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Abstract
In this paper, we investigate the orbital stability of solitary waves for the following
generalized long-short wave resonance equations of Hamiltonian form:

{
iut + uxx = αuv + γ |u|2u + δ|u|4u,
vt + β|u|2x = 0.

(0.1)

We first obtain explicit exact solitary waves for Eqs. (0.1). Second, by applying the
extended version of the classical orbital stability theory presented by Grillakis et al.,
the approach proposed by Bona et al., and spectral analysis, we obtain general results
to judge orbital stability of solitary waves. We finally discuss the explicit expression of
det(d′′) in three cases and provide specific orbital stability results for solitary waves.
Especially, we can get the results obtained by Guo and Chen with parameters α = 1,
β = –1, and δ = 0. Moreover, we can obtain the orbital stability of solitary waves for
the classical long-short wave equation with γ = δ = 0 and the orbital instability
results for the nonlinear Schrödinger equation with β = 0.
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1 Introduction
Long-short (LS) wave interaction equations have been proposed for many physical prob-
lems, such as internal, Rossby, and plasma waves. Kuznetsov et al. [1] proposed some gen-
eralized LS-type coupled equations. In this paper, we investigate one type of the general-
ized LS wave resonance equations with cubic-quintic strong nonlinear term

⎧⎨
⎩iut + λuxx = αuv + γ |u|2u + δ|u|4u, x ∈ R,

vt + β|u|2x = 0, x ∈ R.
(1.1)
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When v = 0, Eqs. (1.1) reduce to the nonlinear Scrödinger equation describing electro-
magnetic wave propagation in nonlinear isotropic dielectrics, for example, in an isotropic
plasma. In this case, u denotes the complex amplitude of the electric field, and γ |u|2u +
δ|u|4u is the nonlinear addition to the refraction index. However, for many problems, ac-
counting for a finite time of medium relaxation is critical. Thus, for electromagnetic radia-
tion propagation in an isotropic plasma, the nonlinear frequency shift is caused by density
modulation under the action of a powerful wave, and the coupled equation was proposed.

In 2005, Shang [2] studied the explicit and exact special solutions of Eqs. (1.1), where α,
β , γ , λ, and δ are all real constants with λαβ �= 0. The quintic term δ|u|4u in the first equa-
tion of (1.1) describes the strong nonlinear self-interaction in the high-frequency subsys-
tem, which corresponds to a self-focusing effect in plasma physics. Obviously, if γ = δ = 0,
then Eqs. (1.1) reduce to the classical LS wave equations

⎧⎨
⎩iut + uxx = αuv, x ∈ R,

vt + β|u|2x = 0, x ∈ R.
(1.2)

Equations (1.2) were first derived by Djordjevic and Redekopp [3] to describe the res-
onance interaction between long and short waves. In Eqs. (1.2), u is a complex-valued
function and denotes the envelope of the short wave, and v is a real-valued function and
denotes the amplitude of the long wave. As highlighted in [3], the physical significance
of Eqs. (1.2) is that the dispersion of the short wave is balanced by the nonlinear interac-
tion of the long and short waves, whereas the evolution of the long wave is driven by the
self-interaction of the short wave. These equations also appear in an analysis of internal
waves [4] and Rossby waves. In plasma physics, similar equations can be used to describe
the resonance between high-frequency electron plasma oscillations and associated low-
frequency ion density perturbations [5]. Ma [6] found that Eqs. (1.2) can be rewritten in
Lax’s formulation, and the Cauchy problem of Eqs. (1.1) can be solved by the inverse scat-
tering method. Adapting the method developed by Bona and Weinstein, Laurencot [7]
confirmed that the solitary wave solution of (1.2) was stable.

Moreover, if δ = 0, then Eqs. (1.1) reduce to the LS wave resonance equations

⎧⎨
⎩iut + λuxx = αuv + γ |u|2u, x ∈ R,

vt + β|u|2x = 0, x ∈ R,
(1.3)

where α,β ,γ ,λ ∈ R with λαβ �= 0. Equations (1.3) were a particular case of the equations
proposed by Benney [8]. In that study, Benney provided a general theory for deriving non-
linear partial differential equations that allow both long and short wave solutions. By an
appropriate change of both independent and dependent variables, we can take λ = 1,α = 1
and β = –1 to obtain

⎧⎨
⎩iut + uxx = uv + γ |u|2u, x ∈ R,

vt = |u|2x, x ∈ R.
(1.4)

System (1.4) arises in the study of surface waves with both gravity and capillary modes
being present [9] and in plasma physics [10]. We can say that Eqs. (1.2), (1.3), (1.4) are
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all particular forms of Eqs. (1.1). The well-posedness of the local solution or/and global
solution for the initial value problem and periodic initial value problem of system (1.4)
and its extensions have been investigated by several authors. Among these, we refer the
reader to [11–15]. The existence of global attractors and approximation inertial manifolds
have been studied by many researchers [16–24]. Guo and Chen [25] studied the orbital
stability of solitary waves of (1.4) by applying the abstract results of Grillakis et al. [26,
27]. Unfortunately, the conditions that ensure the orbital stability of solitary waves were
incorrect because of incorrectness of dcc(ω, c) and consequently of det(d′′) (see p. 893 of
[25]).

Based on the qualitative theory and bifurcation theory of planar dynamical systems,
a series of explicit and exact solutions of solitary waves for Eqs. (1.1) were obtained by
seeking the homoclinic and heteroclinic orbits for a class of Liénard equations [2]. An
interesting problem is whether the solitary waves of the generalized LS wave equations
with a cubic-quintic strong nonlinear term (1.1) are orbitally stable or instable. However,
till date, to the best of our knowledge, no research has been conducted on the orbital
stability of the solitary waves of the generalized LS wave equations having a cubic-quintic
strong nonlinear term (1.1).

In this paper, we consider the existence and orbital stability of solitary waves for the
generalized LS wave equations (1.1). We focus on solutions for (1.1) of the form

u(x, t) = e–iωtei c
2 (x–ct)φω,c(x – ct) and v(x, t) = ψω,c(x – ct), (1.5)

where ω, c ∈ R, ξ = x – ct, φω,c, ψω,c : R → R are smooth functions, and φω,c(ξ ), ψω,c(ξ ) → 0
as |ξ | → ∞. It is worth pointing out that Eqs. (1.1) contain two nonlinear terms. Our
results contain the orbital stability of solitary waves for the classical LS wave equation
with γ = δ = 0, the orbital instability results for the nonlinear Schrödinger equation with
β = 0, and the orbital stability of solitary wave for LS wave equation with one nonlinear
term.

Because here the stability refers to perturbations of the solitary wave profile itself, a
study for the initial value problem of (1.1) is necessary. Similarly to Theorem 1.2 in [14],
by using Banach’s fixed point theorem and employing some smoothing-effect estimates,
after slightly modifying the proof of [14], we obtain the well-posedness of the initial value
problem of (1.1).

Theorem 1 For any (u0, v0) ∈ H 5
2 (R) × H2(R), there exists a unique function (u, v) ∈

C(R+; H 5
2 (R)) × C(R+; H2(R)) such that u ∈ X2([0, T]) for any T > 0, where

X2(I) =
{

u ∈ C
(
I; H

5
2 (R)

)
: ∂x(1 – �)u ∈ L2(I; L∞(R)

)
,

(1 – �)u ∈ L4(I; L∞(R)
) ∩ L∞(

I; L4(R)
)}

,

I = [0, T].

The orbital stability of solitary waves is defined as follows.

Definition ([26]) The solitary waves T1(ct)T2(ωt)�ω,c(x) are orbitally stable if for any ε >
0, there exists δ > 0 with the following property: If ‖U0 –�ω,c(x)‖X < δ and U(t) is a solution
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of (1.1) in some interval [0, t0) with U(0) = U0, then U(t) can be continued to a solution in
0 ≤ t < +∞, and

sup
0≤t<+∞

inf
s1∈R

inf
s2∈R

∥∥U(t) – T1(s1)T2(s2)�ω,c
∥∥

X < ε, (1.6)

where �ω,c(x) = (φω,c(x),ψω,c(x)). Otherwise, T1(ct)T2(ωt)�ω,c(x) is called orbitally unsta-
ble.

By applying the extended version of the general theory of orbital stability presented by
Grillakis et al. [26], the lines of the stability theorem in the introduction of [27] or Theo-
rem 4.1 in [27], the approach in [28], and detailed spectral analysis, we obtain the following
abstract stability results of solitary waves (1.5) for Eqs. (1.1).

Theorem 2 Assume that (1.1) has a family of solitary waves that belong to H3(R) × H2(R)
as c ranges in R1 = (c1, c2), ω ranges in R2 satisfying 4ω + c2 < 0 with C1 × C1 mapping
(ω, c) → T1(ct)T2(ωt)�ω,c(x) of the interval (R1, R2) into H1(R) × L2(R). Moreover, suppose
that φ′

ω,c has one simple zero and decays rapidly to zero at ±∞. Then the solitary wave
T1(ct)T2(ωt)�ω,c(x) of (1.1) is stable in H1(R)×L2(R) if the condition p(d′′) = n(Hω,c) holds,
where

d(ω, c) = E(�ω,c) – cQ1(�ω,c) – ωQ2(�ω,c),

Hω,c = E′′(�) – cQ′′
1(�) – ωQ′′

2(�),

n(Hω,c) is the number of negative eigenvalues of Hω,c, and p(d′′) is the number of positive
eigenvalues of the Hessian d′′ at (ω, c). The results obtained improve and extend the previous
studies.

The remainder of this paper is structured as follows: For convenience, we first introduce
the existence of solitary waves for the generalized LS wave equations (1.1). Then, in The-
orem 4, we present the spectral analysis of some certain self-adjoint operators necessary
to obtain our stability result and state the stability results. Finally, we prove the stability
results under three conditions.

2 Exact solitary waves of the generalized LS wave equations with cubic-quintic
nonlinearity term

For convenience, in this section, we consider the solitary wave solutions of the follow-
ing generalized LS wave resonance equations with a cubic-quintic strong nonlinear self-
interaction term:

⎧⎨
⎩iut + uxx = αuv + γ |u|2u + δ|u|4u, x ∈ R,

vt + β|u|2x = 0, x ∈ R,
(2.1)

with real α, β , γ , δ. Assume that Eqs. (2.1) have solutions of the form

u(x, t) = e–iωtφ̂ω,c(x – ct) = e–iωteia(x–ct)φω,c(x – ct), v(x, t) = ψω,c(x – ct), (2.2)
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where ω, c are real numbers, and a, φω,c, and ψω,c are real functions. We set ξ = x – ct
and assume φω,c(ξ ),ψω,c(ξ ) → 0 as |ξ | → ∞. Substituting u(x, t) = e–iωtφ̂ω,c(x – ct) and
v(x, t) = ψω,c(x – ct) into Eqs. (2.1), we have that φ̂ω,c(ξ ) and ψω,c(ξ ) satisfy

⎧⎨
⎩–φ̂′′

ω,c + αφ̂ω,cψω,c + γ |φ̂ω,c|2φ̂ω,c + δ|φ̂ω,c|4φ̂ω,c + icφ̂′
ω,c – ωφ̂ω,c = 0,

cψω,c – β|φ̂ω,c|2 = 0.
(2.3)

Substituting φ̂ω,c(ξ ) = eia(ξ )φω,c(ξ ) into Eqs. (2.3) and taking the real and imaginary parts
of Eqs. (2.3), we have

–φ′′
ω,c +

(
a′)2

φω,c + αφω,cψω,c + γφ3
ω,c + δφ5

ω,c – ca′φω,c – ωφω,c = 0, (2.4)

2a′φ′
ω,c + a′′φω,c – cφ′

ω,c = 0, (2.5)

ψω,c =
β

c
φ2

ω,c. (2.6)

From (2.5) we have a′(ξ ) = c
2 and a′′(ξ ) = 0, that is, a(ξ ) = c

2ξ + D. Without loss of gener-
ality, we assume that D = 0, and then a(ξ ) = c

2ξ . By collecting (2.6) and a′(ξ ) = c
2 , Eq. (2.4)

becomes

φ′′
ω,c +

(
ω +

c2

4

)
φω,c +

(
–

αβ

c
– γ

)
φ3

ω,c – δφ5
ω,c = 0. (2.7)

Multiplying by 2φ′
ω,c both sides of Eq. (2.7) and integrating from –∞ to ξ , it follows that

(
φ′

ω,c

φω,c

)2

= d1 + d2φ
2
ω,c + d4φ

4
ω,c, (2.8)

where d1 = –ω – c2

4 , d2 = 1
2 ( αβ

c + γ ), and d4 = 1
3δ. Equation (2.8) is the form of (3.25b) in

[29]. Then, according to [29] (also see [30]), there exists a solitary wave of the form

φ2
ω,c(ξ ) =

1
d3 + d5 cosh d6ξ

, (2.9)

where

d3 = –
d2

2d1
, d2

5 =
d2

2 – 4d1d4

4d2
1

, d2
6 = 4d1.

Therefore we have the following lemma.

Lemma 1 Let d1 > 0 and d2 < 0. If d4 ≤ 0 or if d4 > 0 and d2
2 – 4d1d4 > 0, then Eq. (2.8) has

bounded positive analytic solutions of the form

φω,c(ξ ) =
[

1
d3 + d5 cosh d6ξ

] 1
2

. (2.10)

Especially, when d4 = 0, we obtain the following solution of Eq. (2.8):

φω,c(ξ ) =

√
–

d1

d2
sech(

√
d1ξ ). (2.11)
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Furthermore, from (2.2), (2.6), and (2.10) we can obtain solitary wave solutions u(x, t)
and v(x, t) of Eqs. (1.1). We have the following existence results.

Theorem 3 Suppose that 4ω + c2 < 0 and αβ

c + γ < 0. If δ ≤ 0 or if δ > 0 and ( αβ

c + γ )2 +
4δ
3 (4ω + c2) > 0, then Eqs. (1.1) admit solitary waves u(x, t) = e–iωtei c

2 (x–ct)φω,c(x – ct) and
v(x, t) = ψω,c(x – ct), where φω,c(ξ ) and ψω,c(ξ ) are given by (2.10) and (2.6), respectively.

Corollary 1 For any real constants ω, c,α,β ,γ satisfying 4ω + c2 < 0 and (αβ + γ c)c < 0.
Equations (1.3) (λ = 1) admit solitary waves u(x, t) = e–iωtei c

2 (x–ct)φω,c(x – ct) and v(x, t) =
ψω,c(x – ct), where φω,c(ξ ) =

√
(4ω+c2)c
2(αβ+γ c) sech(

√
–4ω–c2

2 ξ ), and ψω,c(ξ ) is given by (2.6).

Corollary 2 For any real constants ω, c,α,β ,γ satisfying 4ω + c2 < 0, β = 0, and γ < 0,
we obtain the solitary wave u(x, t) = e–iωtei c

2 (x–ct)φω,c(x – ct) for the nonlinear Schrödinger
equation, where φω,c(ξ ) =

√
4ω+c2

2γ
sech(

√
–4ω–c2

2 ξ ).

Remark 1 In particular, if α = 1 and β = –1, then Eqs. (1.4) have solitary waves of u(x, t) =
e–iωtei c

2 (x–ct) φω,c(x – ct) and v(x, t) = ψω,c(x – ct), where φω,c(ξ ) =
√

–(4ω+c2)c
2(1–γ c) sech(

√
–4ω–c2

2 ξ ),
and ψω,c(ξ ) is given by (2.6). These solitary wave solutions are the same as those obtained
by Guo and Chen in Theorem 1 of [25].

3 Verification of conditions that enable Eqs. (1.1) and its solitary waves to
satisfy the abstract stability theory

In this section, we prove that Eqs. (1.1) are a Hamiltonian system and satisfy the condi-
tions of the general orbital stability theory proposed by Grillakis et al. [26, 27] for some
parameters.

In [25] the authors rewrite (1.4) in terms of real and imaginary parts and reduce Eqs. (1.4)
to Eqs. (3.1). Then they define the function space wherein they work on and develop their
analysis. In this paper, we define the function space wherein we work on and develop our
analysis directly starting from Eqs. (1.1).

Let U = (u, v)T . The function space we will work on is defined by X = H1
complex(R)×L2(R).

Let the inner product of X be

(f , g) =
∫

R

(
Re(f1g1) + Re(f1xg1x) + f2g2

)
dx (3.1)

for f = (f1, f2), g = (g1, g2) ∈ X. The dual space of X is X∗ = H–1
complex(R) × L2(R); there exists

a natural isomorphism I : X → X∗ defined by

〈If , g〉 = (f , g), (3.2)

where 〈·, ·〉 denotes the dual product between X and X∗,

〈f , g〉 =
∫

R

(
Re(f1g1) + f2g2

)
dx. (3.3)

From (3.1)–(3.3) it is clear that

I =

(
1 – ∂2

x 0
0 1

)
.
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Let T1, T2 be one-parameter groups of the unitary operator on X given by

T1(s1)U(·) = U(· – s1) for U(·) ∈ X, s1 ∈ R, (3.4)

T2(s2)U(·) =

(
e–is2 u(·)

v(·)

)
for U(·) ∈ X, s2 ∈ R. (3.5)

Differentiating (3.4) and (3.5) with respect to s1 and s2 at s1 = 0 and s2 = 0, respectively, we
obtain

T ′
1(0) =

(
– ∂

∂x 0
0 – ∂

∂x

)
and T ′

2(0) =

(
–i 0
0 0

)
. (3.6)

Then we define the functional on X

E(U) =
∫

R

(
1
2
|ux|2 +

α

2
v|u|2 +

γ

4
|u|4 +

δ

6
|u|6

)
dx. (3.7)

By (3.4), (3.5), and (3.7) we can verify that E(U) is invariant under T1 and T2, namely,

E
(
T1(s1)T2(s2)U

)
= E(U) for any s1, s2 ∈ R. (3.8)

Moreover, for any t ∈ R, U(t) is a flow of Eqs. (1.1):

E
(
U(t)

)
= E

(
U(0)

)
. (3.9)

Note that system (1.1) can be written as the Hamiltonian system

dU
dt

= JE′(U), U = (u, v) ∈ X, (3.10)

where J is a skew-symmetrical linear operator defined by

J =

(
–i 0
0 – 2β

α
∂x

)
, (3.11)

and

E′(U) =

(
–uxx + αuv + γ |u|2u + δ|u|4u

α
2 |u|2

)
(3.12)

is the Frechét derivative of E.
As in [26, 27], we define the operators

B1 =

(
–i ∂

∂x 0
0 α

2β

)
and B2 =

(
1 0
0 0

)

such that T ′
1(0) = JB1 and T ′

2(0) = JB2. Furthermore, we define the conserved functionals
Q1(U) and Q2(U) as follows:

Q1(U) =
1
2
〈B1U , U〉 =

1
2

∫
R

(
Im(uxu) +

α

2β
v2

)
dx (3.13)



Zheng et al. Journal of Inequalities and Applications        (2020) 2020:238 Page 8 of 19

and

Q2(U) =
1
2
〈B2U , U〉 =

1
2

∫
R
|u|2 dx. (3.14)

Differentiating (3.13) and (3.14) with respect to U , respectively, we have

Q′
1(U) = B1U =

(
–iux

α
2β

v

)
and Q′

2(U) = B2U =

(
u
0

)
. (3.15)

Moreover, combining (3.4), (3.5), (3.13), and (3.14), we can prove that Q1(U) and Q2(U)
are also invariant under T1 and T2, that is,

Q1
(
T1(s1)T2(s2)U

)
= Q1(U) for any s1, s2 ∈ R, (3.16)

Q2
(
T1(s1)T2(s2)U

)
= Q2(U) for any s1, s2 ∈ R. (3.17)

We also have that U(t) is the flow of Eqs. (1.1): for any t ∈ R,

Q1
(
U(t)

)
= Q1

(
U(0)

)
and Q2

(
U(t)

)
= Q2

(
U(0)

)
. (3.18)

From Theorem 3, (3.4), and (3.5) we know that Eqs. (1.1) admit solitary waves T1(ct) ×
T2(ωt)�ω,c(x) with �ω,c defined by

�ω,c(x) =
(
φ̂ω,c(x),ψω,c(x)

)
=

(
ei c

2 xφω,c(x),ψω,c(x)
)
, (3.19)

where φω,c(x) and ψω,c(x) are respectively defined by (2.10) and (2.6). For convenience, we
write �ω,c(x) as �(x).

Furthermore, combining the first equations of (2.3), (3.12), and (3.15), we get

E′(�) – cQ′
1(�) – ωQ′

2(�)

=

(
–φ̂xx + αφ̂ψ + γ |φ̂|2φ̂ + δ|φ̂|4φ̂ + icφ̂x – ωφ̂

α
2 |φ̂|2 – αc

2β
ψ

)
= 0. (3.20)

Now we define the operator from X to X∗

Hω,c = E′′(�) – cQ′′
1(�) – ωQ′′

2(�), (3.21)

where E′′(U) is the Frechét derivative of E′(U) defined as

E′′(U)(η)

=
(

–∂2
x η1 + αvη1 + γ |u|2η1 + 2γ uRe(uη1) + δ|u|4η1 + 4|u|2uRe(uη1) + αuη2

αRe(uη1)

)
, (3.22)

and Q′′
1(U) and Q′′

2(U) are the Frechét derivatives of Q′
1(U) and Q′

2(U), respectively:

Q′′
1(U) = B1 =

(
–i ∂

∂x 0
0 α

2β

)
and Q′′

2(U) = B2 =

(
1 0
0 0

)
. (3.23)
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In what follows, we consider the orbital stability of solitary waves T1(ct)T2(ωt)�ω,c(x)
of (1.1). To prove the orbital stability of solitary waves, we need to prove that they satisfy
three hypotheses proposed by Grillakis et al. [26]. From Theorem 1, Theorem 3, (3.20),
φ′

ω,c �= 0, and φω,c ∈ D( ∂2

∂x2 ) we get that Assumptions 1 and 2 in [26] are satisfied. Then we
need to compute the Hessian operator Hω,c and verify Assumption 3 in [26]. Combining
(3.21), (3.22), and (3.23), we obtain that

Hω,cη

=
(
E′′(�) – cQ′′

1(�) – ωQ′′
2(�)

)
η

=
(

–∂2
x η1 + αψη1 + γ |φ̂|2η1 + 2γ φ̂Re(φ̂η1) + δ|φ̂|4η1 + 4|φ̂|2φ̂Re(φ̂η1) + αφ̂η2 + icη1x – ωη1

αRe(φ̂η1) – α
2β

cη2

)
. (3.24)

Observe that Hω,c is self-adjoint in the sense that H∗
ω,c = Hω,c. This means that I–1Hω,c is a

bounded self-adjoint operator on X. The spectrum of Hω,c comprises the real numbers λ

such that Hω,c – λI is not invertible.
For any η = (η1,η2) ∈ X, η1 = e ic

2 (x–ct)z, z = z1 + iz2, from (3.24) we have that

Hω,cη =

⎛
⎜⎝

(–∂2
x z – iczx + z2

4 + αψz + γφ2z + 2γφRe(φz) + δφ4z
+4φ3Re(φz) + αφη2 – c2

2 z + iczx – ωz)e ic
2 (x–ct)

αRe(φz) – αc
2β

η2

⎞
⎟⎠

=

⎛
⎜⎝

([–∂2
x + 3αψ + 3γφ2 + 5δφ4 – (ω + c2

4 )]z1 + αφη2 – 2αψz1

+i[–∂2
x + αψ + γφ2 + δφ4 – (ω + c2

4 )]z2)e ic
2 (x–ct)

αφz1 – αc
2β

η2

⎞
⎟⎠ . (3.25)

Let

L1 = –∂2
x + 3αψ + 3γφ2 + 5δφ4 –

(
ω +

c2

4

)
(3.26)

and

L2 = –∂2
x + αψ + γφ2 + δφ4 –

(
ω +

c2

4

)
, (3.27)

where ψ = β

c φ2. Then

Hω,cη =

(
(L1z1 + αφη2 – 2αψz1 + iL2z2)e ic

2 (x–ct)

αφz1 – αc
2β

η2

)
. (3.28)

Furthermore, we have

〈Hω,cη,η〉 = 〈L1z1, z1〉 + 〈L2z2, z2〉 +
∫

R

(
αφη2z1 – 2αψz2

1 + αφz1η2 –
αc
2β

η2
2

)
dx

= 〈L1z1, z1〉 + 〈L2z2, z2〉 –
αc
2β

∫
R

(
2β

c
φz1 – η2

)2

dx. (3.29)

Next, let us study the spectrum structure of the linear operators L1 and L2. For L1 and
L2, we have ϕ → 0, ψ → 0, 3αψ + 3γφ2 + 5δφ4 → 0, and αψ + γφ2 + δφ4 → 0 as x →
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∞. Therefore by Weyl′s essential spectral theorem the essential spectra of L1 and L2 are
σessL1 = [–ω – c2

4 , +∞) and σessL2 = [–ω – c2

4 , +∞), respectively. Differentiating (2.7) with
respect to x and combining with (2.6), we have

(
∂2

x – 3αψ – 3γφ2 – 5δφ4 +
(

ω +
c2

4

))
φx = 0. (3.30)

Then we obtain L1φx = 0. From (2.6) and (2.7) we have

(
∂2

x – αψ – γφ2 – δφ4 +
(

ω +
c2

4

))
φ = 0, (3.31)

that is, L2φ = 0.
As φx has a unique zero at x = 0, we know that zero is the second eigenvalue of L1 using

the Sturm–Liouville theorem. Thus L1 has exactly one strictly negative eigenvalue –σ 2

with an eigenfunction χ , that is,

L1χ = –σ 2χ . (3.32)

Moreover, since φ has no zero, we know that zero is the first eigenvalue of L2 using the
Sturm–Liouville theorem.

For any real functions y ∈ H1(R) satisfying 〈y,χ〉 = 〈y,φx〉 = 0, along the lines of proof in
Appendix of [31], there exists a positive number δ1 > 0 such that 〈L1y, y〉 ≥ δ1‖y‖2

H1(R).
Moreover, for any real functions y ∈ H1(R) satisfying 〈y,φ〉 = 0, there exists a positive

number δ2 > 0 such that 〈L2y, y〉 ≥ δ2‖y‖2
H1(R).

From (3.29), (3.30), and (3.31) we have

Hω,cT ′
1(0)� =

(
(∂2

x φ̂ – αψφ̂ – γ |φ̂|2φ̂ – δ|φ̂|4φ̂ – icφ̂x + ωφ̂)x

– α
2β

(β|φ̂|2 – cψ)x

)
= 0 (3.33)

and

Hω,cT ′
2(0)� =

(
i(∂2

x φ̂ – αψφ̂ – γ |φ̂|2φ̂ – δ|φ̂|4φ̂ – icφ̂x + ωφ̂)
0

)
= 0. (3.34)

Moreover, for any � = (y–
1 , y–

2 ) ∈ X, we choose y–
1 = e ic

2 (x–ct)(χ + iφ), y–
2 = 2β

c φχ , and �– =
(e ic

2 (x–ct)(χ + iφ), 2β

c φχ ). Then

〈
Hω,c�

–,�–〉
= 〈L1χ ,χ〉 = –σ 2〈χ ,χ〉 < 0. (3.35)

Let

Z =
{

k1T ′
1(0)� + k2T ′

2(0)�|k1, k2 ∈ R
}

, (3.36)

P =
{

p ∈ X|p = (p1, p2), p1 = e
ic
2 (x–ct)(p11 + ip12),

× 〈p11,χ〉 = 〈p11,φx〉 = 〈p12,φ〉 = 0
}

, (3.37)

N =
{

k3�
–|k3 ∈ R

}
. (3.38)
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Then for any U ∈ Z, 〈Hω,cU , U〉 = 0 by (3.33) and (3.34). For any 0 �= V ∈ N , 〈Hω,cV , V 〉 =
k2

3〈Hω,c�
–,�–〉 = –σ 2〈χ ,χ〉 < 0. For the subspace P, we have the following:

Lemma 2 Suppose αβc < 0. For any ζ ∈ P, defined by (3.37), there exists a constant δ5 > 0
such that

〈Hω,cζ , ζ 〉 ≥ δ5‖ζ‖2
X , (3.39)

where δ5 is independent of ζ .

Proof For any ζ = (e ic
2 (x–ct)(ζ11 + iζ12), ζ2) ∈ P, by (3.37) and the spectrum analysis of oper-

ator L1 and L2 we have

〈Hω,cζ , ζ 〉 ≥ δ1‖ζ11‖2
H1 + δ2‖ζ12‖2

H1 –
αc
2β

∫
R

(
2β

c
φζ11 – ζ2

)2

dx. (3.40)

(1) If ‖ζ2‖2
L2 ≥ 8β2

c2 M2‖ζ11‖2
L2 , M = sup |φ|, then

∫
R

(
2β

c
φζ11 – ζ2

)2

dx ≥
∫

R
ζ 2

2 dx –
∫

R

4β2

c2 φ2ζ 2
11 dx ≥

∫
R
ζ 2

2 dx –
∫

R

4M2β2

c2 ζ 2
11 dx

≥ 1
2
‖ζ2‖2

L2 . (3.41)

(2) If ‖ζ2‖2
L2 ≤ 8β2

c2 M2‖ζ11‖2
L2 , then

δ1‖ζ11‖2
H1 ≥ δ1

2
‖ζ11‖2

H1 +
c2δ1

16β2M2 ‖ζ2‖2
L2 . (3.42)

Thus for any ζ = (e ic
2 (x–ct)(ζ11 + iζ12), ζ2) ∈ P, from (3.40)–(3.42) it follows that

〈Hω,cζ , ζ 〉 ≥ δ3‖ζ1‖2
H1 + δ4‖ζ2‖2

L2 , (3.43)

where δ3 = min{ δ1
2 , δ2} > 0, δ4 = min{– αc

4β
, c2δ1

16β2M2 } > 0. Finally, from (3.43) we have

〈Hω,cζ , ζ 〉 ≥ δ5‖ζ‖2
X , (3.44)

where δ5 = min{δ3, δ4}.
By Lemma 2, for any p ∈ P, 〈Hω,cp, p〉 ≥ δ‖p‖2

X , where δ > 0. From the previous analysis
it follows that n(Hω,c) = 1, where n(Hω,c) denotes the number of negative eigenvalues of
Hω,c.

Next, we define d(ω, c) : R × R → R by

d(ω, c) = E(�ω,c) – cQ1(�ω,c) – ωQ2(�ω,c) (3.45)

and denote by d′′(ω, c) the Hessian matrix of the function d(ω, c). This is a symmetric
bilinear form. Then we denote by p(d′′) the number of positive eigenvalues of the Hessian
d′′ at (ω, c).
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From Theorem 2 we obtain the following main results regarding the orbital stability of
solitary waves for Eqs. (1.1). �

Theorem 4 Let α, β , γ and δ be any real constants. Suppose that α, β , c, and ω satisfy
αβc < 0, 4ω + c2 < 0, and one of the following conditions:

(a) δ < 0, αβ

c + γ < 0, 4
3δc4 + 2αβcγ + 3α2β2 > 0,

(b) δ = 0, αβ

c + γ < 0,
(c) δ > 0, αβ

c + γ < 0, ( αβ

c + γ )2 > – 4δ
3 (4ω + c2),

Then the solitary waves T1(ct)T2(ωt)�ω,c(x) of Eqs. (1.1) are orbitally stable.

4 Orbital stability of solitary waves for Eqs. (1.1) in three cases
In this section, we verify that p(d′′) = 1 under the conditions of Theorem 2 and provide a
detailed proof of Theorem 4.

Combining (3.13), (3.14), and (3.19) with (3.20) and differentiating (3.45) with respect
to ω and c, respectively, it follows that

dω = –Q2(�ω,c) = –
1
2

∫
R
φ2 dx, dc = –Q1(�ω,c) = –

c
4

∫
R
φ2 dx –

αβ

4c2

∫
R
φ4 dx,

dωω = –
1
2

∂

∂ω

∫
R
φ2 dx, dωc = –

1
2

∂

∂c

∫
R
φ2 dx,

dcω = –
c
4

∂

∂ω

∫
R
φ2 dx –

αβ

4c2
∂

∂ω

∫
R
φ4 dx,

dcc = –
c
4

∂

∂c

∫
R
φ2 dx –

1
4

∫
R
φ2 dx +

αβ

2c3

∫
R
φ4 dx –

αβ

4c2
∂

∂c

∫
R
φ4 dx.

Therefore we obtain

d′′ =

(
dωω dωc

dcω dcc

)

and

det
(
d′′) =

1
8

∫
R
φ2 dx

∂

∂ω

∫
R
φ2 dx –

αβ

4c3

∫
R
φ4 dx

∂

∂ω

∫
R
φ2 dx

+
αβ

8c2
∂

∂ω

∫
R
φ2 dx

∂

∂c

∫
R
φ4 dx –

αβ

8c2
∂

∂c

∫
R
φ2 dx

∂

∂ω

∫
R
φ4 dx. (4.1)

According to the stability theory developed by Grillakis et al. [26, 27], we only need to
observe the sign of det(d′′), from which we obtain the orbital stability of solitary waves
T1(ct)T2(ωt)�ω,c(x) for Eqs. (1.1). In what follows, we will provide a detailed proof of
det(d′′) < 0 in three cases.

Case (a) 4ω + c2 < 0, δ < 0, αβ

c + γ < 0,αβc < 0, 4
3δc4 + 2αβcγ + 3α2β2 > 0.

In this case, we have d1 > 0, d2 < 0, d4 < 0,αβc < 0, and 4αβcd2 + 4c4d4 + α2β2 > 0. More-
over,

d2
5 – d2

3 = –
d4

d1
,

d3√
d2

5 – d2
3

= –
d2

2
√

–d1d4
,
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∫
R
φ2 dx =

∫
R

1
d3 + d5 cosh d6x

dx =
2

d6

√
d2

5 – d2
3

(
π

2
– arctan

d3√
d2

5 – d2
3

)

=
1√
–d4

(
π

2
– arctan

–d2

2
√

–d1d4

)
,

∂

∂ω

∫
R
φ2 dx =

d2√
d1(d2

2 – 4d1d4)
,

∂

∂c

∫
R
φ2 dx =

√
d1

2c2(d2
2 – 4d1d4)

(
d2

d1
c3 – 2αβ

)
,

∫
R
φ4 dx =

∫
R

(
1

d3 + d5 cosh d6x

)2

dx

=
2

d6(d2
5 – d2

3)
+

d2d
3
2
1

2d
3
2
1 (–d4) 3

2

(
π

2
– arctan

–d2

2
√

–d1d4

)

= –
√

d1

d4
+

d2

2(–d4) 3
2

(
π

2
– arctan

–d2

2
√

–d1d4

)
,

∂

∂ω

∫
R
φ4 dx =

–2
√

d1

d2
2 – 4d1d4

,

∂

∂c

∫
R
φ4 dx =

c
4
√

d1d4
–

αβ

4c2(–d4) 3
2

(
π

2
– arctan

–d2

2
√

–d1d4

)

–
√

d1d2

4d4(d2
2 – 4d1d4)c2

(
d2

d1
c3 – 2αβ

)
.

By (4.1) we have

det
(
d′′) =

1
8

1√
–d4

(
π

2
– arctan

–d2

2
√

–d1d4

)
d2

d1(d2
2 – 4d1d4)

–
αβ

4c3
d2

(d2
2 – 4d1d4)

√
d1

[
–

√
d1

d4
+

d2

2(–d4) 3
2

(
π

2
– arctan

–d2

2
√

–d1d4

)]

+
αβ

8c2
d2√

d1(d2
2 – 4d1d4)

[
c

4
√

d1d4
–

αβ

4c2(–d4) 3
2

(
π

2
– arctan

–d2

2
√

–d1d4

)

–
√

d1

4c2d4(d2
2 – 4d1d4)

(
d2

d1
c3 – 2αβ

)]

–
αβ

8c2

√
d1

2c2(d2
2 – 4d1d4)

(
d2

d1
c3 – 2αβ

)
–2

√
d1

d2
2 – 4d1d4

=
[

1
4(d2

2 – 4d1d4)

(
αβd2

8cd1d4
– 1 –

α2β2

4c4d4

)

–
αβc

32c4d4(d2
2 – 4d1d4)

(
d2

d1
c2 –

2αβ

c

)]

+
1

4(d2
2 – 4d1d4)

(
1 +

αβd2

c3d4
+

α2β2

4c4d4

)

×
[

1 +
d2

2
√

–d1d4

(
π

2
– arctan

–d2

2
√

–d1d4

)]
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=
–1

4(d2
2 – 4d1d4)

+
1

4(d2
2 – 4d1d4)

(
1 +

αβd2

c3d4
+

α2β2

4c4d4

)[
1 –

–d2

2
√

–d1d4

×
(

π

2
– arctan

–d2

2
√

–d1d4

)]

= I + II,

where

I =
–1

4(d2
2 – 4d1d4)

and

II =
1

4(d2
2 – 4d1d4)

(
1 +

αβd2

c3d4
+

α2β2

4c4d4

)[
1 –

–d2

2
√

–d1d4

(
π

2
– arctan

–d2

2
√

–d1d4

)]
.

Next, we estimate I and II . As d4 < 0, d2 < 0, d1 > 0, and αβc < 0, we get I < 0. Let y =
–d2

2
√

–d1d4
. Then we have y > 0 and

II =
1

4(d2
2 – 4d1d4)

(
1 +

αβd2

c3d4
+

α2β2

4c4d4

)
Y (y),

Y (y) = 1 – y
(

π

2
– arctan y

)
.

It is clear that

Y (0) = lim
y→0+

[
1 – y

(
π

2
– arctan y

)]
= 1, (4.2)

Y (+∞) = lim
y→+∞

[
1 – y

(
π

2
– arctan y

)]
= 1 – lim

y→+∞

π
2 – arctan y

1/y

= 1 – lim
y→+∞

–1/(1 + y2)
–1/y2 = 0. (4.3)

To estimate II , we first show that Y (y) is a decreasing function and Y (y) > 0. Differentiating
Y (y) with respect to y, we have

Y ′(y) = –
π

2
+ arctan y +

y
1 + y2 , (4.4)

Y ′′(y) =
2

1 + y2 –
2y2

(1 + y2)2 =
2

(1 + y2)2 > 0, (4.5)

and

Y ′(0) = lim
y→0+

[
–

π

2
+ arctan y +

y
1 + y2

]
= –

π

2
, (4.6)

Y ′(+∞) = lim
y→+∞

[
–

π

2
+ arctan y +

y
1 + y2

]
= 0. (4.7)
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Then (4.5), (4.6), and (4.7) imply that Y ′(y) < 0 for any y ∈ R+. Thus from (4.2) and (4.3) we
have

Y (y) > 0 for any y ∈ R+. (4.8)

As d4 < 0, d2 < 0, d1 > 0, αβc < 0, and 4c4d4 + 4αβcd2 + α2β2 > 0, we have

1 +
αβd2

c3d4
+

α2β2

4c4d4
< 0. (4.9)

Then (4.8) and (4.9) ensure that II < 0. Thus we have det(d′′) < 0, which implies that d′′ has
exactly one negative eigenvalue and one positive eigenvalue, namely, p(d′′) = 1.

Case (b) δ = 0, αβ

c + γ < 0,αβc < 0, 4ω + c2 < 0.
In this case, we have

φ2 = –
2d1

d2

1
1 + cosh d6x

,

∫
R
φ2 dx = –

2d1

d2

∫
R

1
1 + cosh d6x

dx = –
2
√

d1

d2
,

∂

∂ω

∫
R
φ2 dx =

1√
d1d2

,

∂

∂c

∫
R
φ2 dx =

√
d1

2d2
2c2

(
d2

d1
c3 – 2αβ

)
,

∫
R
φ4 dx =

4d2
1

d2
2

∫
R

(
1

1 + cosh d6x

)2

dx =
4
3

d
3
2
1

d2
2

,

∂

∂ω

∫
R
φ4 dx = –

2
√

d1

d2
2

,

∂

∂c

∫
R
φ4 dx = –

√
d1c
d2

2
+

4d
3
2
1 αβ

3d3
2c2 = –

d
3
2
1

d3
2c2

(
d2

d1
c3 – 2αβ

)
–

2d
3
2
1 αβ

3d3
2c2 .

By (4.1) we have

det
(
d′′) =

1
8

(
–

2
√

d1

d2

)
1√

d1d2
–

αβ

4c3
4
3

d
3
2
1

d2
2

1√
d1d2

+
αβ

8c2
1√

d1d2

(
–

d
3
2
1

d3
2c2

)(
d2

d1
c3 – 2αβ

)

–
αβ

8c2
√

d1d2

2d
3
2
1 αβ

3d3
2c2 –

αβ

8c2

√
d1

2d2
2c2

(
d2

d1
c3 – 2αβ

)(
–

2
√

d1

d2
2

)

= –
1

12c4d2
2

[
3c4d2

2 + 4αβcd1d2 + α2β2d1
]
.

As d2 < 0, d1 > 0, and αβc < 0, we have

3c4d2
2 + 4αβcd1d2 + α2β2d1 > 0.
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Then we have det(d′′) < 0. Thus d′′ has exactly one negative eigenvalue and one positive
eigenvalue, that is, p(d′′) = 1.

Case (c) δ > 0, αβ

c + γ < 0, 4ω + c2 < 0, ( αβ

c + γ )2 > – 4δ
3 (4ω + c2),αβc < 0.

In this case, we have d1 > 0, d2 < 0, d4 > 0, d2
2 – 4d1d4 > 0, αβc < 0. Then

d2
5 – d2

3 = –
d4

d1
< 0, d3 > d5,

∫
R
φ2 dx =

∫
R

1
d3 + d5 cosh d6x

dx =
1

2
√

d4
ln

–d2 + 2
√

d4d1

–d2 – 2
√

d4d1
,

∂

∂ω

∫
R
φ2 dx =

d2√
d1(d2

2 – 4d1d4)
,

∂

∂c

∫
R
φ2 dx =

√
d1

2c2(d2
2 – 4d1d4)

(
d2

d1
c3 – 2αβ

)
,

∫
R
φ4 dx =

∫
R

(
1

d3 + d5 cosh d6x

)2

dx = –
√

d1

d4
–

d2

4d
3
2
4

ln
–d2 + 2

√
d4d1

–d2 – 2
√

d4d1
,

∂

∂ω

∫
R
φ4 dx =

–2
√

d1

d2
2 – 4d1d4

,

∂

∂c

∫
R
φ4 dx =

c
4d4

√
d1

+
αβ

8c2d
3
2
4

. ln
–d2 + 2

√
d1d4

–d2 – 2
√

d1d4

–
d2

√
d1

4d4(d2
2 – 4d1d4)c2

(
d2

d1
c3 – 2αβ

)
.

By (4.1) we have

det
(
d′′)

=
1
8

1
2
√

d4
ln

–d2 + 2
√

d1d4

–d2 – 2
√

d1d4

d2√
d1(d2

2 – 4d1d4)
–

αβ

4c3
d2√

d1(d2
2 – 4d1d4)

(
–

√
d1

d4

)

+
αβ

4c3
d2√

d1(d2
2 – 4d1d4)

d2

4d
3
2
4

ln
–d2 + 2

√
d1d4

–d2 – 2
√

d1d4
+

αβ

8c2
d2√

d1(d2
2 – 4d1d4)

c
4d4

√
d1

–
αβd2

2
32c4d4(d2

2 – 4d1d4)2

(
d2

d1
c3 – 2αβ

)

+
α2β2d2

64c4
√

d1d3
4(d2

2 – 4d1d4)
ln

–d2 + 2
√

d1d4

–d2 – 2
√

d1d4

–
αβ

√
d1

16c4(d2
2 – 4d1d4)

(
–

2
√

d1

d2
2 – 4d1d4

)(
d2

d1
c3 – 2αβ

)

=
4c4d4 + 4αβcd2 + α2β2

16c4d4(d2
2 – 4d1d4)

(
1 +

d2

4
√

d1d4
ln

– d2
2
√

d1d4
+ 1

– d2
2
√

d1d4
– 1

)

+
[

–
α2β2

32c4d4(d2
2 – 4d1d4)

(
d2

d1

c3

αβ
– 2

)

–
8c4d1d4 + 2α2β2d1 – αβc3d2

32c4d1d4(d2
2 – 4d1d4)

]
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=
4c4d4 + 4αβcd2 + α2β2

16c4d4(d2
2 – 4d1d4)

(
1 +

d2

4
√

d1d4
ln

– d2
2
√

d1d4
+ 1

– d2
2
√

d1d4
– 1

)
–

1
4(d2

2 – 4d1d4)

= I + II,

where

I =
4c4d4 + 4αβcd2 + α2β2

16c4d4(d2
2 – 4d1d4)

(
1 +

d2

4
√

d1d4
ln

– d2
2
√

d1d4
+ 1

– d2
2
√

d1d4
– 1

)

and

II = –
1

4(d2
2 – 4d1d4)

.

Next, we estimate I and II . As d2
2 – 4d1d4 > 0, we have II < 0. Let y = – d2

2
√

d1d4
. Then we

have y > 1 and

I =
4c4d4 + 4αβcd2 + α2β2

16c4d4(d2
2 – 4d1d4)

Z(y),

Z(y) = 1 –
y
2

ln
y + 1
y – 1

.

It is clear that

Z(1) = lim
y→1+

[
1 –

y
2

ln
y + 1
y – 1

]
= –∞, (4.10)

Z(+∞) = lim
y→+∞

[
1 –

y
2

ln
y + 1
y – 1

]
= 1 + lim

y→+∞

1
y+1 – 1

y–1

2/y2

= 1 + lim
y→+∞

–y2

y2 – 1
= 0. (4.11)

To estimate I , we first show that Z(y) is an increasing function and Z(y) < 0. Differentiating
Z(y) with respect to y, we have

Z′(y) = –
1
2

ln
y + 1
y – 1

+
y

y2 – 1
, (4.12)

Z′′(y) = –
2

(y2 – 1)2 < 0 for any 1 < y < +∞, (4.13)

and

Z′(+∞) = lim
y→+∞

[
–

1
2

ln
y + 1
y – 1

+
y

y2 – 1

]
= 0. (4.14)

Then (4.13) and (4.14) imply that Z′(y) > 0 for any y ∈ (1, +∞). Thus from (4.10) and (4.11)
we have

Z(y) < 0 for any y ∈ (1, +∞). (4.15)
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As d4 > 0, d2 < 0, and αβc < 0, we have

4c4d4 + 4αβcd2 + α2β2

16c4d4(d2
2 – 4d1d4)

> 0. (4.16)

Then, combining (4.15) with (4.16), we have I < 0. Thus we obtain det(d′′) < 0, which
implies that d′′ has exactly one negative eigenvalue and one positive eigenvalue, that is,
p(d′′) = 1.

Therefore by Theorem 2 we prove that the solitary waves e–iωt�(x – ct) of Eqs. (1.1) are
orbitally stable under the conditions of Theorem 4.

Corollary 3 For any real constants ω, c,α,β ,γ satisfying 4ω + c2 < 0, αβ

c + γ < 0, and αβc <
0, the solitary waves T1(ct)T2(ωt)�ω,c(x) of Eqs. (1.2) (λ = 1) with expression (3.20) are
orbitally stable.

Remark 2 In particular, when the parameters α = 1, β = –1, and δ = 0, Eqs. (1.1) reduce to
the LS wave resonance equations (1.3) studied by Guo and Chen [25]. Because dcc(ω, c) is
incorrect and consequently det(d′′) as well, condition (3.28) of orbital stability for solitary
waves in [25] is incorrect. The results obtained in Corollary 3 herein are correct and extend
the results of [25]. The orbitally stable results obtained in Theorem 4 can be regarded as
an extension of the results of Chen and Guo [25].

Furthermore, when β = 0, according to the instability theory [27] (n(Hω,c)–p(d′′) is odd),
we can obtain the following result by the same process as that detailed in Sect. 3 and Case
(b).

Corollary 4 For any real constants ω, c,γ satisfying 4ω+c2 < 0 and γ < 0, the solitary wave
u(x, t) = e–iωt

√
4ω+c2

2γ
sech

√
–4ω–c2

2 (x – ct) of the nonlinear Schrödinger equation is orbitally
instable.
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