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Abstract
In this paper, we focus on the response mean of the partially linear varying-coefficient
errors-in-variables model with missing response at random. A simulation study is
conducted to compare jackknife empirical likelihood method with normal
approximation method in terms of coverage probabilities and average interval
lengths, and a comparison of the proposed estimators is done based on their biases
and mean square errors.
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1 Introduction
In statistical problems, various forms of statistical models are widely sought by many re-
searchers. As a natural compromise between the parametric models and the nonpara-
metric models, semi-parametric regression models allow some predictors to be modeled
parametrical and others being modeled non-parametrical, which motivates us to consider
the following partially linear varying-coefficient (PLVC) model:

Y = X�β + W �α(U) + ε, (1.1)

where Y is a response variable, (X, W ) ∈R
p ×R

q are covariates, β = (β1, . . . ,βp)� is a vec-
tor of p-dimensional unknown parameters, α(·) is an unknown q-dimensional vector of
the coefficient function, ε is a random error with E(ε|X, W , U) = 0. To avoid the curse
of dimensionality, we assume that U is univariate. As one combination of partially linear
model and varying-coefficient model, PLVC model has drawn much attention. For exam-
ple, Kai et al. [9] discussed the variable selection by the composite quantile regression
method. He et al. [6] developed an approximate estimator of the functional coefficients
by B-spline function and studied the asymptotic properties of the proposed estimators.
Shen and Liang [17] considered weighted quantile regression and variable selection un-
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der righted-censored data with missing censoring indicators. For more work see Fan and
Huang [4], You and Zhou [29], Huang and Zhang [7] among others.

In this paper, we are interested in estimating the mean of response Y , say θ , in model
(1.1) when the covariate X is measured with error. We use the surrogate ξ instead of ob-
serving X. Hence, we assume the following additive errors-in-variables (EV) model:

ξ = X + e, (1.2)

where e is the measurement error with zero mean and covariance matrix �e (which
is known). The combination of (1.1) with (1.2) is named the partially linear varying-
coefficient errors-in-variables (PLVC EV) model, which has been studied by many authors.
For example, Fan et al. [2] considered the penalized empirical likelihood and variable selec-
tion for high-dimension data. Liu and Liang [12] constructed the asymptotical normality
of jackknife estimator for error variance and standard chi-square distribution of jackknife
empirical log-likelihood statistic. Fan et al. [3] established penalized profile least squares
estimation of parameter and non-parameter in the model. Xu et al. [24] proved the asymp-
totic properties of the proposed estimators for parameter and coefficient function, and
studied asymptotic distribution of empirical log-likelihood ratio function for parameter
with missing covariates.

In many practical fields, however, not all response variables can be available for various
reasons. For instance, in public opinion poll, non-response is a typical source of missing
values. Due to the presence of missing data, the traditional and standard inference pro-
cedures cannot be applied directly. A common approach to dealing with missing data is
the complete case (CC) analysis, which only uses data with complete observations and is
in the loss of information when the missing mechanism is missing at random (MAR). To
eliminate this disadvantage, the imputation method is one method of filling in the miss-
ing response, which includes linear regression (Yates [27], Wang and Rao [21, 23]), kernel
regression imputation (Cheng [1], Wang and Rao [22]), ratio imputation (Rao [16]) and
so on. These methods are widely used by many statisticians. Wang et al. [20] proposed
an imputation estimator and a number of propensity score weighting estimators, which
are consistent and asymptotically normal. Liang [10] extended the idea of Wang et al. [20]
to consider partially linear regression model with error-prone covariates. Xue [25] used a
weighted linear regression imputation to construct a weighted-corrected empirical likeli-
hood ratio of the response mean so that the ratio has an asymptotic chi-squared distribu-
tion. Tang and Zhao [18] proposed imputed empirical likelihood-based estimator for the
response mean of the nonlinear regression models.

Throughout this paper, we are interested in inference of the mean of response Y with
the missing response at random in the PLVC EV model. Hence, we obtain the following in-
complete observations {Y , W , U , δ, ξ}, where ξ , W and U are observed, Y may be missing,
and δ = 0 if Y is missing, otherwise δ = 1. We assume that Y is MAR, which implies that
δ and Y are conditionally independent given X, W and U , that is, P(δ = 1|Y , X, W , U) =
P(δ = 1|X, W , U) := P(Z) with Z = (X, W , U) and the probability function P(·) represents
the heterogeneity in the missingness mechanism. The MAR assumption is common in
statistical analysis with missing data and is reasonable in many practical situations; see
Little and Rubin [11].

As is well known, the empirical likelihood, introduced by Owen [13, 14], has many ad-
vantages over the normal approximation and bootstrap approximation for constructing
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the confidence intervals. For example, the empirical likelihood method does not involve
the variance estimation because of the complicated variance estimation. Meanwhile, the
sharp and orientation of confidence regions based on the empirical likelihood method are
determined entirely by the data. However, the estimation based on empirical likelihood
method will be computationally difficult and the Wilks theorem does not hold in general.
In order to handle the situation where nonlinear statistics are involved, Jing et al. [8] pro-
posed a new approach called jackknife empirical likelihood. Thanks to its advantages, the
jackknife empirical likelihood approach has been applied by many researchers. See Gong
et al. [5], Peng et al. [15], Yang and Zhao [26], Liu and Liang [12], Yu and Zhao [30] and
so on. However, there is a little literature considering the jackknife method for response
mean with missing response at random.

In this paper, we are interested in the statistical inference of the mean of response Y in
the PLVC EV model with missing response at random, especially the confidence regions of
the response mean. In order to avoid the difficulty of calculation and ensure that the Wills
phenomenon is established, we consider the jackknife empirical likelihood method instead
of empirical likelihood method. In the spirit of Wang et al. [20], we propose the marginal
average estimator, the regression imputation estimator and the augmented inverse prob-
ability estimator of the response mean by imputing every missing response variable. At
the same time, the corresponding jackknife estimators of the response mean are defined.
The estimators are consistent and asymptotical normality under some assumptions. We
also establish the asymptotic distribution of the jackknife empirical log-likelihood ratio
function and construct the confidence regions. A simulation study is done to evaluate the
performance of the proposed methods.

The rest of this paper is organized as follows. In Sect. 2, we give the methodologies and
build the estimators. The main results are listed in Sect. 3. A simulation study is conducted
in Sect. 4. Our conclusion is drawn in Sect. 5. The proofs of the main results and some
lemmas are provided in the Appendix.

2 Methodology
2.1 Estimation
For convenience, we assume that the Xi is directly observable. The estimators of parameter
β and coefficient function α(·) can be obtained by profile least squares method as follows.
Having multiplied model (1.1) by the observation indicators, then we have

δiYi = δiX�
i β + δiW �

i α(Ui) + δiεi. (2.1)

For given β , we apply the local weighted least squared method to estimate the coefficient
function {αj(·), j = 1, . . . , q}. For u in a small neighborhood of u0, the Taylor expansion for
αj(u) can be written as

αj(u) = αj(u0) + α′
j(u0)(u – u0) := aj + bj(u – u0).

We minimize the following objective function to get {(aj, bj), j = 1, . . . , q}:

n∑

i=1

{
Yi – X�

i β –
q∑

j=1

(
aj + bj(u – u0)

)
Wij

}2

Khn (Ui – u)δi,
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where Khn (·) = 1
hn

K(·/hn) is a kernel function and 0 < hn → 0 is a bandwidth se-
quence.

Let X = (X1, X2, . . . , Xn)�, Y = (Y1, Y2, . . . , Yn)�, W = (W1, W2, . . . , Wn)�, ωδ
u =

diag(δ1Khn (U1 – u), . . . , δnKhn (Un – u)) and

M =

⎛

⎜⎜⎝

W �
1 α(U1)

...
W �

n α(Un)

⎞

⎟⎟⎠ , Du =

⎛

⎜⎜⎝

W1
U1–u

hn
W �

1
...

...
Wn

Un–u
hn

W �
n

⎞

⎟⎟⎠ .

Therefore, when β is known, we can obtain the estimator of α(·) by

α̃(u,β) = (Iq 0q)
{

D�
u ωδ

uDu
}–1D�

u ωδ
u(Y – Xβ). (2.2)

Substituting (2.2) into (2.1) and eliminating the bias produced by the measurement er-
rors, we give the modified profile least squared estimator of β as follows:

β̂n =

{ n∑

i=1

δi
(̃
ξĩξ

�
i – �e

)
}–1 n∑

i=1

δĩξiỸi,

where Si = (W �
i 0)(D�

u ωδ
uDu)–1D�

u ωδ
u, Ỹi = Yi – SiY, ξ̃i = ξ�

i – Siξ with ξ = (ξ1, . . . , ξn)�.
Hence, one can get the following local linear regression estimator of α(·):

α̂n(u) = (Iq 0)
(
D�

u ωδ
uDu

)–1D�
u ωδ

u(Y – ξ β̂n),

By Wang et al. [20], we consider the response mean θ by the following general class of
estimators:

θ̂n =
1
n

n∑

i=1

{
δi

P∗
n(Zi)

Yi +
(

1 –
δi

P∗
n(Zi)

)(
ξ�

i β̂n + W �
i α̂n(Ui)

)}
, (2.3)

where P∗
n(z) is some sequence of quantities with probability limits P(z). When P∗

n(z) = ∞,
θ̂n reduces to the following marginal average estimator:

θ̂ (1)
n =

1
n

n∑

i=1

{
ξ�

i β̂n + W �
i α̂n(Ui)

}
. (2.4)

P∗
n(z) = 1, θ̂n reduces to the following regression imputation estimator:

θ̂ (2)
n =

1
n

n∑

i=1

{
δiYi + (1 – δi)

(
ξ�

i β̂n + W �
i α̂n(Ui)

)}
. (2.5)

When P∗
n(z) = P̂n(z), θ̂n reduces to the following augmented inverse probability estimator:

θ̂ (3)
n =

1
n

n∑

i=1

{
δi

P̂n(Zi)
Yi +

(
1 –

δi

P̂n(Zi)

)(
ξ�

i β̂n + W �
i α̂n(Ui)

)}
, (2.6)

where P̂n(z) =
∑n

i=1 δi
bn (z–Zi)∑n
i=1 
bn (z–Zi)

with kernel function 
bn (·) = 1
bn


(·/bn) and bandwidth se-
quence 0 < bn → 0.
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2.2 Jackknife empirical likelihood
In order to avoid the covariance matrix estimation, this subsection proposes the jackknife
empirical likelihood method to construct the confidence regions for θ . Let β̂n,–i be the
estimator of β when the ith observation is deleted, that is,

β̂n,–i =

{ n∑

j �=i

δj
(̃
ξj̃ξ

�
j – �e

)
}–1 n∑

j �=i

δj̃ξjỸj.

Note that the definitions of θ̂
(k)
n (k = 1, 2, 3) in (2.4)–(2.6), one can re-write θ̂

(1)
n = 1

n ×∑n
i=1{SiYi + ξ̃�

i β̂n}, θ̂
(2)
n = 1

n
∑n

i=1{δiYi + (1 – δi)(SiYi + ξ̃�
i β̂n)} and θ̂

(3)
n = 1

n
∑n

i=1{ δi
P̂n(Zi)

Yi +
(1 – δi

P̂n(Zi)
)(SiYi + ξ̃�

i β̂n)}. Let θ̂
(k)
n,–i be the estimator of θ when the ith observation is deleted

for k = 1, 2, 3, which are defined by θ̂
(1)
n,–i = 1

n–1
∑n

j �=i{SjYj + ξ̃�
j β̂n,–i}, θ̂

(2)
n,–i = 1

n–1
∑n

j �=i{δjYj +
(1 – δj)(SjYj + ξ̃�

j β̂n,–i)} and θ̂
(3)
n,–i = 1

n–1
∑n

j �=i{ δj
P̂n,–i(Zj)

Yj + (1 – δj
P̂n,–i(Zj)

)(SjYj + ξ̃�
j β̂n,–i)}, where

P̂n,–i(·) is the estimator of P(·) when the ith observation is deleted, that is, P̂n,–i(z) =∑n
j �=i δj
( z–Zj

bn
)/
∑n

j �=i 
( z–Zj
bn

). Then we have the ith jackknife pseudo samples θ̂
(k)
Ji

= nθ̂
(k)
n –

(n – 1)θ̂ (k)
n,–i and the jackknife estimators of θ are defined as follows:

θ̂
(k)
J =

1
n

n∑

i=1

θ̂
(k)
Ji

= nθ̂ (k)
n –

n – 1
n

n∑

i=1

θ̂
(k)
n,–i.

Hence, the following jackknife empirical likelihoods of θ are constructed based on the
jackknife pseudo-samples:

L(k)(θ ) = sup

{ n∏

i=1

(npi) : p1 > 0, . . . , pn > 0,
n∑

i=1

pi = 1,
n∑

i=1

piθ̂
(k)
Ji

= θ

}
. (2.7)

Using the Lagrange multipliers, we get the jackknife empirical log-likelihood ratio func-
tions

l(k)(θ ) = 2
n∑

i=1

log
{

1 + λ�(θ̂ (k)
Ji

– θ
)}

, (2.8)

where λ is the solution to the equation

1
n

n∑

i=1

θ̂
(k)
Ji

– θ

1 + λ�(θ̂ (k)
Ji

– θ )
= 0. (2.9)

3 Main results
Throughout this paper, let C denote finite positive constants, whose values may change in
different scenarios.

(1) Let μk =
∫

ukK(u) du and γn = {log n/(nhn)}1/2 + h2
n.

(2) Let A = E[δ1(X1 – W �
1 –1(U1)�(U1))], �1 = E[ξ1 – W �

1 –1(U1)�(U1)] and
�2 = E[(1 – δ1)(ξ1 – W �

1 –1(U1)�(U1))].
(3) Let (U1) = E[δ1W1W �

1 |U1], �(U1) = E[δ1X1W1|U1],

�1 = E
{

X�
1 β + W �

1 α(U1) – θ
}2

+ E
{

e�
1 β + A–1�1δ1

(
ξ�

1 – W �
1 –1(U1)�(U1)

)(
ε1 – e�

1
)

+ �eβ
}2,
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�2 = E
{

X�
1 β + W �

1 α(U1) – θ
}2

+ E
{

(1 – δ1)e�
1 β + δ1ε1 + A–1�2δ1

(
ξ�

1 – W �
1 –1(U1)�(U1)

)(
ε1 – e�

1
)

+ �eβ
}2,

�3 = E
{

X�
1 β + W �

1 α(U1) – θ
}2 + E

{
δ1

P(Z1)
ε1 + e�

1 β

}2

.

In order to formulate the main results, we need to impose the following assumptions.
(A1) The random variable U has bounded support U and its density function g(·) is

Lipschitz continuous and far away from zero. The density function of Z, f (z), is
bounded away from zero and has bounded continuous second derivatives.

(A2) The matric (U1) is nonsingular for each U1 ∈ U . (U1), E(δ1X1X�
1 |U1) and

�(U1) are Lipschitz continuous.
(A3) There is one s > 2 such that E(‖X1‖2s|U1) < ∞ a.s., E(‖W1‖2s|U1) < ∞ a.s.,

E(‖ξ1‖2s) < ∞ a.s. and E(‖ε1‖2s|X1, W1) < ∞ a.s.
(A4) The coefficient functions {αj(·), j = 1, 2, . . . , q} have continuous second derivatives.
(A5) P(z) has bounded partial derivatives up to order 2 almost surely and infz P(z) > 0.
(A6) K(t) is a bounded kernel function of order 2 with bounded support, and has

bounded partial derivatives up to order 2 almost surely.
(A7) 
(·) is bounded kernel function of order r (> 2) with bounded support and has a

bounded partial derivative.
(A8) The bandwidths hn and bn satisfy nh8

n → 0, nh2
n/(log n)2 → ∞,

nb2(p+q+1)
n / log n → ∞ and nb2r

n → 0.

Remark 3.1 Assumptions (A1)–(A4) are standard conditions, which are commonly used
in the literature; see Fan and Huang [4], Liu and Liang [12]. Assumption (A5) is always
applied on missing data analysis; see Wang et al. [20]. Assumptions (A6) and (A7) are used
in the investigation on some nonparametric kernel estimators. Assumption (A8) implies
the relationship between sample size and bandwidths.

We consider the asymptotic normality of the profile least square estimators and jack-
knife estimator of the response mean in Theorems 3.1 and 3.2. Also, we give the asymp-
totic distributions of l(k)(θ ) for k = 1, 2, 3 in Theorem 3.3 and construct the confidence
regions of θ .

Theorem 3.1 Suppose that Assumptions (A1)–(A8) hold, then for k = 1, 2, 3 we have

√
n
(
θ̂ (k)

n – θ
) D→ N(0,�k).

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 hold, then, for k = 1, 2, 3, we
have

√
n(θ̂ (k)

J – θ ) =
√

n(θ̂ (k)
n – θ ) + op(1). Further, we have

√
n(θ̂ (k)

J – θ ) D→ N(0,�k).

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 hold. If θ is the true value,
then for k = 1, 2, 3 we have

l(k)(θ ) P→ χ2
1 ,
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where χ2
1 is independent standard chi-square random variables with 1 degree of free-

dom.

Remark 3.2 From Theorem 3.3, it follows immediately that an approximation 1 – τ con-
fidence regions for θ are given by Iτ = {θ : l(k)(θ ) ≤ χ2

1 (τ )}, where χ2
1 (τ ) is the upper τ -

quantile of the distribution of χ2
1 . In view of Theorem 3.2, one can construct the con-

fidence regions for θ by estimating the variance �k . The jackknife empirical likelihood
method does not relate to an estimation of the asymptotic variance, which makes it more
efficient than the normal approximation method. This phenomenon is also exhibited in a
simulation study.

4 Simulation study
In this section, we carry out some simulations to demonstrate the finite sample perfor-
mance of the profile least square estimators and jackknife estimators by comparing their
bias and mean square error (MSE). Besides, we compare the jackknife empirical likelihood
(JEL) method with normal approximation (NA) in terms of the coverage probability (CP)
and average interval length (AL).

The data are generated from the following PLVC EV model:

⎧
⎨

⎩
Yi = Xi1β1 + Xi2β2 + Wiα(Ui) + ε,

ξi1 = Xi1 + ei1, ξi2 = Xi2 + ei2, i = 1, . . . , n,
(4.1)

where Xi1 ∼ N(0, 1), Xi2 ∼ N(0, 1), Wi ∼ N(0, 1), Ui ∼ U(0, 1), β1 = 1, β2 = 2, α(u) =
2 sin(6πu) and εi ∼ N(0, 1). The measurement error ei ∼ N(0,�e). To represent different
levels of measurement errors, we take �e as �e1 = diag(0.25, 0.25) and �e2 = diag(0.5, 0.5)
in the simulations, respectively. The kernel functions K(u) = 3

4 (1 – u2)I(|u| ≤ 1) and

(x, w, u) = 
1(x)
2(w)
3(u) where 
1(t) = 
2(t) = 
3(t) = 15

16 (1 – t2)2I(|t| ≤ 1). The
bandwidth hn = n–1/5 and bn = n–1/3.

We generate 500 Monte Carlo random samples of size 50, 100, 150 and 60, 90, 120 based
on the following six cases, repeatedly.

(1) Case 1: P(x, w, u) = 1/[1 + exp(–Xi1 – Xi2 – Wi – Ui – 5.5)];
(2) Case 2: P(x, w, u) = 1/[1 + exp(–Xi1 – 0.5Xi2 – Wi – Ui – 2)];
(3) Case 3: P(x, w, u) = 1/[1 + exp(–0.75Xi1 – Xi2 – Wi – Ui – 1)];
(4) Case 4: P(x, w, u) = 1/[1 + exp(–0.5Xi1 – 0.5Xi2 – 5Wi – 5.5Ui – 1)];
(5) Case 5: P(x, w, u) = 1 – 1/[1 + exp(–0.5Xi1 – 0.5Xi2 – 5Wi – 5.5Ui – 1)];
(6) Case 6: P(x, w, u) = 1 – 1/[1 + exp(–Xi1 – Xi2 – Wi – 2.4Ui – 0.5)].

The average missing rate (MR) corresponding to the above six cases are 10%, 20%, 30%,
45%, 55%, 65%, respectively.

In Tables 1–2, we calculate biases and MSEs of θ̂
(k)
n and θ̂

(k)
J for k = 1, 2, 3, respectively,

to evaluate their finite sample performance. The simulation results indicate the follow-
ing conclusions. The larger MRs and/or measurement errors produce bigger biases and
MSEs. The biases and MSEs decrease as the sample size increases. Both biases and MSEs
of θ̂

(k)
J are smaller than those of θ̂

(k)
n under the same settings. In other words, the jackknife

estimators θ̂
(k)
J perform better than θ̂

(k)
n . Besides, the augment inverse probability estima-

tor θ̂
(3)
n performs best, and θ̂

(1)
n is worst. The corresponding jackknife estimators enjoy the

same conclusion.
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Table 1 Biases of the estimators θ̂ (k)
n and θ̂ (k)

J with different sample sizes and MRs

�e MR n θ̂ (1)
n θ̂ (2)

n θ̂ (3)
n θ̂ (1)

J θ̂ (2)
J θ̂ (3)

J

�e1 10% 50 0.0112 0.0040 0.0038 0.0112 0.0039 0.0036
100 0.0107 0.0016 0.0015 0.0104 0.0013 0.0011
150 0.0072 0.0004 0.0004 0.0071 0.0003 0.0003

20% 50 –0.0121 –0.0072 –0.0073 –0.0119 –0.0060 –0.0062
100 0.0072 0.0053 0.0054 0.0064 0.0049 0.0052
150 0.0019 0.0023 0.0022 0.0020 0.0023 0.0020

30% 50 –0.0128 –0.0087 –0.0083 –0.0095 –0.0056 –0.0046
100 0.0127 0.0075 0.0073 0.0123 0.0067 0.0062
150 0.0080 0.0026 0.0024 0.0081 0.0024 0.0021

�e2 10% 50 0.0134 0.0042 0.0038 0.0132 0.0034 0.0033
100 –0.0122 0.0029 0.0028 –0.0122 0.0028 0.0026
150 –0.0054 0.0023 0.0021 –0.0031 0.0017 0.0013

20% 50 –0.0174 –0.0082 –0.0078 –0.0154 –0.0081 0.0080
100 –0.0131 0.0089 0.0079 –0.0101 0.0065 0.0065
150 0.0038 –0.0048 –0.0049 0.0043 –0.0047 –0.0044

30% 50 –0.0134 –0.0089 –0.0089 –0.0103 –0.0062 –0.0063
100 0.0130 0.0083 0.0083 0.0129 0.0078 0.0076
150 0.0086 0.0023 0.0022 0.0085 0.0020 0.0019

Table 2 MSEs of the estimators θ̂ (k)
n and θ̂ (k)

J with different sample sizes and MRs

�e MR n θ̂ (1)
n θ̂ (2)

n θ̂ (3)
n θ̂ (1)

J θ̂ (2)
J θ̂ (3)

J

�e1 10% 50 0.0734 0.0091 0.0091 0.0910 0.0088 0.0088
100 0.0376 0.0046 0.0047 0.0463 0.0046 0.0047
150 0.0257 0.0029 0.0029 0.0284 0.0029 0.0029

20% 50 0.0761 0.0237 0.0237 0.0919 0.0219 0.0218
100 0.0408 0.0095 0.0095 0.0479 0.0095 0.0096
150 0.0276 0.0059 0.0059 0.0309 0.0058 0.0059

30% 50 0.0787 0.0351 0.0351 0.1040 0.0338 0.0338
100 0.0422 0.0136 0.0137 0.0491 0.0135 0.0136
150 0.0272 0.0092 0.0092 0.0301 0.0092 0.0093

�e2 10% 50 0.1122 0.0177 0.0178 0.2202 0.0163 0.0163
100 0.0520 0.0057 0.0057 0.0589 0.0053 0.0053
150 0.0353 0.0039 0.0039 0.0376 0.0037 0.0037

20% 50 0.0809 0.0223 0.0225 0.0878 0.0234 0.0237
100 0.0511 0.0137 0.0137 0.0566 0.0128 0.0128
150 0.0309 0.0075 0.0075 0.0334 0.0072 0.0072

30% 50 0.0707 0.0356 0.0355 0.1110 0.0504 0.0504
100 0.0555 0.0192 0.0192 0.0602 0.0171 0.0171
150 0.0356 0.0117 0.0117 0.0381 0.0112 0.0112

In Tables 3–4, we give the CPs and ALs for JEL method and NA method on response
mean θ . The CPs for JEL method and NA method decrease as MRs, measurement errors
decrease and confidence levels increase, and increase as the sample size increases. Besides,
the JEL method outperforms the NA method in terms of coverage probability. The CPs
for JEL method are larger than those of NA method under the same settings. For both
methods, when we have MRs, measurement errors and confidence levels increase, the
ALs are getting longer. When the sample size increases, the ALs are getting shorter. The
ALs for JEL method are larger than those of NA method under the same settings.
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Table 3 CP and AL for JEL method and NA method on θ with confidence level 90%

�e MR n CPJ CPN ALJ ALN

�e1 45% 60 0.9640 0.9440 1.6167 1.2151
90 0.9760 0.9580 1.1201 0.9600
120 0.9840 0.9620 0.9358 0.8329

55% 60 0.9600 0.9200 1.8986 1.2511
90 0.9660 0.9520 1.2045 0.9862
120 0.9740 0.9560 0.9655 0.8389

65% 60 0.9520 0.9200 2.4630 1.6925
90 0.9640 0.9460 1.3061 1.0236
120 0.9660 0.9440 0.9778 0.8527

�e2 45% 60 0.9340 0.9080 3.0637 1.4192
90 0.9700 0.9240 1.5820 1.0535
120 0.9760 0.9420 1.1577 0.8839

55% 60 0.9220 0.8800 4.3876 2.0454
90 0.9560 0.9220 2.0063 1.1089
120 0.9720 0.9340 1.2351 0.9158

65% 60 0.8740 0.8560 6.8074 4.0820
90 0.9480 0.9180 2.5783 1.3314
120 0.9740 0.9320 1.3804 0.9752

Table 4 CP and AL for JEL method and NA method on θ with confidence level 95%

�e MR n CPJ CPN ALJ ALN

�e1 45% 60 0.9780 0.9680 1.9361 1.4522
90 0.9880 0.9800 1.3399 1.1473
120 0.9920 0.9880 1.1155 0.9954

55% 60 0.9760 0.9540 2.2712 1.4953
90 0.9840 0.9800 1.4437 1.1787
120 0.9900 0.9820 1.1528 1.0026

65% 60 0.9680 0.9640 2.8843 2.0228
90 0.9800 0.9780 1.5600 1.2234
120 0.9880 0.9800 1.1668 1.0190

�e2 45% 60 0.9560 0.9440 3.5274 1.6961
90 0.9860 0.9640 1.8857 1.2591
120 0.9920 0.9720 1.3799 1.0564

55% 60 0.9440 0.9260 4.9603 2.4445
90 0.9740 0.9540 2.3540 1.3253
120 0.9820 0.9640 1.4737 1.0945

65% 60 0.9320 0.8940 7.4867 4.8785
90 0.9700 0.9520 2.9689 1.5912
120 0.9780 0.9620 1.6301 1.1655

5 Conclusion
In this paper, we focus on the response mean of the PLVC EV model with missing response
at random. Inspired by Wang et al. [20], we propose the marginal average estimator, the
regression imputation estimator and the augmented inverse probability estimator of the
response mean to deal with the missing response variable. In order to construct the con-
fidence regions of the response mean, we define the corresponding jackknife estimators
and establish the jackknife empirical log-likelihood ratio functions of the response mean.
Meanwhile, the consistency and asymptotical normality of the estimators are proved un-
der some assumptions. We also establish the asymptotic chi-square distribution of the
jackknife empirical log-likelihood ratio functions and construct the confidence regions
for the estimators of the response mean. Finally, one simulation study is conducted to
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compare jackknife empirical likelihood method with normal approximation method in
terms of coverage probabilities and average interval lengths, and one comparison of the
proposed estimators is done based on their biases and mean square errors.

Appendix
To prove Theorems 3.1–3.3, we need the following lemmas.

Lemma A.1 Suppose that Assumptions (A1)–(A8) hold, then, as n → ∞, we have

sup
u∈U

∣∣∣∣
1

nhn

∑

i=1

K
(

Ui – u
hn

)(
Ui – u

hn

)�
WiW �

i

∣∣∣∣ = g(u)(u)μk + Op(γn) a.s., (A.1)

sup
u∈U

∣∣∣∣
1

nhn

∑

i=1

K
(

Ui – u
hn

)(
Ui – u

hn

)�
Wiεi

∣∣∣∣ =
(

log n
nhn

)1/2

a.s. (A.2)

Proof The proof of Lemma A.1 is similar to that of Lemma A.2 in You and Chen [28]. �

Lemma A.2 Suppose that Assumptions (A1)–(A8) hold, then we have

sup
z

∣∣̂Pn(z) – P(z)
∣∣ = Op

((
nbp+q+1

n
)–1/2 + br

n
)
.

Proof The proof of Lemma A.2 is similar to Eq. (31) in Wang [19]. �

Lemma A.3 Suppose that Assumptions (A1)–(A8) hold, then we have

√
n(β̂n – β) = A–1

n
1√
n

n∑

i=1

δi
{
�eβ +

[
ξi – ��(Ui)–1(Ui)Wi

](
εi – e�

i β
)}

+ op(1).

Proof Let An = 1
n
∑n

i=1 δi (̃ξĩξ
�
i – �e) and e = (e1, . . . , en)�, we have

β̂n – β = A–1
n

1
n

n∑

i=1

δĩξ
�
i
(
Ỹi – ξ̃�

i β
)

+ A–1
n

1
n

n∑

i=1

δi�eβ

= A–1
n

1
n

n∑

i=1

δĩξ
�
i (εi – Siε) + A–1

n
1
n

n∑

i=1

δĩξ
�
i (Mi – SiM)

+
1
n

n∑

i=1

δĩξ
�
i (Sie – ei)�β + A–1

n
1
n

n∑

i=1

δi�eβ

:= T1 + T2 + T3 + T4.

From (A.1), (A.3) and Assumption (A5), one simple computation yields Siε = W �
i ×

1qOp(
√

log n
nhn

), where 1q = (11, . . . , 1q). Then one can get

T1 = A–1
n

1
n

n∑

i=1

δi
(
ξi – ��(Ui)–1(Ui)Wi

)
εi + op

(
n–1/2).
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Note that Mi – SiM = W �
i α(Ui)Op(γn), then T2 = op(n–1/2). Based on (A.1), one simple

calculation yields

SiX = W �
i –1(Ui)�(Ui)

(
1 + Op(γn)

)
. (A.3)

Since e is independent of (Y , X, W , U) with zero mean, it can be checked that

Sie = W �
i –1(Ui)E

(
Wie�

i |Ui
)(

1 + Op(γn)
)

= 0. (A.4)

Hence, simple arguments suggest that

T3 = A–1
n

1
n

n∑

i=1

δi
(
ξi – ��(Ui)–1(Ui)Wi

)
eiβ + op

(
n–1/2).

Therefore, collecting the results above, Lemma A.3 is proved. �

Lemma A.4 Suppose that Assumptions (A1)–(A8) hold, then we have

1√
n

n∑

i=1

W �
i
(
α̂n(Ui) – α(Ui)

)

=
1√
n

n∑

i=1

(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
uX�

i (β – β̂n) + op(1).

Proof From the definition of α̂n(·), then one can get

1√
n

n∑

i=1

W �
i
(
α̂n(Ui) – α(Ui)

)

=
1√
n

n∑

i=1

{(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
u(Y – ξ β̂n) – W �

i α(Ui)
}

=
1√
n

n∑

i=1

(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
uX�

i (β – β̂n)

–
1√
n

n∑

i=1

(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
ue�

i β̂n

+
1√
n

n∑

i=1

(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
uεi

+
1√
n

n∑

i=1

{(
W �

i 0
)(

D�
u ωδ

uDu
)–1D�

u ωδ
uMi – Mi

}

:= D1 + D2 + D3 + D4.

Since Sie = 0, we have D2 = op(1). Due to Siε = Wi1qOp(
√

log n
nhn

), we have D3 = op(1). Since
SiM–Mi = W �

i α(Ui)Op(γn), it follows that D4 = op(1). Hence, we have completed the proof
of Lemma A.4. �
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Lemma A.5 Suppose that Assumptions (A1)–(A8) hold, then we have

(n – 1)2

n

n∑

i=1

(
θ̂ (k)

n – θ̂
(k)
n,–i

)2 P→ �k .

Proof (a) We prove Lemma A.5 for θ̂
(1)
n . Note that

θ̂ (1)
n – θ̂

(1)
n,–i =

1
n – 1

[̃
ξ�

i (β̂n – β) +
(
W �

i α(Ui) + ξ�
i β – θ

)]
+

1
n – 1

n∑

j=1

ξ̃�
j (β̂n – β̂n,–i)

–
1

n – 1
ξ̃�

i (β̂n – β̂n,–i) –
1

n – 1
(
θ̂ (1)

n – θ
)

+
1

n – 1
(SiM – Mi) +

1
n – 1

Si
(
ε – e�β

)

:= b1i + b2i + b3i + b4i + b5i + b6i.

From the proof of (a) in Theorem 3.1, it is easy to prove

(n – 1)2

n

n∑

i=1

b2
1i =

1
n

n∑

i=1

{̃
ξ�

i (β̂n – β) +
(
W �

i α(Ui) + ξ�
i β – θ

)}2 P→ �1.

Following the fact max1≤i≤n ‖β̂n – β̂n,–i‖ = Op(n–1) and max1≤i≤n |̃ξi| = o(n1/(2s)), from As-
sumption (A8), we have max1≤i≤n |bki| = op(n–1/2) for k = 2, 3. Theorem 3.1 implies that
θ̂

(1)
n – θ = Op(n–1/2), it can be checked that max1≤i≤n |b4i| = op(n–1/2). Simple computa-

tion yields SiM – Mi = W �
i α(Ui)Op(γn), then we have max1≤i≤n |b5i| = op(n–1/2). Note that

Siε = W �
i 1qOp(

√
log n
nhn

) and Sie = 0, one can get max1≤i≤n |b6i| = op(n–1/2). Hence, we have

(n – 1)2

n

n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)2 P→ �1.

(b) Following the definitions of θ̂
(2)
n and θ̂

(2)
n,–i, simply computations yield

θ̂ (2)
n – θ̂

(2)
n,–i =

1
n – 1

[(
Wiα(Ui) + ξ�

i β – θ
)

+ δi
(
εi – e�

i β
)

+ (1 – δi )̃ξ�
i (β̂n – β)

]

+
1

n – 1
(1 – δi)(SiM – Mi – Siε) +

1
n – 1

δĩξ
�
j (β̂n,–i – β̂n)

–
1

n – 1
(
θ̂ (1)

n – θ
)

+
1

n – 1

n∑

j=1

(1 – δj )̃ξ�
j (β̂n,–i – β̂n)

–
1

n(n – 1)

n∑

j=1

δj
(
Ỹj – ξ̃�

j β
)

+
1

n(n – 1)

n∑

j=1

δj̃ξ
�
j (β̂n – β)

:= l1i + l2i + l3i + l4i + l5i + l6i + l7i.
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According to the proof of (b) in Theorem 3.1, then one can get

(n – 1)2

n

n∑

i=1

l2
1i =

1
n

n∑

i=1

{(
W �

i α(Ui) + ξiβ – θ
)

+ δi
(
εi – e�

i β
)

+ (1 – δi )̃ξ�
i (β̂n – β)

}2

P→ �2.

By similar arguments to that of (a), we have max1≤i≤n |lki| = op(n–1/2) for k = 2, . . . , 7. Hence,
we have

(n – 1)2

n

n∑

i=1

(
θ̂ (2)

n – θ̂
(2)
n,–i

)2 P→ �2.

(c) Note that

θ̂ (3)
n – θ̂

(3)
n,–i =

1
n – 1

[(
W �

i α(Ui) + ξ�
i β – θ

)
+

δi

P(Zi)
(
εi – e�

i β
)]

+
1

n – 1
P(Zi) – P̂n(Zi)

P(Zi )̂Pn(Zi)
δi
(
εi – e�

i β
)

+
1

n – 1

(
1 –

δi

P̂n(Zi)

)
(SiM – Mi – Siε) +

1
n – 1

(
1 –

δi

P̂n(Zi)

)
ξ̃�

i (β̂n – β)

+
1

n – 1
δi

P̂n(Zi)
ξ̃�

j (β̂n,–i – β̂n) +
1

n – 1
P̂n,–i(Zi) – P̂n(Zi)

P̂n(Zi )̂Pn,–i(Zi)
δi
(
Ỹi – ξ̃�

i β̂n,–i
)

–
1

n – 1
(
θ̂ (1)

n – θ
)

+
1

n – 1

n∑

j=1

(
1 –

δj

P̂n(Zj)

)
ξ̃�

j (β̂n,–i – β̂n)

:= m1i + m2i + m3i + m4i + m5i + m6i + m7i + m8i.

Standard calculations yield

(n – 1)2

n

n∑

i=1

m2
1i =

1
n

n∑

i=1

{(
Wiα(Ui) + ξiβ – θ

)
+

δi

P(Zi)
(
εi – e�

i β
)}2

P→ �3.

From Lemma A.2 and the fact P̂n,–i(z) – P̂n(z) = Op(n–1), by similar arguments to that of
(a), we have max1≤i≤n |mki| = op(n–1/2) for k = 2, . . . , 8. Hence, we have

(n – 1)2

n

n∑

i=1

(
θ̂ (3)

n – θ̂
(3)
n,–i

)2 P→ �3. �

Proof of Theorem 3.1 (a) We first prove Theorem 3.1 for θ̂
(1)
n . Recalling the definition of

θ̂
(1)
n in (2.4), then one can write

√
n
(
θ̂ (1)

n – θ
)

=
1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)
+

1√
n

n∑

i=1

ξ�
i (β̂n – β)

+
1√
n

n∑

i=1

W �
i
(
α̂n(Ui) – α(Ui)

)

:= A1 + A2 + A3. (A.5)



Zou and Wu Journal of Inequalities and Applications        (2020) 2020:223 Page 14 of 21

Following Lemma A.4 in the Appendix, it can be checked that

A3 =
1√
n

n∑

i=1

(
W �

i 0
){

D�
u ωδ

uDu
}–1D�

u ωδ
uX�

i (β – β̂n) + op(1).

Combining A2 with A3, and from Lemma A.3, one can get

A2 + A3 =
1√
n

n∑

i=1

(
ξ�

i –
(
W �

i 0
){

D�
u ωδ

uDu
}–1D�

u ωδ
uX�

i
)
(β̂n – β) + op(1)

=
1√
n

n∑

i=1

(
ξ�

i – W �
i –1(Ui)�(Ui)

)
(β̂n – β) + op(1)

= A–1
n �1

1√
n

n∑

i=1

δi
({

ξ�
i – W �

i –1(Ui)�(Ui)
}(

εi – e�
i β

)
+ �eβ

)

+ op(1). (A.6)

From (A.5) and (A.6), we have

√
n
(
θ̂ (1)

n – θ
)

=
1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)

+ A–1
n �1

1√
n

n∑

i=1

δi
({

ξ�
i – W �

i (Ui)–1�(Ui)
}(

εi – e�
i β

)
+ �eβ

)

+ op(1).

By the cental limit theorem, the proof of Theorem 3.1 for θ̂
(1)
n is finished.

(b) We prove Theorem 3.1 for θ̂
(2)
n . In view of the definition of θ̂

(2)
n in (2.4), by similar

arguments to that of θ̂
(1)
n in (a), then

√
n
(
θ̂ (2)

n – θ
)

=
1√
n

n∑

i=1

(
δi
{

Yi – ξ�
i β̂n – W �

i α̂n(Ui)
}

+
{
ξ�

i β̂n + W �
i α̂n(Ui) – θ

})

=
1√
n

n∑

i=1

δiεi –
1√
n

n∑

i=1

δie�
i β +

1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)

+
1√
n

n∑

i=1

(1 – δi)ξ�
i (β̂n – β) +

1√
n

n∑

i=1

(1 – δi)W �
i
(
α̂n(Ui) – α(Ui)

)

:= B1 + B2 + B3 + B4 + B5. (A.7)

For B5, applying the same proof as of Lemma A.4, it is easy to prove

B5 =
1√
n

n∑

i=1

(1 – δi)
(
W �

i 0
){

D�
u ωδ

uDu
}–1D�

u ωδ
uX�

i (β – β̂n) + op(1),
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by which together with B4, and following the verification of Lemma A.3, then we have

B4 + B5 =
1√
n

n∑

i=1

(1 – δi)
(
ξ�

i –
(
W �

i 0
){

D�
u ωδ

uDu
}–1D�

u ωδ
uX�

i
)
(β̂n – β) + op(1)

=
1√
n

n∑

i=1

(1 – δi)
{
ξ�

i – W �
i (Ui)–1�(Ui)

}
(β̂n – β) + op(1)

= A–1
n �2

1√
n

n∑

i=1

δi
({

ξ�
i – W �

i –1(Ui)�(Ui)
}(

εi – e�
i β

)
+ �eβ

)

+ op(1). (A.8)

Based on (A.7) and (A.8), it follows that

√
n
(
θ̂ (2)

n – θ
)

=
1√
n

n∑

i=1

δiεi –
1√
n

n∑

i=1

δie�
i β +

1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)

+ A–1
n �2

1√
n

n∑

i=1

δi
({

ξ�
i – W �

i –1(Ui)�(Ui)
}(

εi – e�
i β

)
+ �eβ

)

+ op(1).

By the cental limit theorem, the proof of Theorem 3.1 for θ̂
(2)
n is completed.

(c) We prove Theorem 3.1 for θ̂
(3)
n . According to the definition of θ̂

(3)
n , from Lemma A.2,

we have

√
n
(
θ̂ (3)

n – θ
)

=
1√
n

n∑

i=1

(
δi

P̂n(Zi)
{

Yi – ξ�
i β̂n – W �

i α̂n(Ui)
}

+
{
ξ�

i β̂n + W �
i α̂n(Ui) – θ

})

=
1√
n

n∑

i=1

δi

P̂n(Zi)
εi +

1√
n

n∑

i=1

(
1 –

δi

P̂n(Zi)

)
e�

i β

+
1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)

+
1√
n

n∑

i=1

(
1 –

δi

P̂n(Zi)

)
ξ�

i (β̂n – β)

+
1√
n

n∑

i=1

(
1 –

δi

P̂n(Zi)

)
W �

i
(
α̂n(Ui) – α(Ui)

)

:= D1 + D2 + D3 + D4 + D5. (A.9)

For D1, we replace P̂n(Zi) with its true value P(Zi), then

D1 =
1√
n

n∑

i=1

δi

P(Zi)
εi +

1√
n

n∑

i=1

P(Zi) – P̂n(Zi)
P2(Zi)

δiεi +
1√
n

n∑

i=1

(P(Zi) – P̂n(Zi))2

P2(Zi )̂Pn(Zi)
δiεi

:= D11 + D12 + D13.
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Recalling the definition of P̂n(Zi) in Sect. 2 and Assumption (A8), we have

D12 =
1

n
√

nbp+q+1
n

n∑

i=1

n∑

j=1

[P(Zj) – δj]
f (Zi)P2(Zi)

δiεi


(
Zi – Zj

bn

)

+
1

n
√

nbp+q+1
n

n∑

i=1

n∑

j=1

[P(Zi) – P(Zj)]
f (Zi)P2(Zi)

δiεi


(
Zi – Zj

bn

)
+ op(1)

:= D121 + D122 + op(1).

Under Assumptions (A1), (A5) and (A8), standard computation yields

E[D121]2 =
1

n3b2(p+q+1)
n

n∑

i=1

n∑

j=1

E
{

[P(Zj) – δj]
f (Zi)P2(Zi)

δiεi


(
Zi – Zj

bn

)}2

≤ 1
n3b2(p+q+1)

n

n∑

i=1

n∑

j=1

E
{

2

(
Zi – Zj

bn

)}
≤ C

nbp+q+1
n

.

From Assumption (A8), we have D121 = op(1). Similarly, D122 = op(1). Lemma A.2 implies
D13 = op(1). Hence

D1 =
1√
n

n∑

i=1

δi

P(Zi)
εi + op(1). (A.10)

Analogous to the arguments of D1, it is easy to prove

D2 =
1√
n

n∑

i=1

(
1 –

δi

P(Zi)

)
e�

i β + op(1). (A.11)

From Lemmas A.3 and A.4, and the missing mechanism, one simple computation yields
D4 = op(1) and D5 = op(1). Hence, collecting the results above, (A.9)–(A.11), one can get

√
n
(
θ̂ (3)

n – θ
)

=
1√
n

n∑

i=1

δi

P(Zi)
εi +

1√
n

n∑

i=1

(
1 –

δi

P(Zi)

)
e�

i β

+
1√
n

n∑

i=1

(
ξ�

i β + W �
i α(Ui) – θ

)
+ op(1).

By the cental limit theorem, the proof of Theorem 3.1 for θ̂
(3)
n is finished. �

Proof of Theorem 3.2 (a) We first prove Theorem 3.2 for θ̂
(1)
J . In order to verify

√
n(θ̂ (1)

J –
θ ) =

√
n(θ̂ (1)

n – θ ) + op(1), it suffices prove that θ̂
(1)
J = θ̂

(1)
n + op(n–1/2). Recalling the definition

of θ̂
(1)
J given in Sect. 2, then one can re-write

θ̂
(1)
J = θ̂ (1)

n +
n – 1

n

n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)
.
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Therefore, to obtain the desired results, we just need to prove

√
n

n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)
= op(1). (A.12)

Following the definitions of θ̂
(1)
n and θ̂

(1)
n,–i, then we have

√
n

n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)
=

√
n

n – 1

n∑

i=1

n∑

j=1

ξ̃�
j (β̂n – β̂n,–i) –

√
n

n – 1

n∑

i=1

ξ̃�
i (β̂n – β̂n,–i)

:= Q1 + Q2. (A.13)

From the proof of (6.16) in Liu and Liang [12], it can be checked that
√

n
∑n

i=1(β̂n – β̂n,–i) =
op(1). According to Lemma A.5, one can write

Q1 =
1

n – 1

n∑

j=1

ξ̃j ·
√

n
n∑

i=1

(β̂n – β̂n,–i) = Op
(
n–1/2)Op(1)op(1) = op(1). (A.14)

Following Lemma 6.11 in Liu and Liang [12], it follows that ‖β̂n – β̂n,–i‖ = Op(n–1). We
combine this with the fact max1≤i≤n ‖̃ξi‖ = o(n1/(2s)) for s > 2. Hence, under Assumption
(A8), we have

|Q2| ≤
√

n max ‖̃ξi‖ · ‖β̂n – β̂n,–i‖ = o
(
n1/(2s))Op

(
n–1/2) = op

(
n

1
2s – 1

2
)

= op(1). (A.15)

Hence, from (A.13)–(A.15), it is easy to prove
√

n
∑n

i=1(θ̂ (1)
n – θ̂

(1)
n,–i) = op(1).

(b) The definition of θ̂
(2)
n can be re-written as θ̂

(2)
n = 1√

n
∑n

i=1 δi(Ỹi – ξ̃�
i β̂n) + θ̂

(1)
n . Hence,

it is easy to prove

√
n

n∑

i=1

(
θ̂ (2)

n – θ̂
(2)
n,–i

)
=

√
n

n – 1

n∑

i=1

n∑

j=1

δj̃ξ
�
j (β̂n – β̂n,–i) +

√
n

n – 1

n∑

i=1

δĩξ
�
i (β̂n – β̂n,–i)

+
√

n
n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)

:= J1 + J2 + J3.

By a similar argument to that of (a), J1 = op(1) and J2 = op(1) can be proved easily. From the
result (A.12), then we have J3 = op(1). Hence,

√
n
∑n

i=1(θ̂ (2)
n – θ̂

(2)
n,–i) = op(1) can be proved.

(c) Following the definition of θ̂
(3)
n , we find θ̂

(3)
n = 1√

n
∑n

i=1
δi

P̂n(Zi)
(Ỹi – ξ̃�

i β̂n) + θ̂
(1)
n . Hence,

simple calculation yields

√
n

n∑

i=1

(
θ̂ (3)

n – θ̂
(3)
n,–i

)
=

√
n

n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P̂n(Zj )̂Pn,–i(Zj)

δj
(
Ỹj – ξ̃�

j β̂n
)

–
√

n
n – 1

n∑

i=1

n∑

j=1

δj

P̂n(Zj)
ξ̃�

j (β̂n – β̂n,–i)

+
√

n
n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P̂n(Zj )̂Pn,–i(Zj)

δj̃ξ
�
j (β̂n – β̂n,–i)
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+
√

n
n – 1

n∑

i=1

δi

P̂n(Zi)
(
Ỹi – ξ̃�

i β̂n
)

+
√

n
n – 1

n∑

i=1

P̂n,–i(Zi) – P̂n(Zi)
P̂n(Zi )̂Pn,–i(Zi)

δi
(
Ỹi – ξ̃�

i β̂n
)

+
√

n
n – 1

n∑

i=1

P̂n,–i(Zi) – P̂n(Zi)
P̂n(Zi )̂Pn,–i(Zi)

δĩξ
�
i (β̂n – β̂n,–i)

+
√

n
n∑

i=1

(
θ̂ (1)

n – θ̂
(1)
n,–i

)

:= L1 + L2 + L3 + L4 + L5 + L6 + L7.

Note that Ỹj – ξ̃�
j β̂n = εj – e�

j β + ξ̃�
j (β – β̂n) + W �

j (α(Uj) – α̂n(Uj)), then one can get

L1 =
√

n
n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P̂n(Zj )̂Pn,–i(Zj)

δj
(
εj – e�

j β
)

+
√

n
n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P̂n(Zj )̂Pn,–i(Zj)

δj̃ξ
�
j (β – β̂n)

+
√

n
n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P̂n(Zj )̂Pn,–i(Zj)

δjW �
j
(
α(Uj) – α̂n(Uj)

)

:= L11 + L12 + L13.

Let ani =

( z–Zi

bn )
∑n

j=1 
(
z–Zj
bn )

, from Assumption (A7), it is easy to prove ani(z) = Op(n–1). Simple

computation yields

P̂n,–i(z) =
(

P̂n(z) –
δi
( z–Zi

bn
)

∑n
j=1 
( z–Zi

bn
)

)
×
(

1 +

( z–Zj

bn
)

∑n
j=1 
( z–Zj

bn
)

)
+ Op

(
n–2)

=
(̂
Pn(z) – δiani(z)

)(
1 + ani(z)

)
+ Op

(
n–2).

Hence, applying the equation above, it follows that

P̂n,–i(z) – P̂n(z) =
(̂
Pn(z) – δi

)
ani(z) – δia2

ni(z) + Op
(
n–2), (A.16)

which indicates P̂n,–i(z) = P̂n(z) + Op(n–1). Together with Lemma A.2, one can compute

L11 =
√

n
n – 1

n∑

i=1

n∑

j=1

P̂n(Zj) – P̂n,–i(Zj)
P2(Zj)

δj
(
εj – e�

j β
)

+ op(1)

=
√

n
n – 1

n∑

i=1

n∑

j=1

δj(εj – e�
j β)

P2(Zj)
(̂
Pn(Zj) – δi

)
ani(Zj) + op(1)

=
√

n
n – 1

n∑

i=1

n∑

j=1

δj(εj – e�
j β)

P2(Zj)
(
P(Zi) – δi

) 
( Zj–Zi
bn

)

nbp+q+1
n f (Zj)
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+
√

n
n – 1

n∑

i=1

n∑

j=1

δj(εj – e�
j β)

P2(Zj)
(
P(Zj) – P(Zi)

) 
( Zj–Zi
bn

)

nbp+q+1
n f (Zj)

+
√

n
n – 1

n∑

i=1

n∑

j=1

δj(εj – e�
j β)

P2(Zj)
(̂
Pn(Zj) – P(Zj)

) 
( Zj–Zi
bn

)

nbp+q+1
n f (Zj)

+ op(1)

= L111 + L112 + L113 + op(1).

Under Assumptions (A1), (A5) and (A7), E(ej) = 0 and E(εj|Zj) = 0, then it is easy to verify

EL2
111 = E

{ √
n

n(n – 1)bp+q+1
n

n∑

i=1

n∑

j=1

δj(εj – e�
j β)

P2(Zj)f (Zj)
(
P(Zi) – δi

)



(
Zj – Zi

bn

)}2

=
n

n(n – 1)2b2(p+q+1)
n

n∑

i=1

n∑

j=1

E
{

δj(εj – e�
j β)

P2(Zj)f (Zj)
(
P(Zi) – δi

)



(
Zj – Zi

bn

)}2

≤ C
n3b2(p+q+1)

n

n∑

i=1

n∑

j=1

E
{

2

(
Zj – Zi

bn

)}
≤ C

(
nbp+q+1

n
)–1.

For any random variable X, we have X = EX + Op(
√

Var(X)). Then from Assumption (A8),
we have L111 = op(1). Similarly, we have L112 = op(1) and L113 = op(1). Analogous to the
proof of L11, and from Lemmas A.3 and A.4, it is easy to prove L12 = op(1) and L13 = op(1).
Hence, we have L1 = op(1). Similarly, L4 = op(1) and L5 = op(1). Note that ‖β̂n – β̂n,–i‖ =
Op(n–1) and max1≤i≤n ‖̃ξi‖ = o(n1/2s), which indicate Li = op(1) for i = 2, 3, 6. From (a), we
have L7 = op(1). Therefore, collecting the results above, one can get

√
n
∑n

i=1(θ̂ (3)
n – θ̂

(3)
n,–i) =

op(1). �

Proof of Theorem 3.3 Let η(k)(λ) = 1
n
∑n

i=1
θ̂

(k)
Ji

–θ

1+λ(θ̂ (k)
Ji

–θ )
for k = 1, 2, 3. It is easy to prove

0 =
∣∣η(k)(λ)

∣∣ =

∣∣∣∣∣
1
n

n∑

i=1

(
θ̂

(k)
Ji

– θ
)

–
λ

n

n∑

i=1

(θ̂ (k)
Ji

– θ )2

1 + λ(θ̂ (k)
Ji

– θ )

∣∣∣∣∣≥
|λ|S(k)

J

1 + |λ|R(k)
n

–

∣∣∣∣∣
1
n

n∑

i=1

θ̂
(k)
Ji

– θ

∣∣∣∣∣,

where S(k)
J = 1

n
∑n

i=1(θ̂ (k)
Ji

– θ )2 and R(k)
n = max1≤i≤n |θ̂ (k)

Ji
– θ |. Next, we just need to verify

S(k)
J =

1
n

n∑

i=1

(
θ̂

(k)
Ji

– θ
)2 P→ �k , (A.17)

R(k)
n = max

1≤i≤n

∣∣θ̂ (k)
Ji

– θ
∣∣ = op(

√
n). (A.18)

Theorem 3.2 implies that S(k)
J = 1

n
∑n

i=1(θ̂ (k)
Ji

)2 –θ2 +op(1). Since
√

n
∑n

i=1(θ̂ (k)
n – θ̂

(k)
n,–i) = op(1)

and θ̂
(k)
Ji

= nθ̂
(k)
n – (n – 1)θ̂ (k)

n,–i, we have

1
n

n∑

i=1

(
θ̂

(k)
Ji

)2 = θ̂2
n +

(n – 1)2

n

n∑

i=1

(
θ̂ (k)

n – θ̂
(k)
n,–i

)2 + op(1).
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Lemma A.5 suggests that S(k)
J

P→ �k . Similar to Owen [13], we derive that ‖λ‖ = OP(n–1/2).
For convenience, let ζ

(k)
i = λ(θ̂ (k)

Ji
– θ ), then

max
1≤i≤n

∥∥ζ (k)
i
∥∥≤ ‖λ‖ · max

1≤i≤n

∣∣θ̂ (k)
Ji

– θ
∣∣ = Op

(
n–1)op(

√
n) = op

(
n–1/2). (A.19)

Note that

0 = η(k)(λ) =
1
n

n∑

i=1

(
θ̂

(k)
Ji

– θ
) · 1

1 + ζ
(k)
i

=
1
n

n∑

i=1

(
θ̂

(k)
Ji

– θ
)

– λS(k)
J +

1
n

n∑

i=1

(
θ̂

(k)
Ji

– θ
) · (ζ (k)

i )2

1 + ζ
(k)
i

.

Applying (A.17) and (A.18), it is easy to derive that 1
n
∑n

i=1(θ̂ (k)
Ji

–θ ) · (ζ (k)
i )2

1+ζ
(k)
i

= op(n–1/2). Thus

we have

λ =
(
S(k)

J
)–1 1

n

n∑

i=1

(
θ̂

(k)
Ji

– θ
)

+ op
(
n–1/2).

Let ρ
(k)
i =

∑∞
l=3

(–1)l–1

l (ζ (k)
i )l = O((ζ (k)

i )3), then from (A.19), one can get |∑n
i=1 ρ

(k)
i | ≤

C
∑n

i=1(ζ (k)
i )3 = op(n–1/2). By Taylor expansion, we have

l(k)(θ ) = 2
n∑

i=1

log
(
1 + λ

(
θ̂

(k)
Ji

– θ
))

= 2
n∑

i=1

ζi –
n∑

i=1

ζ 2
i + 2

n∑

i=1

ρ
(k)
i

= 2λn
(
θ̂

(k)
J – θ

)
– nλ2S(k)

J + op(1) = n
(
S(k)

J
)–1(

θ̂
(k)
J – θ

)2 + op(1).

Finally, combining (A.17) with Theorem 3.2, the proof of Theorem 3.3 is finished. �
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