(1 – kμ)
∥
∥u∗ – u

∥
∥∞ ≤ εμ,

∥
∥u∗ – u

∥
∥∞ ≤ μ

1 – kμ
ε.

Setting θ0 = μ

1–kμ
> 0, we have

∥
∥u∗ – u

∥
∥∞ ≤ θ0ε,

which gives

∥
∥u∗(x) – u(x)

∥
∥∞ ≤ θ0ε, ∀x ∈ [x0 – μ, x0 + μ].

That is the needed result. �

Example 2.2 Let ξ �= 0 be a positive real number. Consider the following function:

f
(

x, u(x)
)

= –
1
ξ

sin

(
x
ξ

)

with u(x) =
2
ξ

cos

(
x
ξ

)

.

Since

∣
∣u′(x) – f

(

x, u(x)
)∣
∣ =

∣
∣
∣
∣
–

2
ξ

sin

(
x
ξ

)

+
1
ξ

sin

(
x
ξ

)∣
∣
∣
∣
≤ 1

ξ
,
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we have |u′(x)– f (x, u(x))| → 0 when ξ → ∞. So condition (2.7) is satisfied. From Theorem
2.1, the differential equation u′ = f (x, u(x)) is locally Hyers–Ulam stable.

3 Ulam–Hyers stability of a nonlinear Volterra integral equation
In this section, we are interested in the study of Ulam–Hyers stability of a nonlinear
Volterra integral equation whose kernel contains a weakly singular part as follows:

ϕ(x) = f (x) +
∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt; ∀x ∈ [a, b], (3.1)

where ϕ ∈ C([a, b]) and K is a function defined by

K : [a, b] × [a, b] ×R −→R

(x, t, z) �−→ K(x, t, z).

Let us consider the operator T : C([a, b]) → C([a, b]) defined by

(Tϕ)(x) = f (x) +
∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt, x ∈ [a, b],

and assume that the following hypotheses are satisfied:
(1) K ∈ C([a, b]2 ×R),
(2) ∃σ > 0, ∀x, t ∈ [a, b], ∀u ∈R, |K(x, t, u)| ≤ σ ,
(3) H(x, t) = ϑ(x – t) ∈ C([a, b]2), ∀x �= t, where H : [a, b] → [a, b] is a function,
(4) f ∈ C([a, b]),
(5) there exists M > 0 such that ∀x, t ∈ [a, b], ∀u, v ∈R

∣
∣K(x, t, u) – K(x, t, v)

∣
∣ ≤ M|u – v|,

(6) for q > 1, there exists ρ > 0 such that H(x, t) ∈ Lq([a, b]) and

∥
∥H(x, t)

∥
∥

q ≤ ρ, ∀x, t ∈ [a, b], x �= t.

Proposition 3.1 Under the above assumptions, the operator T is well defined.

Proof Let x, y ∈ [a, b]. Our goal is to show that

lim
x→y

∣
∣(Tϕ)(x) – (Tϕ)(y)

∣
∣ = 0.

For this purpose, we consider the following statements:

∣
∣(Tϕ)(x) – (Tϕ)(y)

∣
∣ =

∣
∣
∣
∣

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt –
∫ y

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt –
∫ y

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣

+
∣
∣f (x) – f (y)

∣
∣,
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∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt –
∫ y

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt

=
∫ x–ε

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt +
∫ x

x–ε

ϑ(x – t)K
(

x, t,ϕ(t)
)

dt

–
∫ x–ε

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt –
∫ y–ε

x–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt

–
∫ y

y–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt +
∫ x–ε

a
ϑ(y – t)K

(

x, t,ϕ(t)
)

dt

–
∫ x–ε

a
ϑ(y – t)K

(

x, t,ϕ(t)
)

dt,

that is,

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt –
∫ y

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt

=
∫ x–ε

a

(

ϑ(x – t) – ϑ(y – t)
)

K
(

x, t,ϕ(t)
)

dt

+
∫ x

x–ε

ϑ(x – t)K
(

x, t,ϕ(t)
)

dt –
∫ x–ε

a
ϑ(y – t)

(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))

dt

–
∫ y–ε

x–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt –
∫ y

y–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt.

Taking the absolute value from both sides of the above equation, we get the following:

∣
∣
∣
∣

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt –
∫ y

a
ϑ(y – t)K

(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ x–ε

a

(

ϑ(x – t) – ϑ(y – t)
)

K
(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x

x–ε

ϑ(x – t)K
(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ x–ε

a
ϑ(y – t)

(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))

dt
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ y–ε

x–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ y

y–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣
.

Moreover, we obtain

∣
∣
∣
∣

∫ x

x–ε

ϑ(x – t)K
(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤

∫ x

x–ε

∣
∣ϑ(x – t)K

(

x, t,ϕ(t)
)∣
∣dt

≤
∫ x

x–ε

∣
∣ϑ(x – t)

∣
∣
∣
∣K

(

x, t,ϕ(t)
)∣
∣dt

≤ σ

∫ x

x–ε

∣
∣ϑ(x – t)

∣
∣dt

≤ σ

∫ x

x–ε

(∣
∣ϑ(x – t) dt

∣
∣
q) 1

q

(∫ x

x–ε

(1)p dt
) 1

p

≤ σ
∥
∥ϑ(x – t)

∥
∥

q|ε|
1
p

≤ σρε
1
p ,
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when x → y, that is, ∃ε > 0, |x – y| ≤ ε. In the same manner, we get

∣
∣
∣
∣

∫ y

y–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤ σρε

1
p∗

and
∣
∣
∣
∣

∫ y–ε

x–ε

ϑ(y – t)K
(

y, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤ σρε

1
p

 ,

∣
∣
∣
∣

∫ x

a
ϑ(y – t)

(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))

dt
∣
∣
∣
∣

≤
∫ x–ε

a

∣
∣ϑ(y – t)

(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))∣

∣dt

≤
∫ x–ε

a

∣
∣ϑ(y – t)

∣
∣
∣
∣
(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))∣

∣dt

≤ ∥
∥ϑ(x – t)

∥
∥

q

∥
∥K

(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
)∥
∥

p

≤ ργ
∥
∥K

(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
)∥
∥∞.

As K is continuous with respect to the first variable, we have

∀ε > 0, ∃ε0 > 0 : |x – y| < ε0 �⇒ ∣
∣K

(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
)∣
∣ ≤ ε.

Then we obtain
∣
∣
∣
∣

∫ x–ε

a
ϑ(y – t)

(

K
(

x, t,ϕ(t)
)

– K
(

y, t,ϕ(t)
))

dt
∣
∣
∣
∣
≤ ρε for |x – y| < ε0.

On the other hand, we have

∣
∣
∣
∣

∫ x–ε

a

(

ϑ(x – t) – ϑ(y – t)
)

K
(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤

∫ x

a

∣
∣
(

ϑ(x – t) – ϑ(y – t)
)

K
(

x, t,ϕ(t)
)∣
∣dt

≤
∫ x

a

∣
∣
(

ϑ(x – t) – ϑ(y – t)
)∣
∣
∣
∣K

(

x, t,ϕ(t)
)∣
∣dt

≤ σ

∫ x

a

∣
∣
(

ϑ(x – t) – ϑ(y – t)
)∣
∣dt.

Since H : [x – ε
2 , b] × [a, x – ε] is continuous, we conclude that

∀ε > 0,∃ε1 > 0, |x – y| < ε1 ⇒ ∣
∣H(x, t) – H(y, t)

∣
∣ <

ε

b – a
.

So
∫ x–ε

a

∣
∣H(x, t) – H(y, t)

∣
∣dt =

∫ x–ε

a

∣
∣ϑ(x – t) – ϑ(y – t)

∣
∣dt

≤ ε

b – a
|x – ε – a|

≤ ε.
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From x – ε
2 < b, we have x – ε < b – ε

2 < b and x – ε < b – a. For |x – y| < min(ε, ε0, ε1, ε∗, ε
),
we have

lim
x→y

∣
∣(Tϕ)(x) – (Tϕ)(y)

∣
∣ = 0,

which means that (Tϕ) ∈ C([a, b]), that is, T is well defined. �

Theorem 3.2 Let ε be a positive real number. If ϕ ∈ C([a, b]) is given such that

∣
∣
∣
∣
ϕ(x) – f (x) –

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤ ε, x ∈ [a, b], (3.2)

then there exist θ0 > 0 and unique ϕ0 ∈ C([a, b]) such that

ϕ0(x) = f (x) +
∫ x

a
ϑ(x – t)K

(

x, t,ϕ0(t)
)

dt (3.3)

and

∣
∣ϕ(x) – ϕ0(x)

∣
∣ ≤ θ0ε, x ∈ [a, b].

Proof The operator T : C([a, b]) → C([a, b]) defined by

(Tϕ)(x) = f (x) +
∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt, x ∈ [a, b],

is a contraction in the metric space (X, dτ ), where X = C([a, b]) and dτ the Bielecki metric

dτ (ϕ,ψ) = sup
x∈[a,b]

|ϕ(x) – ψ(x)|
eτ (x–a) , ∀ϕ,ψ ∈ X,

where τ is chosen such that

(

τ

(
q

q – 1

)) q–1
q

> Mρ.

Indeed,

∣
∣Tϕ(x) – Tψ(x)

∣
∣

=
∣
∣
∣
∣
f (x) +

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt – f (x) –
∫ x

a
ϑ(x – t)K

(

x, t,ψ(t)
)

dt
∣
∣
∣
∣

≤
∫ x

a

∣
∣ϑ(x – t)

(

K
(

x, t,ϕ(t)
)

– K
(

x, t,ψ(t)
))∣

∣dt

≤ M
∫ x

a

∣
∣ϑ(x – t)

∣
∣
∣
∣ϕ(t) – ψ(t)

∣
∣dt

≤ M sup
x∈[a,b]

|ϕ(x) – ψ(x)|
eτ (x–a)

∫ x

a

∣
∣ϑ(x – t)

∣
∣eτ (t–a) dt

≤ Mdτ (ϕ,ψ)
(∫ x

a

∣
∣ϑ(x – t)

∣
∣
q dt

) 1
q
(∫ x

a

∣
∣eτ (t–a)∣∣p dt

) 1
p
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≤ Mdτ (ϕ,ψ)ρ
1

(τp)
1
p

(

eτp(x–a)) 1
p , with

1
p

+
1
q

= 1

≤ Mρ

(τp)
1
p

dτ (ϕ,ψ)eτ (x–a).

So

dτ (Tϕ, Tψ) ≤ Mρ

(τp)
1
p

dτ (ϕ,ψ).

Since (τ ( q
q–1 ))

q–1
q > Mρ , we have

Mρ

(τp)
1
p

< 1.

Set θ = Mρ

(τp)
1
p

with p = q – 1. By Theorem 1.1, there exists unique ϕ0 ∈ X satisfying

Tϕ0 = ϕ0 and dτ (ϕ0,ϕ) ≤ 1
1 – θ

dτ (ϕ, Tϕ), ∀ϕ ∈ X.

Now, let ε > 0 and ϕ ∈ X such that

∣
∣
∣
∣
ϕ(x) – f (x) –

∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt
∣
∣
∣
∣
≤ ε, x ∈ [a, b]. (3.4)

Then

dτ

(

ϕ, T(ϕ)
) ≤ εe–τp(x–a), x ∈ [a, b],

and

dτ (ϕ0,ϕ) ≤ 1
1 – θ

εe–τp(x–a), x ∈ [a, b].

That is,

∣
∣ϕ0(x) – ϕ(x)

∣
∣ ≤ 1

1 – θ
ε, x ∈ [a, b],

which means that the integral equation

ϕ(x) = f (x) +
∫ x

a
ϑ(x – t)K

(

x, t,ϕ(t)
)

dt; ∀x ∈ [a, b] (3.5)

is Ulam–Hyers stable. �

Example 3.3 Let σ be a positive real number. Consider the following functions ϕ, K , H
such that, for all x, t ∈ [a, b], ∀u ∈ R:

ϕ(x) = sin(x), K(x, t, u) = σu, f ∈ C
(

[a, b]
)

,
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H(x, t) =
1

(x – t)s with x �= t, 0 < s < 1.

It is clear that conditions (1), (3), and (4) in Proposition 3.1 are satisfied. It suffices to show
that conditions (2), (5), and (6) in Proposition 3.1 are satisfied.

(2) is satisfied because ∀x, t ∈ [a, b] and ∀ϕ(x),φ(x) ∈R, we have

∣
∣K

(

x, t,ϕ(x)
)∣
∣ =

∣
∣σϕ(x)

∣
∣ = |σ |∣∣ϕ(x)

∣
∣ ≤ σ .

Since

∣
∣K

(

x, t,ϕ(x)
)

– K
(

x, t,φ(x)
)∣
∣ = σ |ϕ(x)) – φ(x)| ≤ M|ϕ(x)) – φ(x)|,

(5) is also satisfied. Let q > 1. The following inequalities

(∫ x

a

∣
∣
∣
∣

1
(x – t)s

∣
∣
∣
∣

q

dt
) 1

q
≤

(
(b – a)1–sq

1 – sq

) 1
q

≤ ρ

show that condition (6) is satisfied. By Theorem 3.2, the nonlinear Volterra integral equa-
tion

sin(x) = f (x) +
∫ x

a

1
(x – t)s σ sin(t) dt

has the Hyers–Ulam stability.

4 Conclusion
In this paper, we have studied the Ulam–Hyers stability of a differential equation. Its proof
is based on the Banach fixed point theorem in some space of continuous functions. More-
over, we have obtained some results on the Ulam–Hyers stability of a weakly singular
Volterra integral equation using the Banach contraction principle in the space of con-
tinuous functions C([a, b]).
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