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Abstract
In this paper, we introduce a modified Krasnoselski–Mann type iterative method for
capturing a common solution of a split mixed equilibrium problem and a hierarchical
fixed point problem of a finite collection of k-strictly pseudocontractive
nonself-mappings. Many of the algorithms for solving the split mixed equilibrium
problem involve a step size which depends on the norm of a bounded linear
operator. Since the computation of the operator norm is very difficult, we formulate
our iterative algorithm in such a way that the implementation of the proposed
algorithm does not require any prior knowledge of operator norm. Weak
convergence results are established under mild conditions. We also establish strong
convergence results for a certain class of hierarchical fixed point and split equilibrium
problem. Our results generalize some important results in the recent literature.
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1 Introduction
Let H1 and H2 be two real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. Let C
and D be two nonempty closed and convex subsets of H1 and H2, respectively. A nonself-
mapping T : C �→ H1 is said to be k-strictly pseudocontractive if there exists a constant
k ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥
∥(I – T)x – (I – T)y

∥
∥

2, ∀x, y ∈ H1.

If k = 0, then T is a nonexpansive nonself-mapping.
For a mapping T : C �→ H1, the fixed point problem is to find x ∈ C such that x = Tx. The

set of all fixed points of T is denoted by Fix(T).
Moudafi and Mainge [24] considered the following hierarchical fixed point problem (in

short, HFPP) for a nonexpansive self-mapping T with respect to another nonexpansive
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self-mapping S on C in the following way: Find x∗ ∈ Fix(T) such that

〈

x∗ – Sx∗, x∗ – x
〉 ≤ 0, ∀x ∈ Fix(T). (1.1)

Let us denote the solution set of the HFPP (1.1) as S = {x∗ ∈ Fix(T) : 〈x∗ – Sx∗, x∗ – x〉 ≤
0,∀x ∈ Fix(T)}.

We can check that x∗ is a solution of the HFPP (1.1) if and only if x∗ = PFix(T) ◦Sx∗, where
PFix(T) is the metric projection of H1 onto Fix(T).

By using the definition of the normal cone to Fix(T), i.e.,

NFix(T) =

⎧

⎨

⎩

{u ∈ H1 : 〈y – x, u〉 ≤ 0,∀y ∈ Fix(T)}, if x ∈ Fix(T),

∅, otherwise,
(1.2)

we can easily prove that HFPP (1.1) is equivalent to the variational inclusion

0 ∈ (I – S)x∗ + NFix(T)x∗.

We note that based on the relation x∗ = PFix(T) ◦Sx∗, HFPP (1.1) has an iterative algorithm
xn+1 = PFix(T) ◦ Sxn. This iterative method converges if the mapping PFix(T) ◦ S has a fixed
point and S is averaged not just nonexpansive. Disadvantage of this method is that the
calculation of PFix(T) ◦ S is usually not easy. To overcome this, Moudafi [22] introduced
an algorithm which uses T itself, rather than PFix(T) ◦ S. Moudafi introduced the iterative
method in the following way: For starting point x0 ∈ C, define {xn} by

xn+1 = (1 – αn)xn + αn
(

σnSxn + (1 – σn)Txn
)

, (1.3)

where {αn} and {σn} are two real sequences in (0, 1).
Problems (1.1) are often used in the area of optimization and related fields, such as sig-

nal processing and image reconstruction (see [4, 6, 11, 14–20, 25, 27–30, 32–36] and the
references therein).

On the other hand, for a bifunction F : C × C → R, an equilibrium problem is defined
by

find x ∈ C such that F(x, y) ≥ 0, for all y ∈ C.

The solution set of this problem is denoted as EP(F , C). Equilibrium problem includes vari-
ational inequality problem, optimization problem, the Nash equilibrium problem, saddle
point problem, complementarity problem, convex differential optimization etc. as special
cases (see Blum and Oettli [1]).

In 2009, Marino et al. [21] introduced an iterative method to find common solutions of
the following system of equilibrium problem and hierarchical fixed point problem:

⎧

⎨

⎩

find x∗ ∈ C such that F(x∗, y) ≥ 0, ∀y ∈ C; and

x∗ ∈ Fix(T) such that 〈x∗ – f (x∗), x∗ – y〉 ≤ 0, ∀y ∈ Fix(T),
(1.4)

where F is a bifunction, f is a ρ-contraction and T is a nonexpansive self-mapping.
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In 2011, Moudafi [23] introduced and studied the following split equilibrium problem
SpEP: Suppose F1 : C × C → R and F2 : D × D → R are two bifunctions and A : H1 → H2

is a bounded linear operator. Then the split equilibrium problem is to find x∗ ∈ C such
that

F1
(

x∗, x
) ≥ 0, ∀x ∈ C. (1.5)

and y∗ = Ax∗ ∈ D solves

F2
(

y∗, y
) ≥ 0, ∀y ∈ D. (1.6)

In 2012, Censor et al. [7] introduced and studied the following split variational inequality
problem SpVIP: Find x∗ ∈ C such that

〈

g1
(

x∗), y – x∗〉 ≥ 0, ∀x ∈ C, (1.7)

and y∗ = Ax∗ ∈ Q solves

〈

g2
(

x∗), y – x∗〉 ≥ 0, ∀y ∈ D, (1.8)

where g1 : C → H1 and g2 : D → H2 are two nonlinear mappings, and A : H1 → H2 is a
bounded linear operator.

Very recently, Kazmi et al. [13] have introduced and analyzed a Krasnoselski–Mann it-
eration method for finding a common solution of HFPP (1.1) and the following split mixed
equilibrium problem SpMEP: Find x∗ ∈ C such that

F1
(

x∗, x
)

+
〈

g1
(

x∗), y – x∗〉 ≥ 0, ∀x ∈ C, (1.9)

and y∗ = Ax∗ ∈ Q solves

F2
(

y∗, y
)

+
〈

g2
(

x∗), y – x∗〉 ≥ 0, ∀y ∈ D. (1.10)

The solution set of SpMEP is denoted by � = {p ∈ MEP(F1, g1) : Ap ∈ MEP(F2, g2)}. To
solve the SpMEP (1.9)–(1.10) and HFPP (1.1), Kazmi et al. [13] introduced the following
algorithm: For the starting point x0 ∈ C, define {xn} by

⎧

⎨

⎩

un = (1 – αn)xn + αn(σnSxn + (1 – σ )Txn),

xn+1 = U(un + γ A∗(V – I)Aun), n ≥ 1,
(1.11)

where S, T are nonexpansive self-mappings on C and the step size γ ∈ (0, 1
L ), L is the

spectral radius of the operator A∗A and A∗ is the adjoint of the bounded linear operator A.
Motivated by the above results, we revisit the problem considered by Kazmi et al. [13].

We introduce and analyze a modified Krasnoselski–Mann type iterative method with the
help of averaged mappings for finding a common solution of the HFPP (1.1) of a finite col-
lection of k-strictly pseudocontractive non-self -mappings and SpMEP (1.9)–(1.10). Our



Kim and Majee Journal of Inequalities and Applications        (2020) 2020:227 Page 4 of 25

work can be seen as an extension of HFPP (1.1) [13, 22] from single nonexpansive self-
mapping to a finite collection of k-strictly pseudocontractive nonself-mappings. The au-
thors in [10, 13] have selected the step size γ in the interval (0, 1

L ), where L is the spectral
radius of the operator A∗A and A∗ is the adjoint of the bounded linear operator A.

It is well known that the computation or an estimate of the spectral radius of a given op-
erator is very difficult at times. This makes the implementation of the proposed algorithm
very difficult. In our iterative method, we give an explicit formula to choose the step size,
which does not require any prior knowledge of operator norm. We also establish strong
convergence results for a certain class of hierarchical fixed point and split equilibrium
problem.

We organize the paper in the following way. Some basic definitions and lemmas are
given in Sect. 2. In Sect. 3, we present our modified iterative methods for a split mixed
equilibrium problem and hierarchical fixed point problem. Finally, we make some remarks
to highlight the main contribution of this paper.

2 Preliminaries
In order to prove our main results, we recall some basic definitions and lemmas, which will
be needed in the sequel. Let H1 be a real Hilbert space and C be a nonempty closed convex
subset of H1. Let the symbols “⇀” and “→” denote the weak and strong convergence,
respectively. We know that in a Hilbert space H1, the following properties hold:

‖x – y‖2 ≤ ‖x‖2 – ‖y‖2 – 2〈x – y, y〉, ∀x, y ∈ H1 (2.1)

and

2〈x, y〉 = ‖x‖2 + ‖y‖2 – ‖x – y‖2 = ‖x + y‖2 – ‖x‖2 – ‖y‖2, ∀x, y ∈ H1. (2.2)

It is well known that every nonexpansive mapping T : H1 → H1 satisfies the inequality:

〈

(x – Tx) – (y – Ty), Ty – Tx
〉 ≤ 1

2
∥
∥(Tx – x) – (Ty – y)

∥
∥

2, ∀(x, y) ∈ H1 × H1.

Therefore for all (x, y) ∈ H1 × Fix(T), we get

〈x – Tx, y – Tx〉 ≤ 1
2
∥
∥(Tx – x)

∥
∥

2. (2.3)

A mapping T : H1 → H1 is said to be monotone if

〈Tx – Ty, x – y〉 ≥ 0, ∀x, y ∈ H1.

T is said to be α-inverse strongly monotone if there exists a α > 0 such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖2, ∀x, y ∈ H1.

T is said to be firmly nonexpansive if

〈Tx – Ty, x – y〉 ≥ ‖Tx – Ty‖2, ∀x, y ∈ H1.
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A mapping PC is said to be metric projection from H1 onto C if for every x ∈ H1, there
exists a unique nearest point in C denoted by PC(x) such that

∥
∥x – PC(x)

∥
∥ ≤ ‖x – y‖, ∀y ∈ C. (2.4)

It is well known that PC is nonexpansive and firmly nonexpansive. Moreover, PC is char-
acterized by the following property:

〈

x – PC(x), y – PC(x)
〉 ≤ 0, ∀x ∈ H1, y ∈ C. (2.5)

A multivalued mapping M : H1 → 2H1 is called monotone if for any x, y ∈ H1

〈u – v, x – y〉 ≥ 0, ∀u ∈ Mx, v ∈ My.

For a multivalued mapping M, graph(M) is defined by graph(M) := {(x, u) ∈ H1 ×H1 : u ∈
Mx}. A multivalued monotone mapping M : H1 → 2H1 is said to be maximal monotone if
graph(M) is not properly contained in the graph of any other monotone mapping. It is well
known that a multivalued monotone mapping is maximal monotone if for (x, u) ∈ H1 ×H1,
〈x – y, u – v〉 ≥ 0 for every (y, v) ∈ graph(M) implies that u ∈ Mx. Let M : H1 → 2H1 be
a multivalued maximal monotone operator. Then the resolvent mapping JM

λ : H1 → H1

associated with M is defined by

JM
λ (x) := (I + λM)–1(x), ∀x ∈ H1,

for some λ > 0, where I is the identity operator on H1. It is well known that for all λ > 0
the resolvent operator is single-valued, nonexpansive and firmly nonexpansive. Also, we
know that Fix(JM

λ ) = M–1(0).

Definition 2.1 A mapping T : H1 → H1 is said to be an averaged mapping if there ex-
ists some number α ∈ (0, 1) such that T = (1 – α)I + αS, where I : H1 → H1 is the identity
mapping and S : H1 → H1 is a nonexpansive mapping. An averaged mapping is also non-
expansive and Fix(S) = Fix(T).

Lemma 2.2 ([3, 4]) If the mappings {Ti}N
i=1 are averaged and have a common fixed point,

then

N
⋂

i=1

Fix(Ti) = Fix(T1T2 · · ·TN ).

In particular, for N = 2, Fix(T1) ∩ Fix(T2) = Fix(T1T2) = Fix(T2T1).

Lemma 2.3 ([37]) Assume that S : C → H1 is a k-strictly pseudocontractive mapping. De-
fine a mapping T by Tx = αx + (1 – α)Sx for all x ∈ H1, where α ∈ [k, 1). Then T is a non-
expansive mapping with Fix(T) = Fix(S).

Lemma 2.4 ([37]) Let T : C → H1 be a k-strictly pseudocontractive mapping with Fix(T) �=
∅. Then Fix(PCT) = Fix(T).
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Lemma 2.5 (Demiclosedness principle [12]) Let C be a nonempty closed convex subset of a
real Hilbert space H1 and let T : C → C be a nonexpansive mapping. If {xn} is a sequence in
C weakly converging to x ∈ C and {(I – T)xn} converges strongly to y ∈ C, then (I – T)x = y.
In particular, if y = 0, then x ∈ Fix(T).

Assumption A ([1]) Let F : C × C → R be a bifunction which satisfies the following as-
sumptions:

(i) F(x, x) ≥ 0, ∀x ∈ C;
(ii) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0, ∀x, y ∈ C;

(iii) F is upper hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→0

F
(

tz + (1 – t)x, y
) ≤ F(x, y); (2.6)

(iv) For each x ∈ C fixed, the function y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.6 ([9]) Assume that the bifunction F : C × C → R satisfies Assumption A. For
r > 0 and x ∈ H1, define a mapping TF

r : H1 → C as follows:

TF
r (x) :=

{

z ∈ C : F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

. (2.7)

Then the following properties hold:
(i) TF

r is nonempty and single-valued.
(ii) TF

r is firmly nonexpansive, i.e., ‖TF
r x – TF

r y‖2 ≤ 〈TF
r x – TF

r y, x – y〉, ∀x, y ∈ H1.
(iii) Fix(TF

r ) = EP(F , C).
(iv) EP(F , C) is closed and convex.

Furthermore, assume that F2 : D × D → R satisfy the conditions in Assumption A. For
s > 0 and for all w ∈ H2, define a mapping TF2

s : H2 → D as follows:

TF2
s (w) :=

{

d ∈ D : F(d, e) +
1
s
〈e – d, d – w〉 ≥ 0,∀e ∈ D

}

. (2.8)

Then we easily observe that TF2
s is nonempty, single-valued and firmly nonexpansive. Also,

EP(F2, D) is closed and convex, and Fix(TF2
s ) = EP(F2, D), where EP(F2, D) is the solution

of the following equilibrium problem: Find y∗ ∈ D such that

F2
(

y∗, y
) ≥ 0, ∀y ∈ D.

Lemma 2.7 ([8]) Let {δn} and {γn} be non-negative sequences satisfying
∑∞

n=0 δn < +∞ and
γn+1 ≤ γn + δn for all n ∈ N. Then {γn} is a convergent sequence.

Definition 2.8 ([2, 24]) A sequence {Mn} of maximal monotone mappings defined on H1

is said to be graph convergent to a multivalued mapping M if {graph(Mn)} converges to
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graph(M) in the Kuratowski–Painlevé sense, that is,

lim sup
n→∞

graph(Mn) ⊂ graph(M) ⊂ lim inf
n→∞ graph(Mn).

Lemma 2.9 ([9]) We have the following statements:
(i) Let M be a maximal monotone mapping on H1. Then {tn

–1M} is graph convergent to
NM–10 as tn → 0 provided that M–10 �= ∅.

(ii) Let {Mn} be a sequence of maximal monotone mappings on H1 which is graph
convergent to a mapping M defined on H1. If B is a Lipschitz maximal monotone
mapping on H1, then {B + Mn} is graph convergent to B + M and B + M is maximal
monotone.

3 Main results
In this section, we state and prove our main results of the paper. First we will study the
weak convergence theorem.

Theorem 3.1 Let H1 and H2 be two Hilbert spaces. Let C and D be nonempty closed and
convex subset of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator.
Suppose F1 : C × C → R and F2 : D × D → R are two bifunctions which satisfy Assump-
tion A and F2 is upper semicontinuous. Let g1 : C → H1 and g2 : D → H2 be η1- and η2-
inverse strongly monotone mappings, respectively. Let S : C → C be a nonexpansive self-
mapping and {Ti}N

i=1 : C → H1 be ki-strictly pseudocontractive nonself-mappings. Assume
that

F = � ∩ S �= ∅.

Define a sequence {xn} as follows:

⎧

⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

un = (1 – αn)xn + αn(τnSxn + (1 – τn)Tn
N Tn

N–1 · · ·Tn
1 xn),

xn+1 = U(un + γnA∗(V – I)Aun), n ≥ 1,

(3.1)

where U = TF1
rn (I – rng1), V = TF2

rn (I – rng2), Tn
i = (1 – δi

n)I + δi
nPC(βiI + (1 – βi)Ti), 0 ≤ ki ≤

βi < 1, δi
n ∈ (0, 1) for i = 1, 2, . . . , N and

γn =
σn‖(TF2

rn (I – rng2) – I)Axn‖
‖A∗(TF2

rn (I – rng2) – I)Axn‖
, 0 < a ≤ σn ≤ b < 1.

Let {αn}, {τn} be two real sequences in (0, 1) and {rn} ⊂ (0,α), where α = 2 min{η1,η2}. Sup-
pose the following conditions are satisfied:

(i)
∑∞

n=0 τn < ∞;
(ii) limn→∞ ‖xn–un‖

αnτn
= 0;

(iii) lim infn→∞ rn > 0;
(iv) limn→∞ |δi

n+1 – δi
n| = 0 for i = 1, 2, . . . , N .

Then the sequence {xn} converges weakly to x∗ ∈F
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Proof Since our method easily deduce the general case, we only prove the theorem for
N = 2. Since g1 : H1 → H1 is η1-strongly monotone mapping, for any x, y ∈ H1, we get

∥
∥(I – rng1)x – (I – rng1)y

∥
∥

2 =
∥
∥(x – y) – rn(g1x – g1y)

∥
∥

2

≤ ‖x – y‖2 – rn(2η1 – rn)‖g1x – g1y‖2

≤ ‖x – y‖2.

This means that (I – rng1) is nonexpansive. Similarly, we can show that (I – rng2) is a non-
expansive mapping. Thus, U and V are also nonexpansive mappings. Let x∗ ∈ F . From
Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get x∗ = Tn

2 Tn
1 x∗. Hence, we have

∥
∥un – x∗∥∥ =

∥
∥(1 – αn)xn + αn

(

τnSxn + (1 – τn)Tn
2 Tn

1 xn
)

– x∗∥∥

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

[

τn
∥
∥Sxn – x∗∥∥ + (1 – τn)

∥
∥Tn

2 Tn
1 xn – x∗∥∥]

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

[

τn
∥
∥xn – x∗∥∥ + (1 – τn)

∥
∥xn – x∗∥∥]

+ αnτn
∥
∥Sx∗ – x∗∥∥

=
∥
∥xn – x∗∥∥ + αnτn

∥
∥Sx∗ – x∗∥∥. (3.2)

Also, since x∗ ∈F , we have Ux∗ = x∗ and VAx∗ = Ax∗.
Let vn = un + γ A∗(V – I)Aun. Then we have

∥
∥vn – x∗∥∥2 =

∥
∥un + γnA∗(V – I)Aun – x∗∥∥2

=
∥
∥un – x∗∥∥2 + γ 2

n
∥
∥A∗(V – I)Aun

∥
∥

2

+ 2γn
〈

un – x∗, A∗(V – I)Aun
〉

. (3.3)

Since VAx∗ = Ax∗, we get

〈

un – x∗, A∗(V – I)Aun
〉

=
〈

Aun – Ax∗, (V – I)Aun
〉

=
〈

Aun – Ax∗ + (V – I)Aun – (V – I)Aun, (V – I)Aun
〉

=
〈

VAun – Ax∗, (V – I)Aun
〉

–
∥
∥(V – I)Aun

∥
∥

2

=
1
2
[∥
∥VAun – Ax∗∥∥2 +

∥
∥(V – I)Aun

∥
∥

2 –
∥
∥Aun – Ax∗∥∥2]

–
∥
∥(V – I)Aun

∥
∥

2

≤ 1
2
[∥
∥Aun – Ax∗∥∥2 –

∥
∥Aun – Ax∗∥∥2] –

1
2
∥
∥(V – I)Aun

∥
∥

2

= –
1
2
∥
∥(V – I)Aun

∥
∥

2. (3.4)

From (3.3) and (3.4), we obtain

∥
∥vn – x∗∥∥2 ≤ ∥

∥un – x∗∥∥2 – γn
(∥
∥(V – I)Aun

∥
∥

2 – γn
∥
∥A∗(V – I)Aun

∥
∥

2). (3.5)
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Now

∥
∥xn+1 – x∗∥∥2 =

∥
∥U

(

un + γnA∗(V – I)Aun
)

– x∗∥∥2

≤ ∥
∥un + γnA∗(V – I)Aun – x∗∥∥2

=
∥
∥un – x∗∥∥2 – γn

(∥
∥(V – I)Aun

∥
∥

2 – γn
∥
∥A∗(V – I)Aun

∥
∥

2). (3.6)

From (3.2), (3.3) and (3.4), we get

∥
∥xn+1 – x∗∥∥2 ≤ (∥

∥xn – x∗∥∥ + αnτn
∥
∥Sx∗ – x∗∥∥)2

– γn
(∥
∥(V – I)Aun

∥
∥

2 – γn
∥
∥A∗(V – I)Aun

∥
∥

2). (3.7)

Now, using the definition of γn, we get

∥
∥xn+1 – x∗∥∥ ≤ ∥

∥xn – x∗∥∥ + αnτn
∥
∥Sx∗ – x∗∥∥. (3.8)

Since
∑∞

n=0 τn < ∞, we have
∑∞

n=0 αnτn < ∞. Thus, by using Lemma 2.7 to (3.8), we con-
clude that limn→∞ ‖xn – x∗‖ exists and the value is finite. Hence, {xn} is bounded and so
are {un} and {vn}.

Now, from (3.7), we get

γn
(∥
∥(V – I)Aun

∥
∥

2 – γn
∥
∥A∗(V – I)Aun

∥
∥

2)

≤ (∥
∥xn – x∗∥∥ + αnτn

∥
∥Sx∗ – x∗∥∥)2 –

∥
∥xn+1 – x∗∥∥2

=
∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + α2

nτ
2
n
∥
∥Sx∗ – x∗∥∥2

+ 2αnτn
∥
∥xn – x∗∥∥∥

∥Sx∗ – x∗∥∥.

Since limn→∞ τn = 0, we get

γn
(∥
∥(V – I)Aun

∥
∥

2 – γn
∥
∥A∗(V – I)Aun

∥
∥

2) → 0 as n → ∞,

which by definition of γn, implies that

σn(1 – σn)‖(V – I)Aun‖4

‖A∗(V – I)Aun‖2 → 0 as n → ∞.

Since 0 < a ≤ σn ≤ b < 1 and ‖A∗(V – I)Aun‖ is bounded, we get

∥
∥(V – I)Aun

∥
∥ → 0 as n → ∞.

Now

∥
∥A∗(V – I)Aun

∥
∥ =

∥
∥A∗∥∥∥

∥(V – I)Aun
∥
∥ → 0 as n → ∞. (3.9)

So,

‖un – vn‖ =
∥
∥A∗(V – I)Aun

∥
∥ → 0 as n → ∞. (3.10)
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Now, we estimate

‖xn+1 – xn‖ =
∥
∥xn+1 – x∗ –

(

xn – x∗)∥∥

=
∥
∥xn+1 – x∗∥∥2 –

∥
∥xn – x∗∥∥2 – 2

〈

xn+1 – xn, xn – x∗〉

=
∥
∥xn+1 – x∗∥∥2 –

∥
∥xn – x∗∥∥2 – 2

〈

xn+1 – p, xn – x∗〉

+ 2
〈

xn – p, xn – x∗〉,

where p is a weak limit point of {xn}. Since limn→∞ ‖xn – x∗‖ exists, we get

‖xn+1 – xn‖ → 0 as n → ∞. (3.11)

Since lim infn→∞ rn > 0, there exists a number r > 0 such that rn > r. Hence, we get

∥
∥xn+1 – x∗∥∥2 =

∥
∥Uvn – Ux∗∥∥2

=
∥
∥TF1

rn (I – rng1)vn – TF1
rn (I – rng1)x∗∥∥2

≤ ∥
∥(I – rng1)vn – (I – rng1)x∗∥∥2

≤ ∥
∥vn – x∗∥∥2 – rn(2η1 – rn)

∥
∥g1vn – g1x∗∥∥2

≤ ∥
∥vn – x∗∥∥2 – r(2η1 – α)

∥
∥g1vn – g1x∗∥∥2,

that is,

r(2η1 – α)
∥
∥g1vn – g1x∗∥∥2 ≤ ∥

∥vn – x∗∥∥2 –
∥
∥xn+1 – x∗∥∥2

≤ ∥
∥un – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + α2

nτ
2
n
∥
∥Sx∗ – x∗∥∥2

+ 2αnτn
∥
∥xn – x∗∥∥∥

∥Sx∗ – x∗∥∥

≤ ‖xn – xn+1‖
(∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)

+ α2
nτ

2
n
∥
∥Sx∗ – x∗∥∥2 + 2αnτn

∥
∥xn – x∗∥∥∥

∥Sx∗ – x∗∥∥.

Since limn→∞ τn = 0, ‖xn – x∗‖ is bounded and r(2η1 – α) > 0, we get

lim
n→∞

∥
∥g1vn – g1x∗∥∥ = 0. (3.12)

Now, from the firmly nonexpansivity of TF1
rn , we get

∥
∥xn+1 – x∗∥∥2 ≤ 〈

(I – rng1)vn – (I – rng1)x∗, xn+1 – x∗〉

=
1
2
[∥
∥(I – rng1)vn – (I – rng1)x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2

–
∥
∥vn – xn+1 – rn

(

g1vn – g1x∗)∥∥2]

≤ 1
2
[∥
∥vn – x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2 – ‖vn – xn+1‖2
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+ 2rn
〈

vn – xn+1, g1vn – g1x∗〉 – r2
n
∥
∥g1vn – g1x∗∥∥2]

≤ 1
2
[∥
∥vn – x∗∥∥2 +

∥
∥xn+1 – x∗∥∥2 – ‖vn – xn+1‖2

+ 2rn‖vn – xn+1‖
∥
∥g1vn – g1x∗∥∥]

,

this implies that

∥
∥xn+1 – x∗∥∥2 ≤ ∥

∥vn – x∗∥∥2 – ‖vn – xn+1‖2 + 2rn‖vn – xn+1‖
∥
∥g1vn – g1x∗∥∥.

That is,

‖vn – xn+1‖2 ≤ ∥
∥vn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + 2rn‖vn – xn+1‖

∥
∥g1vn – g1x∗∥∥.

Hence, we have

‖vn – xn+1‖2 ≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + α2

nτ
2
n
∥
∥Sx∗ – x∗∥∥2

+ 2αnτn
∥
∥xn – x∗∥∥∥

∥Sx∗ – x∗∥∥ + 2rn‖vn – xn+1‖
∥
∥g1vn – g1x∗∥∥

≤ ‖xn – xn+1‖
(∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)

+ α2
nτ

2
n
∥
∥Sx∗ – x∗∥∥2

+ 2αnτn
∥
∥xn – x∗∥∥∥

∥Sx∗ – x∗∥∥ + 2rn‖vn – xn+1‖
∥
∥g1vn – g1x∗∥∥.

Using (3.11) and (3.12), we get

lim
n→∞‖vn – xn+1‖ = 0. (3.13)

Now

‖xn – vn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – vn‖ → 0 as n → ∞. (3.14)

Again, by using (3.10) and (3.14), we get

‖xn – un‖ ≤ ‖xn – vn‖ + ‖vn – un‖ → 0 as n → ∞. (3.15)

Now, we show that p ∈ F . Since Tn
2 Tn

1 is an averaged mapping, it is nonexpansive. Using
the boundedness of {xn} and nonexpansivity of S, there exists a K > 0 such that ‖Sxn –
Tn

2 Tn
1 xn‖ ≤ K for all n ≥ 0. Now, we know that

∥
∥un – Tn

2 Tn
1 xn

∥
∥ =

∥
∥(1 – αn)xn + αn

(

τnSxn + (1 – τn)Tn
2 Tn

1 xn
)

– Tn
2 Tn

1 xn
∥
∥

≤ (1 – αn)
∥
∥xn – Tn

2 Tn
1 xn

∥
∥ + αnτn

∥
∥Sxn – Tn

2 Tn
1 xn

∥
∥

≤ (1 – αn)‖xn – un‖ + (1 – αn)
∥
∥un – Tn

2 Tn
1 xn

∥
∥

+ αnτn
∥
∥Sxn – Tn

2 Tn
1 xn

∥
∥,

this implies that

αn
∥
∥un – Tn

2 Tn
1 xn

∥
∥ ≤ (1 – αn)‖xn – un‖ + αnτnK

≤ ‖xn – un‖ + αnτnK .
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Hence, we have

∥
∥un – Tn

2 Tn
1 xn

∥
∥ ≤ ‖xn – un‖

αn
+ τnK . (3.16)

It follows from the conditions (i)–(ii) that

lim
n→∞

‖xn – un‖
αn

= lim
n→∞ τn

‖xn – un‖
τnαn

= 0.

Hence from (3.16), we get

lim
n→∞

∥
∥un – Tn

2 Tn
1 xn

∥
∥ = 0.

Now, by using (3.15), we get

∥
∥xn – Tn

2 Tn
1 xn

∥
∥ ≤ ‖xn – un‖ +

∥
∥un – Tn

2 Tn
1 xn

∥
∥ → 0 as n → ∞. (3.17)

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that xnj ⇀ p as j → ∞.
Noticing that {δi

n} is bounded for i = 1, 2, we can assume that δi
nj

→ δi∞ as j → ∞, where
0 < δi∞ < 1 for i = 1, 2. Define, for i = 1, 2,

T∞
i =

(

1 – δi
∞

)

I + δi
∞PC

(

βiI + (1 – βi)Ti
)

.

Now, by Lemma 2.3 and Lemma 2.4, Fix(PC(βiI + (1 – βi)Ti)) = Fix(Ti). Again, since
PC(βiI + (1 – βi)Ti) is a nonexpansive mapping, T∞

i is averaged and Fix(T∞
i ) = Fix(Ti)

for i = 1, 2.
Furthermore, since

Fix
(

T∞
1

) ∩ Fix
(

T∞
2

)

= Fix(T1) ∩ Fix(T2) = Fix(S) �= ∅,

by Lemma 2.2, we get

Fix
(

T∞
2 T∞

1
)

= Fix
(

T∞
1

) ∩ Fix
(

T∞
2

)

= Fix(S).

Note that

∥
∥Tnj

i t – T∞
i t

∥
∥ ≤ ∣

∣δi
nj

– δi
∞

∣
∣
(‖t‖ +

∥
∥PC

(

βit + (1 – βi)Ti(t)
)∥
∥
)

.

Hence, we get

lim
j→∞ sup

t∈B

∥
∥Tnj

i t – T∞
i t

∥
∥ = 0, (3.18)

where B is an arbitrary bounded subset of H1. Also, we have

∥
∥xnj – T∞

2 T∞
1 xnj

∥
∥ ≤ ∥

∥xnj – Tnj
2 Tnj

1 xnj

∥
∥ +

∥
∥Tnj

2 Tnj
1 xnj – T∞

2 Tnj
1 xnj

∥
∥

+
∥
∥T∞

2 Tnj
1 xnj – T∞

2 T∞
1 xnj

∥
∥



Kim and Majee Journal of Inequalities and Applications        (2020) 2020:227 Page 13 of 25

≤ ∥
∥xnj – Tnj

2 Tnj
1 xnj

∥
∥ +

∥
∥Tnj

2 Tnj
1 xnj – T∞

2 Tnj
1 xnj

∥
∥

+
∥
∥Tnj

1 xnj – T∞
1 xnj

∥
∥

≤ ∥
∥xnj – Tnj

2 Tnj
1 xnj

∥
∥ + sup

t∈B1

∥
∥Tnj

2 t – T∞
2 t

∥
∥

+ sup
t∈B2

∥
∥Tnj

1 t – T∞
1 t

∥
∥, (3.19)

where B1 is a bounded subset including {Tnj
1 xnj} and B2 is a bounded subset including

{xnj}. It follows from (3.17), (3.18) and (3.19) that

lim
j→∞

∥
∥xnj – T∞

2 T∞
1 xnj

∥
∥ = 0.

Hence, from Lemma 2.5, we get p ∈ Fix(T∞
2 T∞

1 ) = Fix(T1) ∩ Fix(T2).
Now, we show that x∗ ∈ S . It follows from (3.1) that

un – xn = αn
(

τn(Sxn – xn) + (1 – τn)
(

Tn
2 Tn

1 xn – xn
))

,

and hence,

1
αnτn

(xn – un) =
(

(I – S)xn +
(

1 – τn

τn

)
(

I – Tn
2 Tn

1
)

xn

)

. (3.20)

By using Lemma 2.9(i), it follows that the operator sequence {( 1–τn
τn

)(I – Tn
2 Tn

1 )} is graph
convergent to NFix(T1)∩Fix(T2), and hence, from Lemma 2.9(ii), it follows that the opera-
tor sequence {(I – S) + ( 1–τn

τn
)(I – Tn

2 Tn
1 )} is graph convergent to (I – S) + NFix(T1)∩Fix(T2).

Now, by replacing n by nj and letting the limit in (3.20) and considering the fact that
limn→∞ 1

αnτn
‖xn –un‖ = 0 and the graph of (I –S)+NFix(T1)∩Fix(T2) is weakly–strongly closed,

we get

0 ∈ (I – S)p + NFix(T1)∩Fix(T2)p,

that is, p ∈ S .
We now show that p ∈ �. Since un = U(vn) = TF1

rn (I – rng1)(vn), we have

F1(xn+1, y) + 〈g1vn, y – xn+1〉 +
1
rn

〈y – xn+1, xn+1 – vn〉 ≥ 0, ∀y ∈ C.

From the monotonicity of F1, we get

〈g1vn, y – xn+1〉 +
1
rn

〈y – xn+1, xn+1 – vn〉 ≥ F1(y, xn+1), ∀y ∈ C.

Replacing n with nj in the above inequality, we get

〈g1vnj , y – xnj+1〉 +
1

rnj

〈y – xnj+1, xnj+1 – vnj〉 ≥ F1(y, xnj+1), ∀y ∈ C.
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For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 – t)p. Since y ∈ C and p ∈ C, we get yt ∈ C
and hence F1(yt , p) ≤ 0. So, from the above inequality, we get

〈yt – xn+1, g1yt〉 ≥ 〈yt – xn+1, g1yt〉 – 〈yt – xn+1, g1vt〉

–
1

rnj

〈

yt – xnj+1,
xnj+1 – vnj

rnj

〉

+ F1(yt , xnj+1)

= 〈yt – xn+1, g1yt – g1xnj+1〉 + 〈yt – xnj+1, g1xnj+1 – g1vt〉

–
1

rnj

〈

yt – xnj+1,
xnj+1 – vnj

rnj

〉

+ F1(yt , xnj+1).

Since {xn}, {un} and {vn} have the same asymptotic behavior and xnj ⇀ p, there ex-
ist subsequences {unj} of {un} and {vnj} of {vn} such that unj ⇀ p and vnj ⇀ p. Since
limj→∞ ‖xnj+1 –vnj‖ = 0 and f1 is Lipschitz continuous, we have limj→∞ ‖g1xnj+1 –g1vnj‖ = 0.
Since lim infn→∞ rn > 0, there exists a number r > 0 such that lim infn→∞ rn = r. Hence, we
have

lim
j→∞

‖xnj+1 – vnj‖
rnj

≤ limj→∞ ‖xnj+1 – vnj‖
lim infn→∞ rnj

=
1
r

lim
j→∞‖xnj+1 – vnj‖

= 0.

Furthermore, from the monotonicity of g1 and lower semicontinuity of F1, we have

〈yt – p, g1yt〉 ≥ F1(yt , p),

as j → ∞. And also, from the convexity of F1, we have

0 = F1(yt , yt)

≤ tF1(yt , y) + (1 – t)〈yt – p, g1yt〉
≤ tF1(yt , y) + (1 – t)t〈y – p, g1yt〉.

Hence, 0 ≤ F1(yt , y) + (1 – t)〈y – p, g1yt〉. Letting t → 0+, for each y ∈ C, we have

F1(p, y) + 〈y – p, g1p〉 ≥ 0.

This implies that p ∈ Sol(MEP (1.9)).
Now, we need to show that Ap ∈ Sol(MEP (1.10)). Since A is bounded linear operator, we

have Axnj ⇀ Ap. Now, setting dnj = Aunj – VAunj , we get dnj → 0 and Aunj – dnj = VAunj .
Therefore, from Lemma 2.6, we have

F2(Aunj – dnj , z) +
〈

g2Aunj , z – (Aunj – dnj )
〉

+
1

rnj

〈

z – (Aunj – dnj ), Aunj – dnj – Aunj

〉 ≥ 0, ∀z ∈ D.
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Since F2 is upper semicontinuous in the first argument, taking lim sup to the above in-
equality as j → ∞ and using lim infn→∞ rn > 0, we get

F2(Ap, z) + 〈z – Ap, g2Ap〉 ≥ 0, ∀z ∈ D,

which implies that Ap ∈ Sol(MEP (1.10)). This shows that p ∈ � and thus p ∈F . It follows
from the existence of limn→∞ ‖xn – p‖ and the fact that Hilbert space satisfies Opial’s con-
ditions, the sequence {xn} has only one weak limit point, and hence {xn} converges weakly
to p ∈F . �

The following consequence is a weak convergence theorem for computing a common
solution of a mixed equilibrium problem and a hierarchical fixed point problem in a real
Hilbert space.

Corollary 3.2 Let H1 be a Hilbert spaces. Let C be a nonempty closed and convex subset
of H1. Suppose F1 : C × C →R is a bifunction which satisfy Assumption A. Let g1 : C → H1

be η1-inverse strongly monotone mapping. Let S : C → C be a nonexpansive self-mapping
and {Ti}N

i=1 : C → H1 be ki-strictly pseudocontractive nonself-mappings. Assume that F =
MEP(F1, g1) ∩ S �= ∅. Define a sequence {xn} as follows:

⎧

⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

un = (1 – αn)xn + αn(τnSxn + (1 – τn)Tn
N Tn

N–1 · · ·Tn
1 xn),

xn+1 = TF1
rn (I – rng1)(un), n ≥ 1,

(3.21)

where Tn
i = (1 – δi

n)I + δi
nPC(βiI + (1 – βi)Ti), 0 ≤ ki ≤ βi < 1, δi

n ∈ (0, 1) for i = 1, 2, . . . , N . Let
{αn}, {τn} be two real sequences in (0, 1) and {rn} ⊂ (0, 2η1). Suppose the following conditions
(i)–(iv) of Theorem 3.1 are satisfied. Then the sequence {xn} converges weakly to x∗ ∈F

Proof Taking A = 0 in Theorem 3.1, the conclusion of Corollary 3.2 is followed. �

In the above theorem, the sequence generated by algorithm (3.1) converges weakly to
a common solution of a split mixed equilibrium problem and a hierarchical fixed point
problem.

In this section, our other aim is to prove a strong convergence theorem for a hierarchical
fixed point problem and split equilibrium problem for some special cases.

We consider the following hierarchical fixed point and split equilibrium problem: Find
x∗ ∈ � ∩ S such that

〈

x∗ – Sx∗, x∗ – y
〉 ≤ 0, ∀y ∈ � ∩ S , (3.22)

where S =
⋂N

i=1 Fix(Ti) and � is the solution set of the split equilibrium problem (1.5)–
(1.6). When S is a contraction mapping, a special case of nonexpansive mappings, we prove
a strong convergence theorem for the above problem. We need the following results for
our study.
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Lemma 3.3 ([8]) Let F1 : C × C → R be a bifunction satisfying Assumption A and TF1
r be

defined as in Lemma 2.6. Let x, y ∈ H1 and r1, r2 > 0. Then

∥
∥TF1

r2 y – TF1
r1 x

∥
∥ ≤ ‖y – x‖ +

∣
∣
∣
∣

r2 – r1

r2

∣
∣
∣
∣

∥
∥TF1

r2 y – y
∥
∥.

Lemma 3.4 ([26]) Let {xn} and {zn} be bounded sequences in a Banach space X. Let {βn}
be a sequence in [0, 1] which satisfies the condition 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1 – βn)zn + βnxn for all integer n ≥ 0 and lim supn→∞(‖zn+1 – zn‖ – ‖xn+1 –
xn‖) ≤ 0. Then limn→∞ ‖xn – zn‖ = 0.

Lemma 3.5 ([31]) Let {αn} be a sequence of non-negative real numbers such that

αn+1 ≤ (1 – γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(i)

∑∞
n=1 γn = ∞;

(ii) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ αn = 0.

Now we are in a position to state our second main result for strong convergence.

Theorem 3.6 Let H1 and H2 be two Hilbert spaces. Let C and D be nonempty closed and
convex subset of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator.
Let F1 : C × C → R and F2 : D × D → R be two bifunctions satisfying Assumption A and
F2 be upper semicontinuous. Let S : C → C be a contraction mapping with coefficient ρ ≥ 0
and {Ti}N

i=1 : C → H1 be ki-strictly pseudocontractive nonself-mappings. Assume that the
solution set of problem (3.22) is nonempty. Define a sequence {xn} as follows:

⎧

⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

un = U(xn + γ A∗(V – I)Axn), n ≥ 1,

xn+1 = (1 – αn)xn + αn(τnSxn + (1 – τn)Tn
N Tn

N–1 · · ·Tn
1 un),

(3.23)

where U = TF1
rn , V = TF2

rn , Tn
i = (1–δi

n)I +δi
nPC(βiI +(1–βi)Ti), 0 ≤ ki ≤ βi < 1, and δi

n ∈ (0, 1)
for i = 1, 2, . . . , N . Also let γ ∈ (0, 1

L ) where L is the spectral radius of the operator A∗A and
A∗ is the adjoint operator of A. Let {αn} and {τn} be two real sequences in (0, 1). Suppose
the following conditions are satisfied:

(i) lim infn→∞ rn > 0 and limn→∞ |rn+1 – rn| = 0;
(ii) 0 ≤ αn ≤ b < 1 for some b ∈ (0, 1) and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;

(iii) limn→∞ τn = 0 and
∑∞

n=0 τn = ∞;
(iv) limn→∞ |δi

n+1 – δi
n| = 0 for i = 1, 2, . . . , N .

Then the sequence {xn} converges strongly to p ∈ � ∩ S , which is the unique solution of the
following variational inequality:

〈p – Sp, p – y〉 ≤ 0, ∀y ∈ � ∩ S . (3.24)
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Proof We will prove the theorem for N = 2. Then our method can be easily extended to
the general case. First we show that the sequence {xn} is bounded.

Let x∗ be a solution of problem (3.22). Then TF1
rn x∗ = x∗ and TF2

rn Ax∗ = Ax∗. So, by (3.23)
we get

∥
∥un – x∗∥∥2 =

∥
∥TF1

rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)

– x∗∥∥2

=
∥
∥TF1

rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)

– TF1
rn x∗∥∥2

≤ ∥
∥xn + γ A∗(TF2

rn – I
)

Axn – x∗∥∥

≤ ∥
∥xn – x∗∥∥2 + γ 2∥∥A∗(TF2

rn – I
)

Axn
∥
∥

2

+ 2γ
〈

xn – x∗, A∗(TF2
rn – I

)

Axn
〉

. (3.25)

Then

∥
∥un – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 + γ 2〈(TF2
rn – I

)

Axn, A∗A
(

TF2
rn – I

)

Axn
〉

+ 2γ
〈

xn – x∗, A∗(TF2
rn – I

)

Axn
〉

. (3.26)

Now, we have

γ 2〈(TF2
rn – I

)

Axn, A∗A
(

TF2
rn – I

)

Axn
〉 ≤ Lγ 2〈(TF2

rn – I
)

Axn,
(

TF2
rn – I

)

Axn
〉

= Lγ 2∥∥(TF2
rn – I)Axn

∥
∥

2. (3.27)

Denoting 
 := 2γ 〈xn – x∗, A∗(TF2
rn – I)Axn〉 and using (2.3), we have


 = 2γ
〈

xn – x∗, A∗(TF2
rn – I

)

Axn
〉

= 2γ
〈

A
(

xn – x∗),
(

TF2
rn – I

)

Axn
〉

= 2γ
〈

A
(

xn – x∗) +
(

TF2
rn – I

)

Axn –
(

TF2
rn – I

)

Axn,
(

TF2
rn – I

)

Axn
〉

= 2γ
{〈(

TF2
rn – I

)

Ax∗,
(

TF2
rn – I

)

Axn
〉

–
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2}

= 2γ

{
1
2
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2 –
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2
}

= –γ
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2. (3.28)

Using (3.26), (3.27) and (3.28), we get

∥
∥un – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 + γ (Lγ – 1)
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2. (3.29)

From the definition of γ , we obtain

∥
∥un – x∗∥∥ ≤ ∥

∥xn – x∗∥∥. (3.30)

Now

∥
∥xn+1 – x∗∥∥

=
∥
∥(1 – αn)

(

xn – x∗) + αn
[

τn
(

Sxn – x∗) + (1 – τn)
(

Tn
2 Tn

1 un – x∗)]∥∥



Kim and Majee Journal of Inequalities and Applications        (2020) 2020:227 Page 18 of 25

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

[

τn
∥
∥Sxn – x∗∥∥ + (1 – τn)

∥
∥Tn

2 Tn
1 un – x∗∥∥]

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

[

τn
∥
∥Sxn – Sx∗∥∥ + (1 – τn)

∥
∥un – x∗∥∥]

+ αnτn
∥
∥Sx∗ – x∗∥∥

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

[

τnρ
∥
∥xn – x∗∥∥ + (1 – τn)

∥
∥xn – x∗∥∥]

+ αnτn
∥
∥Sx∗ – x∗∥∥

≤ (

1 – (1 – ρ)αnτn
)∥
∥xn – x∗∥∥ + αnτn

∥
∥Sx∗ – x∗∥∥

≤ max

{
∥
∥xn – x∗∥∥,

‖Sx∗ – x∗‖
(1 – ρ)

}

≤ · · · ≤ max

{
∥
∥x0 – x∗∥∥,

‖Sx∗ – x∗‖
(1 – ρ)

}

. (3.31)

Hence the sequence {xn} is bounded.
Now, we show that

lim
x→∞‖xn+1 – xn‖ = 0.

Let us consider yn = τnSxn + (1 – τn)Tn
2 Tn

1 un. Then

‖yn+1 – yn‖ ≤ τn+1‖Sxn+1 – Sxn‖ + |τn+1 – τn|
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥

+ (1 – τn+1)
∥
∥Tn+1

2 Tn+1
1 un+1 – Tn

2 Tn
1 un

∥
∥. (3.32)

In addition, we have

∥
∥Tn+1

2 Tn+1
1 un+1 – Tn

2 Tn
1 un

∥
∥

≤ ∥
∥Tn+1

2 Tn+1
1 un+1 – Tn

2 Tn
1 un+1

∥
∥ +

∥
∥Tn

2 Tn
1 un+1 – Tn

2 Tn
1 un

∥
∥

≤ ∥
∥Tn+1

2 Tn+1
1 un+1 – Tn+1

2 Tn
1 un+1

∥
∥

+
∥
∥Tn+1

2 Tn
1 un+1 – Tn

2 Tn
1 un+1

∥
∥ + ‖un+1 – un‖

≤ ∥
∥Tn+1

1 un+1 – Tn
1 un+1

∥
∥ +

∥
∥Tn+1

2 Tn
1 un+1 – Tn

2 Tn
1 un+1

∥
∥

+ ‖un+1 – un‖. (3.33)

It follows from the definition Tn
i that

∥
∥Tn+1

1 un+1 – Tn
1 un+1

∥
∥

=
∥
∥
(

1 – δ1
n+1

)

un+1 + δ1
n+1PC

(

β1I + (1 – β1)T1
)

un+1

–
(

1 – δ1
n
)

un+1 + δ1
nPC

(

β1I + (1 – β1)T1
)

un+1
∥
∥

≤ ∣
∣δ1

n+1 – δ1
n
∣
∣
(‖un+1‖ +

∥
∥PC

(

β1I + (1 – β1)T1
)

un+1
∥
∥
)

.

Since limn→+∞ |δ1
n+1 – δ1

n| = 0, and {un}, {PC(β1I + (1 – β1)T1)un} are bounded, we get

lim
n→+∞

∥
∥Tn+1

1 un+1 – Tn
1 un+1

∥
∥ = 0. (3.34)
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Similarly, we have

∥
∥Tn+1

2 Tn
1 un+1 – Tn

2 Tn
1 un+1

∥
∥

≤ ∣
∣δ2

n+1 – δ2
n
∣
∣
(∥
∥Tn

1 un+1
∥
∥ +

∥
∥PC

(

β2I + (1 – β2)T2
)

Tn
1 un+1

∥
∥
)

,

from which it follows that

lim
n→+∞

∥
∥Tn+1

2 Tn+1
1 un+1 – Tn

2 Tn
1 un+1

∥
∥ = 0. (3.35)

Since

un = TF1
rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)

and

un+1 = TF1
rn+1

(

xn+1 + γ A∗(TF2
rn+1 – I

)

Axn+1
)

,

it follows from Lemma 3.3 that

‖un+1 – un‖
=

∥
∥TF1

rn+1

(

xn+1 + γ A∗(TF2
rn+1 – I

)

Axn+1
)

– TF1
rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥

≤ ∥
∥TF1

rn+1

(

xn+1 + γ A∗(TF2
rn+1 – I

)

Axn+1
)

– TF1
rn+1

(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥

+
∥
∥TF1

rn+1

(

xn + γ A∗(TF2
rn – I

)

Axn
)

– TF1
rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥

≤ ∥
∥
(

xn+1 + γ A∗(TF2
rn+1 – I

)

Axn+1
)

–
(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥

+
∣
∣
∣
∣

rn+1 – rn

rn+1

∣
∣
∣
∣

∥
∥TF1

rn+1

(

xn + γ A∗(TF2
rn – I

)

Axn
)

–
(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥

≤ ∥
∥xn+1 – xn – γ A∗A(xn+1 – xn)

∥
∥ + γ ‖A‖∥∥TF2

rn+1 Axn+1 – TF2
rn Axn

∥
∥ + δn

≤ {‖xn+1 – xn‖2 – 2γ ‖Axn+1 – Axn‖2 + γ 2‖A‖4‖xn+1 – xn‖2} 1
2

+ γ ‖A‖
{

‖Axn+1 – Axn‖ +
∣
∣
∣
∣

rn+1 – rn

rn+1

∣
∣
∣
∣

∥
∥TF2

rn+1 Axn+1 – Axn
∥
∥

}

+ δn

≤ (

1 – 2γ ‖A‖2 + γ 2‖A‖4) 1
2 ‖xn+1 – xn‖ + γ ‖A‖2‖xn+1 – xn‖ + γ ‖A‖σn + δn

=
(

1 – γ ‖A‖2)‖xn+1 – xn‖ + γ ‖A‖2‖xn+1 – xn‖ + γ ‖A‖σn + δn

= ‖xn+1 – xn‖ + γ ‖A‖σn + δn, (3.36)

where

σn =
∣
∣
∣
∣

rn+1 – rn

rn+1

∣
∣
∣
∣

∥
∥TF2

rn+1 Axn+1 – Axn
∥
∥

and

δn =
∣
∣
∣
∣

rn+1 – rn

rn+1

∣
∣
∣
∣

∥
∥TF1

rn+1

(

xn + γ A∗(TF2
rn – I

)

Axn
)

–
(

xn + γ A∗(TF2
rn – I

)

Axn
)∥
∥.
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Hence, using (3.34), (3.35) and (3.36) to (3.32) with the conditions (i) and (ii), we get

lim sup
n→+∞

(‖yn+1 – yn‖ – ‖xn+1 – xn‖
) ≤ 0.

Thus by Lemma 3.4, we conclude that limn→+∞ ‖yn – xn‖ = 0, which implies that

lim
n→+∞‖xn+1 – xn‖ = 0.

Since TF1
rn x∗ = x∗ and TF1

rn is firmly nonexpansive, we get

∥
∥un – x∗∥∥2 =

∥
∥TF1

rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)

– x∗∥∥2

=
∥
∥TF1

rn

(

xn + γ A∗(TF2
rn – I

)

Axn
)

– TF1
rn x∗∥∥2

≤ 〈

un – x∗, xn + γ A∗(TF2
rn – I

)

Axn – x∗〉

=
1
2
{∥
∥un – x∗∥∥2 +

∥
∥xn + γ A∗(TF2

rn – I
)

Axn – x∗∥∥2

–
∥
∥
(

un – x∗) –
[

xn + γ A∗(TF2
rn – I

)

Axn – x∗]∥∥2}

=
1
2
{∥
∥un – x∗∥∥2 +

∥
∥xn – x∗∥∥2 + γ (Lγ – 1)

∥
∥A∗(TF2

rn – I
)

Axn
∥
∥

2

–
∥
∥un – xn – γ A∗(TF2

rn – I
)

Axn
∥
∥

2}

=
1
2
{∥
∥un – x∗∥∥2 +

∥
∥xn – x∗∥∥2 –

[‖un – xn‖2

+ γ 2∥∥A∗(TF2
rn – I

)

Axn
∥
∥

2 – 2γ
〈

un – xn, A∗(TF2
rn – I

)

Axn
〉]}

=
1
2
{∥
∥un – x∗∥∥2 +

∥
∥xn – x∗∥∥2 – ‖un – xn‖2

+ 2γ
∥
∥A(un – xn)

∥
∥
∥
∥
(

TF2
rn – I

)

Axn
∥
∥
}

.

Hence, we obtain

∥
∥un – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 – ‖un – xn‖2 + 2γ
∥
∥A(un – xn)

∥
∥
∥
∥
(

TF2
rn – I

)

Axn
∥
∥. (3.37)

Again,

∥
∥xn+1 – x∗∥∥2

=
∥
∥(1 – αn)

(

xn – x∗) + αn
[

τn
(

Sxn – x∗) + (1 – τn)
(

Tn
2 Tn

1 un – x∗)]∥∥2

=
∥
∥(1 – αn)

(

xn – x∗) + αn
(

Tn
2 Tn

1 un – x∗) + αnτn
(

Sxn – Tn
2 Tn

1 un
)∥
∥

2

≤ ∥
∥(1 – αn)

(

xn – x∗) + αn
(

Tn
2 Tn

1 un – x∗)∥∥2

+ 2τn
〈

Sxn – Tn
2 Tn

1 un, xn+1 – x∗〉

≤ (1 – αn)
∥
∥xn – x∗∥∥2 + αn

∥
∥Tn

2 Tn
1 un – x∗∥∥2

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥
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≤ (1 – αn)
∥
∥xn – x∗∥∥2 + αn

∥
∥un – x∗∥∥2

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥. (3.38)

Hence, we have

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn)

∥
∥xn – x∗∥∥2

+ αn
(∥
∥xn – x∗∥∥2 + γ (Lγ – 1)

∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2)

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥, (3.39)

which gives

αn(1 – Lγ )
∥
∥
(

TF2
rn – I

)

Axn
∥
∥

2 ≤ ‖xn+1 – xn‖
(‖xn – p‖ +

∥
∥xn+1 – x∗∥∥)

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥. (3.40)

Using the condition (iii) in (3.40), we get

lim
n→∞

∥
∥
(

TF2
rn – I

)

Axn
∥
∥ = 0. (3.41)

Again,

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn)

∥
∥xn – x∗∥∥2 + αn

∥
∥un – x∗∥∥2

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥. (3.42)

So, using (3.37) we get

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn)

∥
∥xn – x∗∥∥2 + αn

(∥
∥xn – x∗∥∥2 – ‖un – xn‖2

+ 2γ
∥
∥A(un – xn)

∥
∥
∥
∥
(

TF2
rn – I

)

Axn
∥
∥
)

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥, (3.43)

which gives

αn‖un – xn‖2 ≤ ‖xn+1 – xn‖
(∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥)

+ 2τn
∥
∥Sxn – Tn

2 Tn
1 un

∥
∥
∥
∥xn+1 – x∗∥∥

+ 2γ
∥
∥A(un – xn)

∥
∥
∥
∥
(

TF2
rn – I

)

Axn
∥
∥. (3.44)

Using the condition (iii) to (3.44), we get

lim
n→∞‖un – xn‖ = 0. (3.45)

Using (3.45) we get

‖xn+1 – un‖ ≤ ‖xn+1 – xn‖ + ‖xn – un‖ → 0 as n → ∞. (3.46)
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Now

∥
∥Tn

2 Tn
1 un – un

∥
∥ ≤ ∥

∥Tn
2 Tn

1 un – yn
∥
∥ + ‖yn – un‖

≤ τn
∥
∥Tn

2 Tn
1 un – Sxn

∥
∥ + ‖yn – un‖

≤ τn‖xn – Sxn‖ + τn
∥
∥Tn

2 Tn
1 un – xn

∥
∥ + ‖yn – un‖

≤ τn‖xn – Sxn‖ + τn
∥
∥Tn

2 Tn
1 un – un

∥
∥ + τn‖un – xn‖

+ ‖yn – un‖.

Therefore, we have

∥
∥Tn

2 Tn
1 un – un

∥
∥ ≤ τn

1 – τn
‖xn – Sxn‖ +

τn

1 – τn
‖un – xn‖

+
1

1 – τn
‖yn – un‖. (3.47)

Since αn‖xn – yn‖ = ‖xn+1 – xn‖, ‖xn – yn‖ → 0 as n → ∞. So,

‖yn – un‖ ≤ ‖yn – xn‖ + ‖xn – un‖ → 0 as n → ∞. (3.48)

Hence,

∥
∥Tn

2 Tn
1 un – un

∥
∥ → 0 as n → ∞. (3.49)

Now, we show that

lim sup
n→∞

〈Sp – p, xn – p〉 ≤ 0,

where p is the unique solution of the variational inequality (3.24). Since {xn} is bounded,
there exists a subsequence {xnj} of {xn} such that xnj ⇀ x̄ as j → ∞ and

lim sup
n→∞

〈Sp – p, xn – p〉 = lim
j→∞〈Sp – p, xnj – p〉.

Since ‖xn – un‖ → 0 as n → ∞, unj ⇀ x̄. Now, following similar steps to Theorem 3.1, we
can show that x̄ ∈ � ∩ S . Hence

lim
j→∞〈Sp – p, xnj – p〉 = 〈Sp – p, x̄ – p〉 ≤ 0. (3.50)

Finally, we show that xn → p and n → ∞. From (2.1) and (3.23), we have

‖xn+1 – p‖2 =
∥
∥(1 – αn)(xn – p) + αn

[

τnSxn + (1 – τn)Tn
2 Tn

1 un – p
]∥
∥

2

=
∥
∥(1 – αn)(xn – p) + αn(1 – τn)

(

Tn
2 Tn

1 un – p
)

+ αnτn(Sxn – p)
∥
∥

2

≤ ∥
∥(1 – αn)(xn – p) + αn(1 – τn)

(

Tn
2 Tn

1 un – p
)∥
∥

2

+ 2αnτn〈Sxn – p, xn+1 – p〉
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≤ (1 – αn)‖xn – p‖2 + αn(1 – τn)2∥∥Tn
2 Tn

1 un – p
∥
∥

2

+ 2αnτn〈Sxn – p, xn+1 – p〉
≤ (

1 – αn + αn(1 – τn)2)‖xn – p‖2 + 2αnτn〈Sxn – Sp, xn+1 – p〉
+ 2αnτn〈Sp – p, xn+1 – p〉

≤ (

1 – αn + αn(1 – τn)2)‖xn – p‖2 + 2αnτn‖Sxn – Sp‖‖xn+1 – p‖
+ 2αnτn〈Sp – p, xn+1 – p〉

≤ (

1 – αn + αn(1 – τn)2)‖xn – p‖2

+ αnτn
[‖Sxn – Sp‖2 + ‖xn+1 – p‖2] + 2αnτn〈Sp – p, xn+1 – p〉

≤ (

1 – αn + αn(1 – τn)2 + αnτnρ
)‖xn – p‖2 + αnτn‖xn+1 – p‖2

+ 2αnτn〈Sp – p, xn+1 – p〉
=

(

1 – αnτn – αnτn(1 – ρ – τn)
)‖xn – p‖2 + αnτn‖xn+1 – p‖2

+ 2αnτn〈Sp – p, xn+1 – p〉.

From the above inequality, it follows that

‖xn+1 – p‖2 ≤
(

1 –
αnτn(1 – ρ – τn)

1 – αnτn

)

‖xn – p‖2

+ 2
αnτn

1 – αnτn
〈Sp – p, xn+1 – p〉. (3.51)

Considering an = ‖xn –p‖2, bn = αnτn(1–ρ–τn)
1–αnτn

and cn = 2 αnτn
1–αnτn

〈Sp–p, xn+1 –p〉, we get an+1 ≤
(1 – bn)an + cn. Hence, from Lemma 3.5, we conclude that {xn} converges strongly to p. �

The following consequence is a strong convergence theorem for computing a common
solution of an equilibrium problem and a hierarchical fixed point problem in a real Hilbert
space.

Corollary 3.7 Let H1 be a Hilbert spaces. Let C be nonempty closed and convex subset
of H1. Let F1 : C × C → R and be a bifunction satisfying Assumption A. Let S : C → C
be a contraction mapping with coefficient ρ ≥ 0 and {Ti}N

i=1 : C → H1 be ki-strictly pseu-
docontractive nonself-mappings. Assume that EP(F , C) ∩ S �= ∅. Define a sequence {xn} as
follows:

⎧

⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

un = TF1
rn (xn), n ≥ 1,

xn+1 = (1 – αn)xn + αn(τnSxn + (1 – τn)Tn
N Tn

N–1 · · ·Tn
1 un),

(3.52)

where Tn
i = (1 –δi

n)I +δi
nPC(βiI + (1 –βi)Ti), 0 ≤ ki ≤ βi < 1, and δi

n ∈ (0, 1) for i = 1, 2, . . . , N .
Let {αn} and {τn} be two real sequences in (0, 1). Suppose the following conditions (i)–(iv)
of Theorem 3.6 are satisfied. Then the sequence {xn} converges strongly to p ∈ EP(F , C) ∩S ,
which is the unique solution of the following variational inequality:

〈p – Sp, p – y〉 ≤ 0, ∀y ∈ EP(F , C) ∩ S . (3.53)
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Proof Taking A = 0 in Theorem 3.6, the conclusion of Corollary 3.7 is followed. �

4 Conclusions
In this paper, we have introduced a modified Krasnoselski–Mann type iterative method
for approximating a common solution of a split mixed equilibrium problem and a hier-
archical fixed point problem of a finite collection of k-strictly pseudocontractive nonself-
mappings.

Our main results improve and extend the corresponding results of Moudafi and Mainge
[24], Moudafi [22] and Kazmi et al. [13] from single nonexpansive self-mapping to a fi-
nite collection of ki-strictly pseudocontractive nonself-mappings. Also, we have studied
our iterative algorithm by giving an explicit formula for selecting the step size so that the
implementation of the proposed algorithm does not require any prior information of op-
erator norm. We also have established strong convergence results for a special class of
hierarchical fixed point and split mixed equilibrium problem.

In [5], Ceng and Petruşel have introduced a cyclic algorithm for HFPP of a finite collec-
tion of nonexpansive nonself-mappings in Banach spaces. Whether we can extend Theo-
rems 3.1 and 3.6 to Banach spaces will be an issue of future research.
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