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Abstract
In this paper, first we present some interesting identities associated with Green’s
functions and Fink’s identity, and further we present some interesting inequalities for
r-convex functions. We also present refinements of some Hardy–Littlewood–Pólya
type inequalities and give an application to the Shannon entropy. Furthermore, we
use the Čebyšev functional and Grüss type inequalities and present the bounds for
the remainder in the obtained identities. Finally, we use the obtained identities
together with Hölder’s inequality for integrals and present Ostrowski type inequalities.
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1 Introduction and preliminaries
The following inequality is given in the well-known book by Hardy, Littlewood, and Pólya
[6, Theorem 134]:

Theorem 1.1 If ϑ is a convex and continuous function defined on [0,∞) and ai, i ∈ N, are
nonnegative and nonincreasing, then

ϑ

( m∑
i=1

ai

)
– ϑ(0) –

m∑
i=1

[
ϑ(iai) – ϑ

(
(i – 1)ai

)] ≥ 0. (1.1)

If ϑ ′ is a strictly increasing function, there is an equality only when ai are equal up to a
certain point and then zero.

A weighted case of inequality (1.1) was proved by Bennett [1] for power functions ϑ(x) =
xp in the following way: if ai ∈ [0,∞) and ai (1 ≤ i ≤ m) are nonincreasing and qi ∈ [0,∞)
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for all i ∈ {1, . . . , m} such that Qi =
∑i

k=1 qk (1 ≤ i ≤ m), then for p ∈ (1,∞) the inequality

( m∑
i=1

qiai

)p

– (q1a1)p –
m∑

i=2

ap
i
[
Qp

i – Qp
i–1

] ≥ 0 (1.2)

holds. If p ∈ (0, 1), then (1.2) holds in the reversed direction (see [1]).
In our work we use nonincreasing (↘) sequence in weighted mean (WM) and nonde-

creasing (↗) sequence in WM (see [11]) defined as follows.

Definition 1.2 A sequence {ai}i∈N ⊂ R is ↘ in WM if

1
Qm+1

m+1∑
i=1

qiai ≤ 1
Qm

m∑
i=1

qiai, m ∈N, (1.3)

where ai, qi ∈R (i ∈ N) such that qk > 0 (1 ≤ k ≤ i) and Qi :=
∑i

k=1 qk (i ∈N) .
If (1.3) holds in the reversed direction, then the sequence {ai}i∈N ⊂R is called ↗ in WM.

A generalization of inequality (1.2) is presented in [11].

Theorem 1.3 Let ai, qi ∈ R (1 ≤ i ≤ m) such that ai ≥ 0 and qi > 0. Let q1a1,
∑m

i=1 qiai,
Qiai, Qi–1ai ∈ [s, t] for all i ∈ {2, . . . , m}, and let ϑ : [s, t] → R be a convex function.

(i) If {ai}m
i=1 is ↘ in WM, then

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

] ≥ 0. (1.4)

(ii) If {ai}m
i=1 is ↗ in WM, then

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

] ≤ 0. (1.5)

If ϑ is concave, then (1.4) and (1.5) hold in the reversed direction.

Definition 1.4 Let q = (q1, . . . , qm) be a positive probability distribution. Then the Shan-
non entropy (see [8, 9], and [22]) of q is defined by S(q) :=

∑m
i=1 qi log

(
1
qi

)
.

Khalid, Pečarić, and Pečarić presented the following interesting result associated with
the Shannon entropy in [8].

Theorem 1.5 Let qi ∈ R such that qi > 0 (1 ≤ i ≤ m), and let ϑ : [s, t] → R be a convex
function.

(a) Let 0 < qi < 1 (1 ≤ i ≤ m), and let S(q), q1 log
(

1
q1

)
, Qi log

(
1
qi

)
, Qi–1 log

(
1
qi

)
∈ [s, t]

for all i ∈ {2, . . . , m}.
(i) If {qi}m

i=1 is ↘, then

ϑ
(
S(q)

)
– ϑ

(
q1 log

(
1
q1

))

–
m∑

i=2

[
ϑ

(
Qi log

(
1
qi

))
– ϑ

(
Qi–1 log

(
1
qi

))]
≤ 0. (1.6)
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(ii) If {qi}m
i=1 is ↗, then

ϑ
(
S(q)

)
– ϑ

(
q1 log

(
1
q1

))

–
m∑

i=2

[
ϑ

(
Qi log

(
1
qi

))
– ϑ

(
Qi–1 log

(
1
qi

))]
≥ 0. (1.7)

(b) Let qi ≥ 1 (1 ≤ i ≤ m) and let –S(q), q1 log q1, Qi log qi, Qi–1 log qi ∈ [s, t] for all
i ∈ {2, . . . , m}.
(i) If {qi}m

i=1 is ↘, then

ϑ
(
–S(q)

)
– ϑ(q1 log q1) –

m∑
i=2

[
ϑ(Qi log qi) – ϑ(Qi–1 log qi)

] ≥ 0. (1.8)

(ii) If {qi}m
i=1 is ↗, then

ϑ
(
–S(q)

)
– ϑ(q1 log q1) –

m∑
i=2

[
ϑ(Qi log qi) – ϑ(Qi–1 log qi)

] ≤ 0. (1.9)

If ϑ is concave, then (1.6)–(1.9) hold in the reversed direction.

In the second section, we generalize inequalities (1.4), (1.7), and (1.8) for r-convex func-
tions, and we also present refinements of these inequalities.

Consider the Green’s functions Gδ : [s, t] × [s, t] → R (δ ∈ {1, . . . , 5}) defined as follows
(see [4, 7, 13, 14], and [16–19]):

G1(x, ũ) =

⎧⎨
⎩

(x–t)(ũ–s)
t–s , s ≤ ũ ≤ x,

(ũ–t)(x–s)
t–s , x ≤ ũ ≤ t,

(1.10)

G2(x, ũ) =

⎧⎨
⎩s – ũ, s ≤ ũ ≤ x,

s – x, x < ũ ≤ t,
(1.11)

G3(x, ũ) =

⎧⎨
⎩x – t, s ≤ ũ ≤ x,

ũ – t, x < ũ ≤ t,
(1.12)

G4(x, ũ) =

⎧⎨
⎩x – s, s ≤ ũ ≤ x,

ũ – s, x < ũ ≤ t,
(1.13)

and

G5(x, ũ) =

⎧⎨
⎩t – ũ, s ≤ ũ ≤ x,

t – x, x < ũ ≤ t.
(1.14)

Remark 1.6
(i) It is easy to see that the functions Gδ(x, ũ) (δ ∈ {1, . . . , 5}) defined in (1.10)–(1.14) are

continuous, symmetric, and convex with respect to both the variables x and ũ.
(ii) Throughout this paper, for Gδ , we consider δ ∈ {1, . . . , 5}.
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For Gδ(x, ũ) defined in (1.10)–(1.14) and for a twice differentiable function ϑ defined on
[s, t], we can consider the following expression:

∫ t

s
Gδ(x, ũ)ϑ ′′(ũ) dũ =

∫ x

s
Gδ(x, ũ)ϑ ′′(ũ) dũ +

∫ t

x
Gδ(x, ũ)ϑ ′′(ũ) dũ.

Now if we use the values of Gδ(x, ũ) over the intervals [s, x] and [x, t], then the following
result is valid (see [4] and [13]).

Lemma 1.7 Let ϑ : [s, t] → R be a function such that ϑ ∈ C2([s, t]), and let Gδ be the
Green’s functions defined in (1.10)–(1.14). Then

ϑ(x) =
t – x
t – s

ϑ(s) +
x – s
t – s

ϑ(t) +
∫ t

s
G1(x, ũ)ϑ ′′(ũ) dũ, (1.15)

ϑ(x) = ϑ(s) + (x – s)ϑ ′(t) +
∫ t

s
G2(x, ũ)ϑ ′′(ũ) dũ, (1.16)

ϑ(x) = ϑ(t) – (t – x)ϑ ′(s) +
∫ t

s
G3(x, ũ)ϑ ′′(ũ) dũ, (1.17)

ϑ(x) = ϑ(t) – (t – s)ϑ ′(t) + (x – s)ϑ ′(s) +
∫ t

s
G4(x, ũ)ϑ ′′(ũ) dũ, (1.18)

and

ϑ(x) = ϑ(s) + (t – s)ϑ ′(s) – (t – x)ϑ ′(t) +
∫ t

s
G5(x, ũ)ϑ ′′(ũ) dũ. (1.19)

In the second section, we prove some interesting identities and inequalities for r-convex
functions by using Lemma 1.7 and the following Fink’s identity (see [5, 10], and [12]).

Theorem 1.8 Let s, t ∈ R, ϑ : [s, t] → R, r ≥ 1 and ϑ (r–1) be absolutely continuous on [s, t].
Then

ϑ(x) =
r

t – s

∫ t

s
ϑ(u) du +

1
(r – 1)!(t – s)

∫ t

s
(x – u)r–1k(u, x)ϑ (r)(u) du

–
1

t – s

r–1∑
n=1

r – n
n!

[
(x – s)nϑ (n–1)(s) – (x – t)nϑ (n–1)(t)

]
, (1.20)

where

k(u, x) =

⎧⎨
⎩u – s, s ≤ u ≤ x ≤ t,

u – t, s ≤ x < u ≤ t.
(1.21)

Let ϑ be a real-valued function defined on [s, t]. A criterion to check the r-convexity
(r ≥ 0) of a function ϑ is the following:

Theorem 1.9 If ϑ (r) exists, then ϑ is r-convex if and only if ϑ (r) ≥ 0.
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In the third section, we present some interesting results by using the following Čebyšev
functional and Grüss type inequalities (see [2] and [3]):

Let Lp[s, t] (1 ≤ p < ∞) and L∞[s, t] denote the space of p-power integrable functions
and the space of essentially bounded functions defined on [s, t] respectively together with
the norms

‖ζ‖p =
(∫ t

s

∣∣ζ (u)
∣∣p du

) 1
p

and ‖ζ‖∞ = ess sup
u∈[s,t]

∣∣ζ (u)
∣∣

respectively.
Suppose that ζ1, ζ2 : [s, t] →R are two Lebesgue integrable functions. The Čebyšev func-

tional is defined by

�(ζ1, ζ2) :=
1

t – s

∫ t

s
ζ1(u)ζ2(u) du –

1
t – s

∫ t

s
ζ1(u) du · 1

t – s

∫ t

s
ζ2(u) du. (1.22)

Cerone and Dragomir proved the next two results related to Grüss type inequalities in [2].

Theorem 1.10 Suppose that ζ1 : [s, t] → R is a Lebesgue integrable function and ζ2 :
[s, t] →R is an absolutely continuous function such that (· – s)(t – ·)(ζ ′

2)2 ∈ L1[s, t]. Then

∣∣�(ζ1, ζ2)
∣∣ ≤

√
�(ζ1, ζ1)
2(t – s)

·
√∫ t

s
(u – s)(t – u)

(
ζ ′

2(u)
)2 du. (1.23)

Theorem 1.11 Suppose that ζ1 : [s, t] →R is absolutely continuous such that ζ ′
1 ∈ L∞[s, t]

and ζ2 : [s, t] →R is monotonically ↗. Then

∣∣�(ζ1, ζ2)
∣∣ ≤ 1

2(t – s)
∥∥ζ ′

1
∥∥∞

∫ t

s
(u – s)(t – u) dζ2(u). (1.24)

The constants 1√
2 and 1

2 are the best possible in (1.23) and (1.24) respectively.

The organization of this paper is as follows: in the second section, we obtain some in-
teresting identities related to Green’s functions and Fink’s result. Further, we use these
identities and generalize inequalities of kind (1.4), (1.7), and (1.8) for r-convex functions.
In addition, we also present refinements of these inequalities and give an application to
the Shannon entropy. In the third section, we use the Čebyšev functional and Grüss type
inequalities and find the new bounds for the remainder in the obtained identities. In the
fourth section, we use the identities from section two together with Hölder’s inequality
for integrals and obtain Ostrowski type inequalities (see [20] and [21]).

2 Refinements of some Hardy–Littlewood–Pólya type inequalities and an
application to the Shannon entropy

The first main theorem is related to the following identity which will play an important
role in our paper.

Theorem 2.1 Let ϑ : [s, t] →R and ϑ (r–1) be absolutely continuous for r ≥ 3. Let ai, qi ∈R

(1 ≤ i ≤ m), and let q1a1,
∑m

i=1 qiai, Qiai, Qi–1ai ∈ [s, t] for all i ∈ {2, . . . , m}. Let Gδ(x, ũ)
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and k(u, x) be defined in (1.10)–(1.14) and (1.21) respectively. Then

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
1

t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ

+
1

(t – s)(r – 3)!

∫ t

s
ϑ (r)(u)

[∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]
(ũ – u)r–3k(u, ũ) dũ

]
du. (2.1)

Proof Let δ = 1. Using (1.15) in the L.H.S of (1.4), we have

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
ϑ(t) – ϑ(s)

t – s

[ m∑
i=1

qiai – q1a1 –
m∑

i=2

[Qiai – Qi–1ai]

]

+
∫ t

s

[
G1

( m∑
i=1

qiai, ũ

)
– G1(q1a1, ũ)

–
m∑

i=2

[
G1(Qiai, ũ) – G1(Qi–1ai, ũ)

]]
ϑ ′′(ũ) dũ,

equivalent to

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
∫ t

s

[
G1

( m∑
i=1

qiai, ũ

)
– G1(q1a1, ũ)

–
m∑

i=2

[
G1(Qiai, ũ) – G1(Qi–1ai, ũ)

]]
ϑ ′′(ũ) dũ. (2.2)

By taking Fink’s identity (1.20), it is obvious that

ϑ ′′(x) =
1

t – s

r–3∑
n=0

r – n – 2
n!

[
(x – t)nϑ (n+1)(t) – (x – s)nϑ (n+1)(s)

]

+
1

(t – s)(r – 3)!

∫ t

s
(x – u)r–3k(u, x)ϑ (r)(u) du. (2.3)
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Using (2.3) in (2.2), we have

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
1

t – s

∫ t

s

[
G1

( m∑
i=1

qiai, ũ

)
– G1(q1a1, ũ)

–
m∑

i=2

[
G1(Qiai, ũ) – G1(Qi–1ai, ũ)

]]

×
r–3∑
n=0

r – n – 2
n!

[
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ

+
1

(t – s)(r – 3)!

∫ t

s

[
G1

( m∑
i=1

qiai, ũ

)
– G1(q1a1, ũ)

–
m∑

i=2

[
G1(Qiai, ũ) – G1(Qi–1ai, ũ)

]]

×
[∫ t

s
(ũ – u)r–3k(u, ũ)ϑ (r)(u) du

]
dũ.

Now interchange the integral and summation in the first term and apply Fubini’s theo-
rem in the second term, identity (2.1) is immediate for δ = 1.

Furthermore, using identities (1.16)–(1.19) in the LHS of inequality (1.4) and following
the proof as given for the case δ = 1, we obtain identity (2.1) for δ ∈ {2, . . . , 5}. �

We present inequality (1.4) for r-convex functions as follows.

Theorem 2.2 Let all the assumptions of Theorem 2.1 be satisfied, and let for r ≥ 3, ϑ be
r-convex. If

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× (ũ – u)r–3k(u, ũ) dũ ≥ 0 (2.4)

holds, then

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

≥ 1
t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ. (2.5)

If the reversed inequality holds in (2.4), then (2.5) holds in the reversed direction.
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Proof The absolute continuity of ϑ (r–1) defined on [s, t] implies the existence of ϑ (r) almost
everywhere. We use the r-convexity of ϑ , and from Theorem 1.9 we have ϑ (r)(x) ≥ 0 for
all x ∈ [s, t]. Use the nonnegativity of ϑ (r) together with inequality (2.4) in (2.1), inequality
(2.5) is immediate. �

Theorem 2.3 Let ϑ : [s, t] →R be continuous and convex, and let Gδ be the Green’s func-
tions defined in (1.10)–(1.14). Let ai, qi ∈ R (1 ≤ i ≤ m), and let q1a1,

∑m
i=1 qiai, Qiai,

Qi–1ai ∈ [s, t] for all i ∈ {2, . . . , m}. Then the following statements are equivalent:
(i) For every continuous convex function ϑ , inequality (1.4) holds.

(ii) For the Green’s functions Gδ and for all ũ ∈ [s, t], we have

Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

] ≥ 0. (2.6)

If the reversed inequalities hold in (1.4) and (2.6), then statements (i) and (ii) are also equiv-
alent.

Proof The idea of the proof is the same as given in [15].
Let statement (i) be satisfied. As the functions Gδ(·, ũ) are continuous and convex for all

δ ∈ {1, . . . , 5} such that ũ ∈ [s, t], inequality (1.4) also holds for these functions Gδ(·, ũ) for
every fixed δ and inequality (2.6) is immediate.

Let statement (ii) be satisfied, and let ϑ be a twice differentiable convex function. As
from Lemma 1.7 the function ϑ can be represented in the forms (1.15)–(1.19), it is easy to
see that

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× ϑ ′′(ũ) dũ. (2.7)

Now use inequality (2.6) together with ϑ ′′(ũ) ≥ 0 for all ũ ∈ [s, t] in (2.7), inequality (1.4)
is immediate.

The differentiability condition can be eliminated here as it is possible to approximate
uniformly a continuous convex function by convex polynomials (see [23, p. 172]). �

We present refinement of inequality (1.4) as follows.

Theorem 2.4 Let all the assumptions of Theorem 2.1 be satisfied, and let r be even such
that r > 3. Let ai, qi ∈R (1 ≤ i ≤ m) such that ai ≥ 0 and qi > 0, and let the sequence {ai}m

i=1

be ↘ in WM.
(i) If ϑ : [s, t] →R is r-convex, then (2.5) holds.
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(ii) Let (2.5) be satisfied, and let � : [s, t] →R be a function defined by

�(x) =
1

t – s

∫ t

s
Gδ(x, ũ)

r–3∑
n=0

r – n – 2
n!

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ.

If � is convex, then the RHS of (2.5) is nonnegative and we have

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) ≥

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]
. (2.8)

Proof Using the convex functions Gδ in (1.4), we have

Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

] ≥ 0.

For s ≤ ũ ≤ u, the inequalities

∫ u

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× (ũ – u)r–3k(u, ũ) dũ ≥ 0

(2.9)

and

∫ u

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× (ũ – u)r–3k(u, ũ) dũ ≤ 0

hold for even r such that r > 3 and for odd r such that r ≥ 3 respectively. For u ≤ ũ ≤ t, the
inequality

∫ t

u

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× (ũ – u)r–3k(u, ũ) dũ ≥ 0

(2.10)

holds for r ≥ 3.
(i) Inequality (2.9) together with inequality (2.10) yields inequality (2.4) for even r such

that r > 3. As ϑ is r-convex for even r such that r > 3, applying Theorem 2.2, we
obtain (2.5).

(ii) Clearly, inequality (2.5) can be written as

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

≥ �

( m∑
i=1

qiai

)
– �(q1a1) –

m∑
i=2

[
�(Qiai) – �(Qi–1ai)

]
. (2.11)
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As the sequence {ai}m
i=1 is ↘ in WM, replace ϑ by � in Theorem 1.3 (i), the

nonnegativity of the RHS of (2.11) is immediate, and we obtain (2.8). �

An application to the Shannon entropy is the following:

Corollary 2.5 Let all the assumptions of Theorem 2.1 be satisfied, and let q = (q1, . . . , qm)
be a positive probability distribution. Let r be even such that r > 3, and let ϑ : [s, t] →R be
r-convex.

(i) Let S(q), q1 log
(

1
q1

)
, Qi log

(
1
qi

)
, Qi–1 log

(
1
qi

)
∈ [s, t] for all i ∈ {2, . . . , m}, where

0 < qi < 1 (1 ≤ i ≤ m). Then

ϑ
(
S(q)

)
– ϑ

(
q1 log

(
1
q1

))

–
m∑

i=2

[
ϑ

(
Qi log

(
1
qi

))
– ϑ

(
Qi–1 log

(
1
qi

))]

≥ 1
t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

(
S(q), ũ

)
– Gδ

(
q1 log

(
1
q1

)
, ũ

)

–
m∑

i=2

[
Gδ

(
Qi log

(
1
qi

)
, ũ

)
– Gδ

(
Qi–1 log

(
1
qi

)
, ũ

)]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ. (2.12)

(ii) Let –S(q), q1 log q1, Qi log qi, Qi–1 log qi ∈ [s, t] for all i ∈ {2, . . . , m}, where qi ≥ 1
(1 ≤ i ≤ m). Then

ϑ
(
–S(q)

)
– ϑ(q1 log q1) –

m∑
i=2

[
ϑ(Qi log qi) – ϑ(Qi–1 log qi)

]

≥ 1
t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

(
–S(q), ũ

)
– Gδ(q1 log q1, ũ)

–
m∑

i=2

[
Gδ(Qi log qi, ũ) – Gδ(Qi–1 log qi, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ. (2.13)

Proof
(i) Take ai = log

(
1
qi

)
and use Theorem 2.4(i), (2.12) is immediate.

(ii) Taking ai = – log
(

1
qi

)
and following the proof of (i), we obtain (2.13). �

Remark 2.6 Special cases when
∑m

i=1 qiai =
∑m

i=1 qi log
(

1
qi

)
= S(q), 0 < qi < 1, and∑m

i=1 qiai = –
∑m

i=1 qi log
(

1
qi

)
= –S(q), qi ≥ 1, also hold.
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3 Grüss type inequality—upper bounds for the remainder in the obtained
identity

In this section we present some new bounds for the remainder in the obtained identity.
We denote

ϕ(u) =
∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ) –

m∑
i=2

Gδ(Qiai, ũ)

+
m∑

i=2

Gδ(Qi–1ai, ũ)

]
(ũ – u)r–3k(u, ũ) dũ, (3.1)

where q1a1,
∑m

i=1 qiai, Qiai, Qi–1ai ∈ [s, t] for all i ∈ {2, . . . , m}. In addition Gδ(·, ũ) and
k(u, ũ), appearing in (3.1), are defined in (1.10)–(1.14) and (1.21) respectively.

Theorem 3.1 Let ϑ : [s, t] → R, ϑ (r) be absolutely continuous for r ≥ 3 with (· – s) (t – ·)
(ϑ (r+1))2 ∈ L1[s, t], and let Gδ and � be the same as defined in (1.10)–(1.14) and (1.22)
respectively. Let q1a1,

∑m
i=1 qiai, Qiai, Qi–1ai ∈ [s, t] for all i ∈ {2, . . . , m}. If ϕ is defined in

(3.1), then

ϑ

( m∑
i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

=
1

t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ

+
ϑ (r–1)(t) – ϑ (r–1)(s)

(t – s)2(r – 3)!

∫ t

s
ϕ(u) du + �r(s, t;ϑ), (3.2)

where the remainder �r(s, t;ϑ) satisfies the estimation

∣∣�r(s, t;ϑ)
∣∣ ≤ 1

(r – 3)!
·
√

�(ϕ(u),ϕ(u))
2(t – s)

×
√∫ t

s
(u – s)(t – u)

(
ϑ (r+1)(u)

)2 du. (3.3)

Proof Applying Theorem 1.10 for ζ1 → ϕ and ζ2 → ϑ (r), we have

∣∣∣∣ 1
t – s

∫ t

s
ϕ(u)ϑ (r)(u) du –

1
t – s

∫ t

s
ϕ(u) du · 1

t – s

∫ t

s
ϑ (r)(u) du

∣∣∣∣
≤

√
�(ϕ(u),ϕ(u))

2(t – s)
·
√∫ t

s
(u – s)(t – u)

(
ϑ (r+1)(u)

)2 du. (3.4)
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Divide both sides of (3.4) by (r – 3)! and in the obtained expression denote

�r(s, t;ϑ) =
1

(t – s)(r – 3)!

∫ t

s
ϕ(u)

[
ϑ (r)(u) –

ϑ (r–1)(t) – ϑ (r–1)(s)
t – s

]
du, (3.5)

inequality (3.3) is immediate. Now, taking the value of 1
(t–s)(r–3)!

∫ t
s ϕ(u)ϑ (r)(u) du from (3.5)

and substituting in identity (2.1), we have (3.2). �

Theorem 3.2 Let ϑ : [s, t] → R, ϑ (r) be absolutely continuous for r ≥ 3, and let ϑ (r+1) ≥ 0
on [s, t]. Let �r(s, t;ϑ) be the same as defined in (3.5). If ϕ is the same as defined in (3.1),
then we obtain (3.2) and the remainder �r(s, t;ϑ) satisfies

∣∣�r(s, t;ϑ)
∣∣ ≤ ‖ϕ′(u)‖∞

(r – 3)!

[
ϑ (r–1)(s) + ϑ (r–1)(t)

2
–

ϑ (r–2)(t) – ϑ (r–2)(s)
t – s

]
. (3.6)

Proof Applying Theorem 1.11 for ζ1 → ϕ and ζ2 → ϑ (r), we have

∣∣∣∣ 1
t – s

∫ t

s
ϕ(u)ϑ (r)(u) du –

1
t – s

∫ t

s
ϕ(u) du · 1

t – s

∫ t

s
ϑ (r)(u) du

∣∣∣∣
≤ 1

2(t – s)
∥∥ϕ′(u)

∥∥∞

∫ t

s
(u – s)(t – u)ϑ (r+1)(u) du. (3.7)

Dividing inequality (3.7) by (r – 3)! and using the expression

∫ t

s
(u – s)(t – u)ϑ (r+1)(u) du

= (t – s)
(
ϑ (r–1)(s) + ϑ (r–1)(t)

)
– 2

(
ϑ (r–2)(t) – ϑ (r–2)(s)

)
,

we have

∣∣�r(s, t;ϑ)
∣∣ ≤ 1

2(t – s)
· ‖ϕ′(u)‖∞

(r – 3)!
[
(t – s)

(
ϑ (r–1)(s) + ϑ (r–1)(t)

)
– 2

(
ϑ (r–2)(t) – ϑ (r–2)(s)

)]
. (3.8)

After simplification, inequality (3.8) reduces to (3.6), and by taking the value of
1

(t–s)(r–3)!
∫ t

s ϕ(u)ϑ (r)(u) du from (3.5) and by inserting into (2.1), we have the representa-
tion (3.2). �

4 Ostrowski type inequality related to the obtained identity
Here we present the Ostrowski type inequality related to the identity given in the second
section.

Theorem 4.1 Let all the assumptions of Theorem 2.1 be satisfied, and let ϕ be the same
as defined in (3.1). Let p, q ∈ [1,∞] such that 1

p + 1
q = 1, and let |ϑ (r)|p : [s, t] → R be an

R integrable function for some r ≥ 3. Let q1a1,
∑m

i=1 qiai, Qiai, Qi–1ai ∈ [s, t] for all i ∈
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{2, . . . , m}. Then

∣∣∣∣∣ϑ
( m∑

i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

–
1

t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ

∣∣∣∣∣
≤

(∫ t

s

∣∣ϑ (r)(u)
∣∣p du

) 1
p
(∫ t

s

∣∣ϕ̇(u)
∣∣q du

) 1
q

, (4.1)

where ϕ̇(u) := ϕ(u)
(t–s)(r–3)! . The constant (

∫ t
s |ϕ̇(u)|q du)

1
q in (4.1) is sharp for 1 < p ≤ ∞ and

best possible for p = 1.

Proof From identity (2.1), we have

∣∣∣∣∣ϑ
( m∑

i=1

qiai

)
– ϑ(q1a1) –

m∑
i=2

[
ϑ(Qiai) – ϑ(Qi–1ai)

]

–
1

t – s

r–3∑
n=0

r – n – 2
n!

∫ t

s

[
Gδ

( m∑
i=1

qiai, ũ

)
– Gδ(q1a1, ũ)

–
m∑

i=2

[
Gδ(Qiai, ũ) – Gδ(Qi–1ai, ũ)

]]

× [
(ũ – t)nϑ (n+1)(t) – (ũ – s)nϑ (n+1)(s)

]
dũ

∣∣∣∣∣
=

∣∣∣∣
∫ t

s
ϑ (r)(u)ϕ̇(u) du

∣∣∣∣. (4.2)

On the RHS of (4.2), we apply Hölder’s inequality for integrals as follows:

∣∣∣∣
∫ t

s
ϑ (r)(u)ϕ̇(u) du

∣∣∣∣ ≤
(∫ t

s

∣∣ϑ (r)(u)
∣∣p du

) 1
p
(∫ t

s

∣∣ϕ̇(u)
∣∣q du

) 1
q

, (4.3)

and inequality (4.3) together with (4.2) implies (4.1).
For the proof of the sharpness of the constant (

∫ t
s |ϕ̇(u)|q du)

1
q , we define

ϑ (r)(u) =

⎧⎨
⎩sgn ϕ̇(u).|ϕ̇(u)| 1

p–1 , 1 < p < ∞,

sgn ϕ̇(u), p = ∞

such that the equality in (4.3) holds.
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For p = 1, we will prove that the following inequality

∣∣∣∣
∫ t

s
ϑ (r)(u)ϕ̇(u) du

∣∣∣∣ ≤ max
u∈[s,t]

∣∣ϕ̇(u)
∣∣.∫ t

s

∣∣ϑ (r)(u)
∣∣du (4.4)

is the best possible inequality.
Let |ϕ̇(u)| attain its maximum at u0 ∈ [s, t].
Case 1. When ϕ̇(u0) > 0. For small enough ε, we define

ϑε(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, s ≤ u ≤ u0,
1
εr! (u – u0)r , u0 ≤ u ≤ u0 + ε,

1
(r–1)! (u – u0)r–1, u0 + ε ≤ u ≤ t.

Clearly,

∣∣∣∣
∫ t

s
ϑ (r)

ε (u)ϕ̇(u) du
∣∣∣∣ =

1
ε

∫ u0+ε

u0

ϕ̇(u) du (4.5)

and
∫ t

s

∣∣ϑ (r)
ε (u)

∣∣du =
1
ε

∫ u0+ε

u0

du = 1. (4.6)

Now, using (4.5) and (4.6) in (4.4) and also using the fact that |ϕ̇(u)| attains its
maximum at u0 ∈ [s, t], we have

1
ε

∫ u0+ε

u0

ϕ̇(u) du ≤ ϕ̇(u0) · 1 = ϕ̇(u0).

As limε→0
1
ε

∫ u0+ε

u0
ϕ̇(u) du = ϕ̇(u0), the statement follows.

Case 2. When ϕ̇(u0) < 0, we define

ϑε(u) =

⎧⎪⎪⎨
⎪⎪⎩

1
(r–1)! (u – u0 – ε)r–1, s ≤ u ≤ u0,

– 1
εr! (u – u0 – ε)r , u0 ≤ u ≤ u0 + ε,

0, u0 + ε ≤ u ≤ t,

and the remaining part is the same as above.
�

Remark 4.2 Remark 2.6 is also valid for Sects. 3 and 4.
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