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Abstract
The aim of this paper is computing the coderivatives of efficient point and efficient
solution set-valued maps in a parametric vector optimization problem. By using a
method different from the existing literature we establish an upper estimate and
explicit expression for the coderivatives of an efficient point set-valued map where
the independent variable can take values in the whole space. As an application, we
give some characterizations on the Aubin property of an efficient point map and an
explicit expression of the coderivative for an efficient solution map. We provide
several examples illustrating the main results.
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1 Introduction
Consider the following parametric vector-valued optimization problem:

MinK
{

f (p, x) | x ∈ C(p)
}

, (1)

where f : Rm ×Rn →Rs is a vector-valued map, C : Rm ⇒Rn is a set-valued map, K is a
pointed closed convex cone of Rs that induces a partial ordering �K , x ∈Rn is a decision
variable, and p ∈Rm is a parameter. The “MinK ” in (1) is understood as follows: y ∈ MinK A
if and only if (y – K) ∩ A = {y} for each A ⊆Rs; when A = ∅, MinK A = ∅. For convenience,
we define F : Rm ⇒Rs as

F(p) := (f ◦ C)(p) = f
(
p, C(p)

)
=

{
f (p, x) | x ∈ C(p)

}
(2)

and F : Rm ⇒Rs as

F (p) := MinK F(p). (3)
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The latter is the efficient point set-valued map for (1). Clearly, the efficient solution map
of (1) is given as

S(p) :=
{

x ∈ C(p) | 0 ∈ –f (p, x) + F (p)
}

. (4)

The aim of this paper is discussion of the coderivatives and Aubin property of the effi-
cient point and efficient solution maps in parametric vector optimization problems. The
derivatives (especially, coderivatives) are very useful tools to discuss the Aubin property,
which is an important concept in sensitivity analysis in optimization theory and applica-
tions. The key work of sensitivity analysis is analyzing the behavior of the efficient point
set-valued maps F and the efficient solution set-valued maps S by using certain concepts
of generalized derivatives for set-valued maps. Let us review the main work in this field. In
primal spaces, by using the tangent derivatives for set-valued maps, which are generated
by tangent cones to their graphs, sensitivity results are obtained for vector optimization
problems with kinds of structure; see, for example, [2, 7, 8, 11, 14, 16, 22, 23] and refer-
ences therein. In dual spaces, sensitivity results of scalar (single-objective) optimization
problems are obtained by the coderivatives generated by normal cones to the graphs of
set-valued maps; we refer the readers to [10, 15, 19, 20, 25] for just a few of them.

There are also some papers discussing the sensitivity of vector optimization problems.
By using the results in [17], Huy et al. [6] studied the sensitivity properties of the para-
metric vector optimization problem via the Mordukhovich coderivatives with respect to
the so-called generalized order optimality in the Asplund space setting. Chuong and Yao
[4] and Chuong [3] gave some results on sensitivity analysis in parametric vector opti-
mization problems by virtue of the Fréchet and Clarke coderivatives in the Banach space
setting, respectively. Xue et al. [24] studied the upper estimates and equality formula for
the coderivatives of parametric vector set-valued optimization problems in Banach spaces.
The method to obtain the coderivatives of an efficient point map F in these papers is as
follows: first, they gave some useful and effective expressions for the coderivatives of F by
the coderivatives of F + K ; then these effective characterizations are applied to the effi-
cient point map F ; finally, by the domination property they showed that the coderivatives
of the efficient point map F is equivalent to that of F . We can easily see that this method
is technical and complex and that the drawback of this method is that these results cannot
be used to establish the Aubin property of F and the coderivatives of solution map S since
the independent variable of the coderivatives set-valued map of F is restricted to a part of
the space; it also does not provide all the characters of F , especially for the independent
variable being 0, which is important in showing the Aubin property of F .

In this paper, we introduce a new way, different from those in the recent literature, to
investigate the sensitivity and Aubin properties of the parametric vector-valued optimiza-
tion problem via the coderivatives. We first establish an upper estimate and explicit ex-
pression for computing the coderivative of an efficient point set-valued map F where the
independent variable can take values in the whole space and then employ this formula to
study the Aubin property of F . As a byproduct, we use this formula to establish an explicit
expression of the coderivative for efficient solution map S only by the coderivative of the
objective function and the constraint map.

The rest of the paper is organized as follows. In Sect. 2, we recall and discuss some basic
constructions from variational analysis and generalized differentiation, broadly employed
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in the formulations and proofs of the main results. In Sect. 3, we first establish an upper es-
timate and explicit expression for the coderivative of the efficient point set-valued map F .
Then, by the above formula, we obtain the Aubin property of F . In Sect. 4, we study the
coderivative of the efficient solution map S for the parametric vector-valued optimization
problem. Moreover, we provide examples to analyze and illustrate the obtained results.

2 Basic definitions and preliminaries
We use standard notation. For all spaces, the norms are always denoted by ‖ · ‖, and 〈·, ·〉
means the canonical pairing. The closed ball with center x and radius η is denoted by Bη(x).
The symbol A∗ denotes the adjoint operator of a linear continuous operator A. If F : Rn ⇒
Rs is a set-valued map, then by dom F = {x ∈Rn | F(x) 
= ∅} and gph F = {(x, y) ∈Rn ×Rs |
y ∈ F(x)} we denote the domain and graph of F , respectively. The notation xn

S→ x means
that the sequence xn is contained in the subset S and converges to x. For a set-valued map
F : Rn ⇒Rs, the expression

Lim sup
x→x̄

F(x)

=
{

y ∈Rs | ∃ sequences xk → x̄, yk ∈ F(xk), s.t., yk → y for all k ∈N
}

,

signifies the sequential Painlevé–Kuratowski upper (outer) limit of F at x̄; N = {1, 2, . . .}.
The origins of all spaces are denoted by 0.

Next, we recall the basic concepts and constructions of variational analysis and gener-
alized differentiation for formulations and justifications of the main results of the paper.
Most of the concepts and properties can be found in the recent monographs [17, 18].

Definition 2.1 Let � ⊂Rn be a nonempty subset.
(i) Let x̄ ∈ � and ε ≥ 0. The Fréchet normal cone (or the prenormal cone) to � at x̄ ∈ �

is defined by

N̂(x̄,�) =
{

x∗ ∈Rn
∣∣∣ lim sup

x �→x̄

〈x∗, x – x̄〉
‖x – x̄‖ ≤ 0

}
. (5)

We put N̂(x̄,�) = ∅ if x̄ /∈ �.
(ii) The Mordukhovich normal cone (or basic normal cone) to � ⊂Rn at x̄ is defined

through the Painlevé–Kuratowski upper (outer) limit as

N(x̄,�) = Lim sup
xk→x̄

N̂(xk ,�). (6)

Definition 2.2 Consider a set-valued map � : Rn ⇒Rs.
(i) The Fréchet coderivative D̂∗�(x̄, ȳ) at (x̄, ȳ) is defined through the Fréchet normal

cone (5) to the graph as

D̂∗�(x̄, ȳ)
(
y∗) =

{
x∗ ∈Rn | (x∗, –y∗) ∈ N̂

(
(x̄, ȳ), gph�

)}
. (7)

(ii) The normal (Mordukhovich) coderivative of � at (x̄, ȳ) is

D∗�(x̄, ȳ)
(
y∗) =

{
x∗ ∈Rn | (x∗, –y∗) ∈ N

(
(x̄, ȳ), gph�

)}
, (8)
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that is, D∗�(x̄, ȳ)(y∗) is the collection of all x∗ for which there are sequences
(xk , yk) → (x̄, ȳ) and (x∗

k , y∗
k) → (x∗, y∗) with (xk , yk) ∈ gph� and x∗

k ∈ D̂∗�(xk , yk)(y∗
k).

The symbol D∗�(x̄) is used when � is single-valued at x̄ and ȳ = �(x̄).

We say that � is regular at x̄ ∈ � if N(x̄,�) = N̂(x̄,�) and that � is regular at (x̄, ȳ) if
D∗�(x̄, ȳ) = D̂∗�(x̄, ȳ).

The following proposition gives a sufficient condition for the regularity of � and special
representations of the coderivatives.

Proposition 2.1 Let � : Rn →Rs be Fréchet differentiable at x̄. Then

D̂∗�(x̄)
(
y∗) =

{(∇�(x̄)
)∗y∗}, ∀y∗ ∈Rs.

Moreover, if � is strictly differentiable at x̄, that is, � is single-valued around x̄ and

lim
x,x′→x̄

[
�(x) – �

(
x′) – ∇�(x̄)

(
x – x′)]/

∥∥x – x′∥∥ = 0,

then � is regular at x̄, and we have

D∗�(x̄)
(
y∗) =

{(∇�(x̄)
)∗y∗}, ∀y∗ ∈Rs.

Definition 2.3 Let f : Rn → Rs be a single-valued map, and let x̄ ∈ dom f . The map f is
said to be locally upper Lipschitzian at x̄ if there are numbers η > 0 and L > 0 such that

∥∥f (x) – f (x̄)
∥∥ ≤ L‖x – x̄‖ for all x ∈ Bη(x̄) ∩ dom f .

We say that a set-valued map F : Rn ⇒Rs admits a local upper Lipschitzian selection at
(x̄, ȳ) ∈ gph F if there is a single-valued map f : dom F → Rs which is locally upper Lips-
chitzian at x̄ satisfying f (x̄) = ȳ and f (x) ∈ F(x) for all x ∈ dom F in a neighborhood of x̄.
We say that F admits a locally upper Lipschitzian selection around (x̄, ȳ) ∈ gph F if there
is a neighborhood U of (x̄, ȳ) such that F admits a locally upper Lipschitzian selection at
any (x, y) ∈ gph F ∩ U .

Definition 2.4 ([1]) Let S ⊂ Rn be a nonempty subset. The paratingent cone to K at z ∈
clK is the set

P(K , z) = Lim sup
t↓0,z′ S→z

K – z′

t
.

The paratingent (or strict) derivative to a set-valued map F : Rn ⇒Rs at (x̄, ȳ) ∈ cl(gph F) is
the set-valued map D∗F(x̄, ȳ) whose graph is the paratingent cone to gph F at (x̄, ȳ). That is,
v ∈ D∗F(x̄, ȳ)(u) if and only if there are sequences tk → 0+, (xk , yk) → (x̄, ȳ), and (uk , vk) →
(u, v) with (xk , yk) ∈ gph F and yk + tkvk ∈ F(xk + tkuk).
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3 Sensitivity analysis of the efficient point map
In this section, we provide sensitivity analysis of the efficient point set-valued map F for
the parametric vector-valued optimization problem. By upper estimates for the coderiva-
tives of an efficient point set-valued map, we obtain the Aubin property of F .

Recall that a map T is said to be compact at x̄ ∈ dom T if for any sequence (xk , yk) ⊂ gph T
with xk → x̄, there exists a subsequence yki converging to some ȳ ∈ T(x̄). We say that T is
locally compact around x̄ if there is a neighborhood U of x̄ such that T is compact at any
x ∈ U ∩ dom T .

The following property is very important in computing the coderivative of an efficient
point set-valued map F .

Proposition 3.1 Let x̄ ∈ C(p̄) and ȳ = f (p̄, x̄), and let the set-valued map M : Rm ×Rs ⇒
Rn be defined by

M(p, y) =
{

x ∈Rn | y = f (p, x) and x ∈ C(p)
}

.

Suppose that f is locally Lipschitz at (p̄, x̄), M(p̄, ȳ) = {x̄}, and M is compact at (p̄, ȳ). If

D∗C(p̄, x̄)(0) = {0}, (9)

then

D∗F(p̄, ȳ)(0) = {0}. (10)

Proof Let v ∈ D∗F(p̄, ȳ)(0). By the definition of strict derivative, there are sequences tn,

(pn, yn), and (un, vn) with tn ↓ 0, (pn, yn)
gph F−→ (p̄, ȳ), and (un, vn) → (0, v) such that yn + tnvn ∈

F(pn + tnun). By the definition of F there exist xn ∈ C(pn) and x′
n ∈ C(pn + tnun) satisfying

yn = f (pn, xn) and yn + tnvn = f (pn + tnun, x′
n). So

vn =
f (pn + tnun, x′

n) – f (pn, xn)
tn

.

For the above pn, yn, and xn ∈ M(pn, yn), since M is compact at (p̄, ȳ), there exists a conver-
gent subsequence, and we may assume without loss of generality that xn → x̂ ∈ M(p̄, ȳ).
The assumption M(p̄, ȳ) = {x̄} implies that xn → x̄. Similarly, since x′

n ∈ M(pn + tnun, yn +
tnvn), we have x′

n → x̄. Then by [9, Theorem 1.3] the nonsingularity condition of C ensures
the existence of a constant L > 0 such that

∥∥x′
n – xn

∥∥ ≤ L‖pn + tnun – pn‖ = Ltn‖un‖

for n large enough. So we have x′
n–xn
tn

→ 0. Since f is locally Lipschitz at (p̄, x̄) and pn, pn +
tnun → p̄ as n → ∞, there exists a constant L > 0 such that

‖f (pn + tnun, x′
n) – f (pn, xn)‖

tn
≤ L(‖tnun‖ + ‖x′

n – xn‖)
tn

= L
(

‖un‖ +
‖x′

n – xn‖
tn

)
.
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Since un converges to 0, we have

v = lim
n→∞ vn = lim

n→∞
f (pn + tnun, x′

n) – f (pn, xn)
tn

= 0,

which implies that (10) holds. This completes the proof. �

Remark 3.1 If C is a single-valued map that is continuous at p̄, then the hypothetical con-
ditions of M hold naturally, and the nonsingularity condition (9) is equivalent to the Lip-
schitzian property of C at p̄. In this case, this proposition reduces to the classic result of
composition of two Lipschitz maps.

The following example shows that our result is a generalization of the classic result on
composition of two Lipschitz maps even in the single-valued case.

Example 3.1 Let C : R→R and f : R×R→R be defined by

C(p) =

⎧
⎨

⎩
0, p = 0 or p = 1

n , n ∈ N ,

∅, else

and

f (p, x) = p + x,

respectively. Then, we have

F(p) =

⎧
⎨

⎩
p, p = 0 or p = 1

n , n ∈ N

∅, else.

Consider (p̄, x̄) = (0, 0) and ȳ = f (p̄, x̄) = 0. By direct computation we obtain that for any
p ∈R,

D∗C(p̄, x̄)(p) = {0}

and

D∗F(p̄, x̄)(p) = {p}.

Although C is not continuous at p̄, our result still works.

We give some sufficient conditions for the hypothetical conditions of M in Proposi-
tion 3.1.

Proposition 3.2 Let x̄ ∈ C(p̄) and ȳ = f (p̄, x̄), and let the set-valued map M : Rm ×Rs ⇒
Rn be defined by

M(p, y) =
{

x ∈Rn | y = f (p, x) and x ∈ C(p)
}

.

Consider the following conditions:
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(i) f is strictly differentiable at (p̄, x̄), and ∇f (p̄, x̄) is invertible;
(ii) f –1 is locally single-valued around ȳ and continuous at this point;

(iii) M(p̄, ȳ) = {x̄}, and f –1 is compact at ȳ;
(iv) M(p̄, ȳ) = {x̄}, and C is compact at p̄;
(v) M(p̄, ȳ) = {x̄}, and M is compact at (p̄, ȳ);

(vi) M(p̄, ȳ) = {x̄}, and M is upper semicontinuous at (p̄, ȳ);
(vii) M(p̄, ȳ) = {x̄}, and M is locally upper Lipschitz at (p̄, ȳ);

Then we have

(i) ⇒ (ii) ⇒ (iii) ⇒ (v) ⇐ (vi) ⇐ (vii)

⇑
(iv)

Proof (i)⇒(ii) By [17, Theorem 1.60] assumption of (i) implies that f –1 is locally single-
valued around ȳ and strict differentiable at this point. Obviously, (ii) holds.

(ii)⇒(iii), (iii)⇒(v), (iv)⇒(v), and (vii)⇒(vi) immediately follow from the definition of
compactness and construction of M.

(vi)⇒(v) We can find the result in [5, Proposition 2.5.9]. This completes the proof. �

Now we consider the coderivatives of the set-valued map F .

Theorem 3.1 Let x̄ ∈ C(p̄) and ȳ ∈ F (p̄). Suppose that f is locally Lipschitz at (p̄, x̄),
M(p̄, ȳ) = {x̄}, and C is locally compact around p̄. If condition (9) holds, then we have the
following results.

(i) For any y∗ ∈Rs,

D∗F (p̄, ȳ)
(
y∗) = D∗F(p̄, ȳ)

(
y∗) ⊂

⋃

(p∗ ,x∗)∈D∗f (p̄,x̄)(y∗)

p∗ + D∗C(p̄, x̄)
(
x∗), (11)

⋃

(p∗ ,x∗)∈D̂∗f (p̄,x̄)(y∗)

p∗ + D̂∗C(p̄, x̄)
(
x∗) ⊂ D̂∗F(p̄, ȳ)

(
y∗) = D̂∗F (p̄, ȳ)

(
y∗).

Moreover, if f and C are regular at (p̄, x̄) and p̄, respectively, then F is regular at
(p̄, ȳ), and for any y∗ ∈Rs, (11) holds as equality.

(ii) If f is Fréchet differentiable at (p̄, x̄) with the derivative
∇f (p̄, x̄) = (∇pf (p̄, x̄),∇xf (p̄, x̄)), then for any y∗ ∈Rs,

D̂∗F (p̄, ȳ)
(
y∗) = D̂∗F(p̄, ȳ)

(
y∗) = ∇pf (p̄, x̄)∗y∗ + D̂∗C(p̄, x̄)

(∇xf (p̄, x̄)∗y∗).

(iii) If f is strictly differentiable at (p̄, x̄), then for any y∗ ∈Rs,

D∗F (p̄, ȳ)
(
y∗) = D∗F(p̄, ȳ)

(
y∗) ⊂ ∇pf (p̄, x̄)∗y∗ + D∗C(p̄, x̄)

(∇xf (p̄, x̄)∗y∗). (12)

Moreover, if C is regular at p̄, then F is regular at (p̄, ȳ), and for any y∗ ∈Rs, (12)
holds as equality.
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Proof First, we prove that D∗F (p̄, ȳ)(y∗) = D∗F(p̄, ȳ)(y∗). Let p∗ ∈ D∗F (p̄, ȳ)(y∗). By the def-

initions of normal coderivative and normal cone, there are sequences (pk , yk)
F−→ (p̄, ȳ) and

(p∗
k , y∗

k) → (p∗, y∗) such that

lim sup

(pki ,yki )
F−→(pk ,yk )

〈p∗
k , pki – pk〉 – 〈y∗

k , yki – yk〉
‖pki – pk‖ + ‖yki – yk‖ ≤ 0.

We only need to show that in a neighborhood U of (p̄, ȳ), for any (pk , yk) ∈ U , (pki , yki )
F−→

(pk , yk) if and only if (pki , yki )
F−→ (pk , yk). Suppose the contrary. Then there is a sequence

(p′
ki

, y′
ki

) ∈ gph F \ gphF such that (p′
ki

, y′
ki

) −→ (pk , yk). Since C is locally compact around
p̄, there exists a neighborhood U of p̄ such that for any p ∈ U , C is compact at p. For any
pk → p and yk ∈ F(pk), by the definition of F there exists xk ∈ C(pk) with yk = f (pk , xk).
Because C is compact at p, there is a subsequence (pki , xki ) → (p, x) with x ∈ C(p). Thus
by the Lipschitzian continuity assumption of f we have (pki , yki ) → (p, y) along with y =
f (p, x) ∈ F(p). So F is also locally compact around p̄. Case (iv) of Proposition 4.3 in [13]
implies that F is locally order semicontinuous around (p̄, ȳ). So, for the above (p′

ki
, y′

ki
),

there is a sequence (p′
ki

, y′′
ki

) ∈ gphF such that y′′
ki

≤K y′
ki

. However, under the assumption,
we have D∗F(p̄, ȳ)(0) = {0}, which implies that there exists at most one element y(p) in a
neighborhood of p̄ (see [9, Theorem 1.3]). This is a contradiction, and thus the equality
relation holds.

From [24, Propositions 3.4 and 3.5, Corollaries 3.1 and 3.2] it follows that we only need
to show that the set-valued map M admits a locally upper Lipschitzian selection at (p̄, ȳ, x̄).
Following [9, Theorem 1.3], the nonsingularity condition of C implies that there exist
neighborhoods U of p̄ and V of x̄ and a constant L > 0 such that there is at most one
element x(p) in the local image set C(p) ∩ V for p ∈ U , and it satisfies

∣∣x(p) – x
(
p′)∣∣ ≤ L

∣∣p – p′∣∣ for p, p′ ∈ U .

We claim here that for any (pn, yn) → (p̄, ȳ) and xn ∈ M(pn, yn), xn ∈ V as n → ∞. If not,
there would be a subsequence xnk ∈ M(pnk , ynk ) ⊂ C(pnk ) such that xnk /∈ V . By the com-
pactness of C we may assume without loss of generality that xnk → x̂ ∈ C(p̄), x̂ 
= x̄, by tak-
ing a subsequence if necessary. By the definition of a set-valued map M we have x̂ ∈ M(p̄, ȳ),
which contradicts to the fact that M(p̄, ȳ) = {x̄}. Thus M has at most one element in a
neighborhood of (p̄, ȳ) and Lipschitzian around (p̄, ȳ), which implies the locally upper Lip-
schitzian selection and inner semicontinuous property of M at (p̄, ȳ, x̄). This completes the
proof. �

If f is strictly differentiable with surjective derivative, then we have the following result.

Corollary 3.1 Let x̄ ∈ C(p̄) and ȳ ∈ F (p̄). Suppose that f is strictly differentiable at (p̄, x̄),
∇f (p̄, x̄) is surjective, and C is locally compact around p̄. If M(p̄, ȳ) = {x̄} and condition (9)
holds, then for any y∗ ∈Rs, (12) holds as equality.

Proof The inclusion relation (12) directly follows from Theorem 3.1. We only need to
prove the converse inclusion. By [17, Corollary 1.59] the assumption on f implies that f –1
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has the Aubin property at (ȳ, p̄, x̄). Noting that {p} × C(p) = (f –1 ◦ F)(p) and in this case

M′(p, x) =
{

y | (p, x) ∈ f –1(y), y ∈ F(p)
}

= f (p, x) ∩ F(p) = f (p, x)

is inner semicontinuous at (p̄, x̄, ȳ) naturally, using [17, Corollary 3.15], we have that for
any (p∗, x∗) ∈Rm ×Rn,

D∗(1 × C)(p̄, p̄, x̄)
(
p∗, x∗) = D∗(f –1 ◦ F

)
(p̄, p̄, x̄)

(
p∗, x∗)

⊂ D∗F(p̄, ȳ) ◦ D∗f –1(ȳ, p̄, x̄)
(
p∗, x∗).

By [12, Lemma 49] we have that for any (p∗, x∗) ∈Rm ×Rn,

D∗(1 × C)(p̄, p̄, x̄)
(
p∗, x∗) = p∗ + D∗C(p̄, x̄)

(
x∗).

Note that

y∗ ∈ D∗f –1(ȳ, p̄, x̄)
(
p∗, x∗)

⇔ (
–p∗, –x∗) ∈ D∗f (p̄, x̄, ȳ)

(
–y∗) =

(
–∇pf (p̄, x̄)∗y∗, –∇xf (p̄, x̄)∗y∗)

⇔ p∗ = ∇pf (p̄, x̄)∗y∗, x∗ = ∇xf (p̄, x̄)∗y∗.

So we have that for any (p∗, x∗) ∈Rm ×Rn,

p∗ + D∗C(p̄, x̄)
(
x∗) ⊂

⋃

p∗=∇pf (p̄,x̄)∗y∗
1,x∗=∇xf (p̄,x̄)∗y∗

1

D∗F(p̄, ȳ)
(
y∗

1
)
.

Since ∇f (p̄, x̄) is surjective, by [17, Lemma 1.18] ∇f (p̄, x̄)∗ is injective, which ensures that

∇pf (p̄, x̄)∗y∗ = ∇pf (p̄, x̄)∗y∗
1, ∇xf (p̄, x̄)∗y∗ = ∇xf (p̄, x̄)∗y∗

1 ⇒ y∗ = y∗
1.

Thus, for any y∗ ∈Rs,

∇pf (p̄, x̄)∗y∗ + D∗C(p̄, x̄)
(∇xf (p̄, x̄)∗y∗) ⊂ D∗F(p̄, ȳ)

(
y∗) = D∗F (p̄, ȳ)

(
y∗).

This completes the proof. �

Remark 3.2 We know that the paratingent cone is large. So condition (9) is rather strong.
However, the results we obtained are more interesting, because the independent variable
can rake values in the whole space. This ensures us to obtain the Aubin property of F and
the coderivatives of efficient solution map S. In this view, our results are better than the
analogous ones in [4, Theorem 3.6], [3, Theorem 3.6], and [24, Theorem 3.6], where the in-
dependent variable can only take values in K∗

up := {y∗ ∈Rs | ∃β > 0, 〈y∗, k〉 ≥ β‖k‖,∀k ∈ K}.

Example 3.2 Let K = R+, and let C : R⇒R and f : R×R→R be defined by

C(p) =

⎧
⎨

⎩
{–p, 1}, p ≥ 0,

{p, 1}, else
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and

f (p, x) = p + x,

respectively. Then we have

F(p) =

⎧
⎨

⎩
{0, p + 1}, p ≥ 0,

{2p, p + 1}, else

and

F (p) =

⎧
⎨

⎩
{0}, p ≥ 0,

{2p}, else.

Consider (p̄, x̄) = (0, 0) and ȳ = f (p̄, x̄) = 0. By direct computation we obtain

D∗C(p̄, x̄)(p) =

⎧
⎨

⎩
[–p, p], p ≥ 0,

[p, –p], else

and

M(p̄, ȳ) = {x̄}.

Obviously, C is compact around p̄, so all the conditions of Corollary 3.1 hold. In fact, we
can see that

D∗C(0, 0)
(
x∗) =

⎧
⎨

⎩
{x∗, –x∗}, x∗ ≥ 0,

[x∗, –x∗], else

and

D∗F (0, 0)
(
y∗) = D∗F(0, 0)

(
y∗) =

⎧
⎨

⎩
{0, 2y∗}, y∗ ≥ 0,

[2y∗, 0], else.

Thus, for any y∗, we have

D∗F (0, 0)
(
y∗) = D∗F(0, 0)

(
y∗) = ∇pf (p̄, x̄)∗y∗ + D∗C(p̄, x̄)

(∇xf (p̄, x̄)∗y∗).

We are now ready to obtain the Aubin property of F . Recall that a set-valued map F :
Rn ⇒Rs is said to be locally continuous around x̄ for ȳ if there exist neighborhoods U of
x̄ and V of ȳ such that, for any x ∈ U and ε > 0, we can find δ > 0 with

F
(
x′) ∩ V ⊂ F(x) + εB when x′ ∈ U ∩B(x, δ).

Corollary 3.2 Let x̄ ∈ C(p̄) and ȳ ∈ F (p̄). Suppose that f is locally Lipschitz at (p̄, x̄),
M(p̄, ȳ) = {x̄}, and C is locally compact around p̄. Assume that condition (9) holds and
that C is locally continuous around p̄ for x̄. Then F has the Aubin property at (p̄, x̄).
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Proof It follows from the first part of Theorem 3.1 that

D∗F (p̄, ȳ)(0) = D∗F(p̄, ȳ)(0) ⊂
⋃

(p∗ ,x∗)∈D∗f (p̄,x̄)(0)

p∗ + D∗C(p̄, x̄)
(
x∗).

Since f is locally Lipschitz at (p̄, x̄), by using [17, Theorem 1.44] we have

D∗f (p̄, x̄)(0) =
{

(0, 0)
}

,

and thus

D∗F (p̄, ȳ)(0) = D∗F(p̄, ȳ)(0) ⊂ D∗C(p̄, x̄)(0).

By case (a) of [21, Theorem 9.54] the continuity assumption of C and the nonsingularity
condition (9) imply that

D∗C(p̄, x̄)(0) = {0}.

So we have D∗F (p̄, ȳ)(0) = {0}, which means that F has the Aubin property at (p̄, x̄). This
completes the proof. �

4 Coderivative of solution map
In this section, we establish verifiable formulas for upper estimating and precise com-
puting the coderivatives of the efficient solution map S in the parametric multiobjective
problem (4).

Theorem 4.1 Let S in (4) be the efficient solution map for the multiobjective optimization
problem (1). Let x̄ ∈ S(p̄) with ȳ = f (p̄, x̄). Let the map N : Rm × Rn ⇒ Rs be defined by
N(p, x) = f (p, x) ∩F (p). Suppose that F has locally closed-graph around (p̄, ȳ).

(i) Assume that N is inner semicontinuous at (p̄, x̄, ȳ) and that one of the following
constraint qualification conditions (a) and (b) holds:
(a)

D∗N(p̄, x̄, ȳ)(0) ⊂
⋃

y∗∈Rs

D∗f (p̄, x̄)
(
–y∗) +

(
D∗F (p̄, ȳ)

(
y∗), 0

)
; (13)

(b)

0 ∈ p∗ + D∗F (p̄, ȳ)
(
y∗),

(
p∗, 0

) ∈ D∗f (p̄, x̄)
(
–y∗) ⇒ p∗ = y∗ = 0

(14)

and

p∗ ∈ –D∗C(p̄, x̄)
(
x∗) ∩

⋃

(p′∗ ,x∗)∈D∗f (p̄,x̄)(–y∗)

[
p′∗ + D∗F (p̄, ȳ)

(
y∗)]

⇒ p∗ = x∗ = 0. (15)
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Then for any x∗ ∈Rn,

D∗S(p̄, x̄)
(
x∗) ⊂

⋃

x∗
1∈Rn

⋃

(p∗ ,x∗
1–x∗)∈D∗f (p̄,x̄)(–y∗)

D∗C(p̄, x̄)
(
x∗

1
)

+ p∗ (16)

+ D∗F (p̄, ȳ)
(
y∗).

Moreover, suppose that N admits a locally upper Lipschitzian selection around
(p̄, x̄, ȳ) and that f , C, and F are regular at (p̄, x̄), (p̄, x̄), and (p̄, ȳ), respectively. Then
S is regular at (p̄, x̄), and (16) holds as equality.

(ii) Suppose that f is locally Lipschitz at (p̄, x̄), M(p̄, ȳ) = {x̄}, and C is locally compact
around p̄. Assume that condition (9) holds and that the following constraint
qualification conditions hold:

–p∗ ∈
⋃

(p∗
1,x∗)∈D∗f (p̄,x̄)(y∗)

p∗
1 + D∗C(p̄, x̄)

(
x∗),

(
p∗, 0

) ∈ D∗f (p̄, x̄)
(
–y∗) ⇒ p∗ = y∗ = 0;

(17)

p∗ ∈ –D∗C(p̄, x̄)
(
x∗) ∩

⋃

(p′∗ ,x∗)∈D∗f (p̄,x̄)(–y∗)
(p∗

1,x∗
1)∈D∗f (p̄,x̄)(y∗)

[
p′∗ + p∗

1 + D∗C(p̄, x̄)
(
x∗

1
)]

⇒ p∗ = x∗ = 0. (18)

Then for any x∗ ∈Rn,

D∗S(p̄, x̄)
(
x∗) (19)

⊂
⋃

x∗
1∈Rn

⋃

(p∗ ,x∗
1–x∗)∈D∗f (p̄,x̄)(–y∗)

(p∗
1,x∗

2)∈D∗f (p̄,x̄)(y∗)

D∗C(p̄, x̄)
(
x∗

1
)

+ p∗ + p∗
1 + D∗C(p̄, x̄)

(
x∗

2
)
.

If, moreover, f and C are regular at (p̄, x̄), then the equality relation holds, S is
regular at (p̄, x̄), and the qualification condition (17) can be replaced by

D∗N(p̄, x̄, ȳ)(0) (20)

⊂
⋃

y∗∈Rs

D∗f (p̄, x̄)
(
–y∗) +

( ⋃

(p∗ ,x∗)∈D∗f (p̄,x̄)(y∗)

p∗ + D∗C(p̄, x̄)
(
x∗), 0

)
;

(iii) Suppose that f is strictly differentiable at (p̄, x̄), M(p̄, ȳ) = {x̄}, and C is locally
compact around p̄. Assume that condition (9) holds and that one of the following
constraint qualification conditions (a) and (b) holds:
(a)

[
p∗ = –∇pf (p̄, x̄)∗y∗, 0 = ∇xf (p̄, x̄)∗y∗] ⇒ p∗ = y∗ = 0; (21)
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(b) The partial derivative operator ∇xf (p̄, x̄) is surjective, and

[
p∗ ∈ –D∗C(p̄, x̄)

(
x∗) ∩

⋃

x∗=–∇xf (p̄,x̄)∗y∗
D∗C(p̄, x̄)

(
–x∗)

]

⇒ p∗ = x∗ = 0. (22)

Then for any x∗ ∈Rn,

D∗S(p̄, x̄)
(
x∗) (23)

⊂
⋃

x∗
1∈Rn

⋃

x∗–x∗
1=∇xf (p̄,x̄)∗y∗

D∗C(p̄, x̄)
(
x∗

1
)

+ D∗C(p̄, x̄)
(
x∗ – x∗

1
)
.

Moreover, if C is regular at (p̄, x̄), then the equality relation holds, S is regular at
(p̄, x̄), and the qualification condition (21) can be replaced by

D∗N(p̄, x̄, ȳ)(0) ⊂
⋃

y∗∈Rs

(
D∗C(p̄, x̄)

(∇xf (p̄, x̄)∗y∗), –∇xf (p̄, x̄)∗y∗)). (24)

Proof Let G(p) = {p} ×F (p) and H(p, y) = {x | y = f (p, x)}. Then we have S(p) = C(p) ∩ H ◦
G(p).

(i) First, we compute the coderivative of H ◦ G. On one hand, by the definition of
coderivative, (p∗, y∗) ∈ D∗H(p̄, ȳ, x̄)(x∗) if and only if (p∗, –x∗) ∈ D∗f (p̄, x̄)(–y∗). On the
other hand, [12, Lemma 49] ensures that for any (p∗, y∗) ∈Rm ×Rs,

D∗G(p̄, p̄, ȳ)
(
p∗, y∗) = p∗ + D∗F (p̄, ȳ)

(
y∗).

Thus by [12, Theorem 39], for any x∗ ∈Rn, we have

D∗H ◦ G(p̄, x̄)
(
x∗) ⊂ D∗G(p̄, p̄, ȳ) ◦ D∗H(p̄, ȳ, x̄)

(
x∗)

=
⋃

(p∗ ,–x∗)∈D∗f (p̄,x̄)(–y∗)

p∗ + D∗F (p̄, ȳ)
(
y∗), (25)

provided that N is inner semicontinuous at (p̄, x̄, ȳ) and (13) holds. By the expressions of
G, H , and N we can easily check that the qualification condition (14) is equivalent to

D∗G(p̄, p̄, ȳ)–1(0) ∩ D∗H(p̄, ȳ, x̄)(0) = {0}, (26)

which implies (13).
Then by Proposition 27 of [12] we get

D∗S(p̄, x̄)
(
x∗) ⊂

⋃

x∗
1∈Rn

D∗C(p̄, x̄)
(
x∗

1
)

+ D∗H ◦ G(p̄, x̄)
(
x∗ – x∗

1
)
, (27)

provided that

p∗ ∈ (
–D∗C(p̄, x̄)

(
x∗)) ∩ D∗H ◦ G(p̄, x̄)

(
–x∗) �⇒ p∗ = x∗ = 0. (28)
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By the above coderivative expressions of H ◦ G and C, it is a simple matter to check that
(15) and (27) imply (28) and (16), respectively.

Moreover, if N admits a locally upper Lipschitzian selection around (p̄, x̄, ȳ) and f and
F are regular at (p̄, x̄) and (p̄, ȳ), respectively, then by [12, Propositions 36 and 37] the
inclusion relation (25) becomes equality, and H ◦ G is regular at (p̄, x̄). Furthermore, if C
is regular at (p̄, x̄), then by [12, Proposition 27], (27) becomes equality, and S is regular at
(p̄, x̄).

(ii) Since f is locally Lipschitz at (p̄, ȳ), by the definition of N we can easily check that N
admits a locally upper Lipschitzian selection around (p̄, x̄, ȳ). Then by Theorem 3.1, F has
the upper estimate (11), and thus (17), (18), and (16) imply (14), (15), and (19), respectively.

Moreover, if f and C are regular at (p̄, x̄), then by Theorem 3.1 and the above coderivative
expressions of H ◦ G, F , G, and H ◦ G are regular at (p̄, ȳ), (p̄, p̄, ȳ), and (p̄, x̄), respectively.
Thus (11) and (25) become equalities, and therefore (27) becomes equality, and S is regular
at (p̄, x̄). Meanwhile, qualification (20) is equivalent to (13), and therefore the qualification
condition (17) can be replaced by (20).

(iii) Since f is strictly differentiable at (p̄, x̄), we have that H is N-regular at (p̄, ȳ, x̄) and
p∗ = –∇pf (p̄, x̄)∗y∗, x∗ = ∇xf (p̄, x̄)∗y∗. If the partial derivative operator ∇xf (p̄, x̄) is surjec-
tive, then [17, Lemma 1.17] implies that ∇xf (p̄, x̄)∗ is injective. Thus 0 = ∇xf (p̄, x̄)∗y∗, im-
plying y∗ = 0, and therefore qualification conditions (21) hold naturally. Note that (21) and
(22) are equivalent to (17) and (18), respectively. Similarly to the proof of case (ii), we can
obtain the results in case (iii) by using Theorem 3.1 and Corollary 3.1. This completes the
proof. �

For a strictly differentiable map with surjective derivative, we have the following results.

Corollary 4.1 Let x̄ ∈ C(p̄) and ȳ ∈ F (p̄). Suppose that f is strictly differentiable at (p̄, x̄),
∇f (p̄, x̄) is surjective, and C is locally compact around p̄. If M(p̄, ȳ) = {x̄} and condition (9)
and (22) hold, then for any x∗ ∈Rn, (23) holds.

Proof It directly follows from Corollary 3.1 and Theorem 3.1. �
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