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Abstract
This paper is to consider the unity results on entire functions sharing two values with
their difference operators and to prove some results related to 4 CM theorem. The
main result reads as follows: Let f (z) be a nonconstant entire function of finite order,
and let a1, a2 be two distinct finite complex constants. If f (z) and �n

ηf (z) share a1 and
a2 “CM”, then f (z)≡ �n

ηf (z), and hence f (z) and �n
ηf (z) share a1 and a2 CM.
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1 Introduction and main results
It is well known that a monic polynomial is uniquely determined by its zeros and a rational
function by its zeros and poles ignoring a constant factor. But it becomes much more com-
plicated to deal with the transcendental meromorphic function case. In 1929, Nevanlinna
proved his famous 5 IM theorem and 4 CM theorem (see e.g. [20, 23]): if meromorphic
functions f (z) and g(z) share five (respectively, four) distinct values in the extended com-
plex plane IM (respectively, CM), then f (z) ≡ g(z) ((respectively, f (z) = T(g(z)), where T
is a Möbius transformation). Here and in what follows, we say that f (z) and g(z) share the
finite value a CM(IM) if f (z) – a and g(z) – a have the same zeros with the same multiplici-
ties (ignoring multiplicities), and we say that f (z) and g(z) share the ∞ CM(IM) if f (z) and
g(z) have the same poles with the same multiplicities (ignoring multiplicities).

To relax those shared conditions in Nevanlinna’s 4 CM theorem, Gundersen provided
an example to show that 4 CM shared values cannot be replaced with 4 IM shared values,
but with 3 CM shared values and 1 IM shared value in [5]. That is, “4 IM �= 4 CM” and
“3 CM + 1 IM = 4 CM”. In addition, he showed that “2 CM + 1 IM = 4 CM” in [6] (see
correction in [8]), as well as by Mues in [17]. The problem that “1 CM + 3 IM = 4 CM”
is still open. We recall the following result by Mues in [17], which mainly inspired us to
write this paper.

Theorem A ([17]) Let f and g be nonconstant meromorphic functions sharing four distinct
values aj (j = 1, 2, 3, 4) “CM”. If f �≡ g , then f and g share aj (j = 1, 2, 3, 4) CM.
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In Theorem A, f and g share the value a “CM” means that

N
(

r,
1

f – a

)
– NE(r, a) = S(r, f ), and N

(
r,

1
g – a

)
– NE(r, a) = S(r, g),

where NE(r, a) is defined to be the reduced counting function of common zeros of f (z) – a
and g(z) – a with the same multiplicities. Similarly, N1)

E (r, a) used later is defined to be the
reduced counting function of common simple zeros of f (z) – a and g(z) – a.

Applying Theorem A, one can get (see Theorem 4.8 in [23]) the following.

Theorem B ([23]) Let f and g be nonconstant meromorphic functions and aj (j = 1, 2, 3, 4)
be distinct values. If f �≡ g share aj (j = 1, 2, 3, 4) IM and if N(r, 1

f –aj
) = S(r, f ) (j = 1, 2), then

f and g share aj (j = 1, 2, 3, 4) CM.

Remark 1.1 Let δ(a, f ) denote the deficiency of a with respect to f (z), which is defined as

δ(a, f ) = lim
r→∞

m(r, 1
f –a )

T(r, f )
= 1 – lim

r→∞
N(r, 1

f –a )
T(r, f )

.

Then we see that the condition N(r, 1
f –aj

) = S(r, f ) (j = 1, 2) in Theorem B means that
δ(aj, f ) = 1 (j = 1, 2). And we say that a is a Nevanlinna exceptional value of f (z), provided
that δ(a, f ) > 0.

To reduce the number of shared values, Rubel and Yang appear to be the first to consider
the unity of the entire function sharing two values with its first derivative in [21]. They
proved that, for a nonconstant entire function f , if f and f ′ share values a, b CM, then
f ≡ f ′. Mues and Steinmetz [18] improved Rubel and Yang’s result by replacing “2 CM”
with “2 IM” in 1979, and then by replacing “entire function” with “meromorphic function”
in [19] (see also Gundersen [7]). In 2013, Li [15] improved these results by adding some
condition on the poles of the meromorphic function f .

This paper is to consider replacing the “derivative” with “difference operator”, which is
defined as follows:

�ηf (z) = f (z + η) – f (z) and �n+1
η f (z) = �n

ηf (z + η) – �n
ηf (z), n ∈N

+,

where η is always a nonzero complex constant. This idea is partly due to the work by
Heittokangas et al. in [12]. They were the first to consider a nonconstant meromorphic
function f (z) sharing values with its shift f (z + η) and to prove the following.

Theorem C ([12]) Let f (z) be a meromorphic function of finite order, and let η ∈C. If f (z)
and f (z + η) share three distinct periodic functions a1, a2, a3 ∈ Ŝ(f ) with period η CM, then
f (z) = f (z + η) for all z ∈C.

In Theorem C, Ŝ(f ) = S(f )∪{∞}, where S(f ) is the set containing all meromorphic func-
tions a(z) satisfying

T(r, a) = S(r, f ), as r → ∞, r /∈ E,
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where E is an exceptional set of finite logarithmic measure. Theorem C can be read as a
“3 CM” theorem and it has been improved to “2 CM + 1 IM” by Heittokangas et al. [13].
The key theory used in their research consists of the difference counterparts of Nevanlinna
theory of meromorphic functions (see e.g. [3, 10, 11]).

In 2013, Chen and Yi [2] proved the following Theorem D, which was then extended to
Theorem E by Cui and Chen in [4], and to Theorem F by Zhang and Liao in [24].

Theorem D ([2]) Let f (z) be a transcendental meromorphic function such that its order
ρ(f ) is not integer or infinite, and let η be a constant such that f (z + η) �≡ f (z). If f (z) and
�ηf (z) share three distinct values a, b, ∞ CM, then f (z) ≡ �ηf (z).

Theorem E ([4]) Let f (z) be a nonconstant meromorphic function of finite order, and let η

be a nonzero finite complex constant. Let a, b be two distinct finite complex constants and
n be a positive integer. If f (z) and �n

ηf (z) share a, b, ∞ CM, then f (z) ≡ �n
ηf (z).

Theorem F ([24]) Let f (z) be a nonconstant entire function of finite order and η be a
nonzero finite complex constant. Let a, b be two distinct finite complex constants. If f (z)
and �ηf (z) share a, b CM, then f (z) ≡ �ηf (z).

Remark 1.2 We will improve Theorems D–F by the following Theorem 1.1, whose proof
is given with a different method from those in [2, 4, 24].

Theorem 1.1 Let f (z) be a nonconstant entire function of finite order, and let a1, a2 be
two distinct finite complex constants. If f (z) and �n

ηf (z) share a1 and a2 “CM”, then f (z) ≡
�n

ηf (z), and hence f (z) and �n
ηf (z) share a1 and a2 CM.

Theorem 1.2 Let f (z) be a nonconstant entire function of finite order, and let a1, a2 be two
distinct finite complex constants. If f (z) and �n

ηf (z) share a1 and a2 IM, and

N
(

r,
1

f – a1

)
= S(r, f ) (1.1)

holds, then f (z) ≡ �n
ηf (z), and hence f (z) and �n

ηf (z) share a1 and a2 CM.

As a continuation of Theorem B and Theorem 1.2, we prove the following.

Theorem 1.3 Let f (z) be a nonconstant entire function of finite order, and let a1, a2 be two
distinct finite complex constants. If f (z) and �n

ηf (z) share a1 and a2 IM, and there exists
some constant λ > 1

2 such that δ(a1, f ) + δ(a2, f ) ≥ λ, then f (z) ≡ �n
ηf (z), and hence f (z) and

�n
ηf (z) share a1 and a2 CM.

Other basic concepts and fundamental results of the Nevanlinna theory of meromorphic
functions (see e.g. [14, 23]) may be used directly in what follows.

2 Lemmas
Now we recall two lemmas which are important in the proofs of our theorems. The first
lemma has been used frequently in dealing with value sharing problems related to differ-
ence operators.
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Lemma 2.1 ([11]) Let η ∈ C, n ∈N, and let f (z) be a meromorphic function of finite order.
Then, for any small periodic function a(z) with period η, with respect to f (z),

m
(

r,
�n

ηf
f – a

)
= S(r, f ),

where the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

Use the notation Nk)(r, 1
f –a ) (N (k(r, 1

f –a )) to denote the counting function of the zeros of
f (z) – a in the disk |z| ≤ r, whose multiplicities ≤ k (≥ k) and are counted once. Then we
have the following.

Lemma 2.2 ([23]) Let f (z) be a nonconstant meromorphic function, a be an arbitrary com-
plex number, and k be a positive integer. Then

(i) N(r, 1
f –a ) ≤ k

k+1 Nk)(r, 1
f –a ) + 1

k+1 N(r, 1
f –a );

(ii) N(r, 1
f –a ) ≤ k

k+1 Nk)(r, 1
f –a ) + 1

k+1 T(r, f ) + O(1).

Lemma 2.3 Suppose that a1, a2 ∈ C satisfying a1 �= a2, f (z) is a nonconstant entire function
of finite order sharing a1 and a2 “CM” with �n

ηf (z). If f (z) �≡ �n
ηf (z), then

T(r, f ) + S(r, f ) =
2∑

j=1

N
(

r,
1

f – aj

)
=

2∑
j=1

N
(

r,
1

�n
ηf – aj

)
.

What is more, if f (z) �≡ �n
ηf (z) and (1.1) holds, then

(i) T(r,�n
ηf ) = T(r, f ) + S(r, f );

(ii) ∀b ∈C \ {a1, a2}, N(r, 1
f –b ) = T(r, f ) + S(r, f ), N(r, 1

�n
η f –b ) = T(r, f ) + S(r, f );

(iii) N(r, 1
f ′ ) = S(r, f ), N(r, 1

(�n
η f )′ ) = S(r, f );

(iv) N∗(r, a1) + N∗(r, a2) = S(r, f ), where N∗(r, ai) is the reduced counting function of the
multiple common zeros of f – ai and �n

ηf – ai (i = 1, 2).

Proof Suppose that f (z) �≡ �n
ηf (z). Since f (z) and �n

ηf (z) share two values a1 and a2 “CM”,
according to the second fundamental theorem and Lemma 2.1, we can easily derive that

T(r, f ) ≤ N
(

r,
1

f – a1

)
+ N

(
r,

1
f – a2

)
+ S(r, f )

=
2∑

j=1

N
(

r,
1

�n
ηf – aj

)
+

2∑
j=1

[
N

(
r,

1
f – aj

)
– NE(r, aj)

]
+ S(r, f )

≤
2∑

j=1

N
(

r,
1

�n
ηf – aj

)
+ S(r, f ) ≤ N

(
r,

1
f – �n

ηf

)
+ S(r, f )

≤ T
(
r, f – �n

ηf
)

+ S(r, f ) = m
(
r, f – �n

ηf
)

+ S(r, f )

≤ m
(

r,
�n

ηf
f

)
+ m(r, f ) + S(r, f ) ≤ T(r, f ) + S(r, f ).

Hence we prove the first conclusion.
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Suppose that f (z) �≡ �n
ηf (z) and (1.1) holds, and we prove conclusions (i)–(iv) step by

step.
Step 1. Notice that f (z) and �n

ηf (z) share the value a1 “CM” and (1.1) imply that

N
(

r,
1

�n
ηf – a1

)
= N

(
r,

1
f – a1

)
+

[
N

(
r,

1
�n

ηf – aj

)
– NE(r, aj)

]
= S(r, f ). (2.1)

Then, applying the second fundamental theorem again, we have

T
(
r,�n

ηf
) ≤ N

(
r,

1
�n

ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)
+ S

(
r,�n

ηf
)

≤ N
(

r,
1

�n
ηf – a2

)
+ S(r, f ) ≤ T

(
r,�n

ηf
)

+ S(r, f ).

From this and the second equality in the first conclusion, we can see that

T
(
r,�n

ηf
)

= T(r, f ) + S(r, f ).

Step 2. For all b ∈C\{a1, a2}, from the second fundamental theorem, the second equality
in the first conclusion, and conclusion (i), we can derive that

2T(r, f ) + S(r, f ) = 2T
(
r,�n

ηf
)

≤ N
(

r,
1

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)
+ N

(
r,

1
�n

ηf – b

)
+ S

(
r,�n

ηf
)

≤ T(r, f ) + N
(

r,
1

�n
ηf – b

)
+ S(r, f )

≤ T(r, f ) + T
(
r,�n

ηf
)

+ S(r, f ) = 2T(r, f ) + S(r, f ),

which leads to

N
(

r,
1

�n
ηf – b

)
= T(r, f ) + S(r, f ).

Similarly, we can prove that the following equality holds:

N
(

r,
1

f – b

)
= T(r, f ) + S(r, f ).

Step 3. Set

h(z) =
(�n

ηf )′

�n
ηf – a1

. (2.2)

Then we get from (2.1) and the lemma of logarithmic derivatives that

T(r, h) = m(r, h) + N(r, h)

= m
(

r,
(�n

ηf )′

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a1

)
= S(r, f ).

(2.3)
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It is obvious that h(z) �≡ 0 since �n
ηf (z) is not a constant. Hence from (2.1)–(2.3) we can

deduce that

N
(

r,
1

(�n
ηf )′

)
≤ N

(
r,

1
�n

ηf – a1

)
+ N

(
r,

1
h

)

≤ N
(

r,
1

�n
ηf – a1

)
+ T(r, h) = S(r, f ).

Similarly, we can prove that N(r, 1
f ′ ) = S(r, f ).

Step 4. Consider the following function:

g(z) =
f ′(f – �n

ηf )
(f – a1)(f – a2)

. (2.4)

The condition that f (z) and �n
ηf (z) share two values a1 and a2 “CM” ensures that g(z) is a

meromorphic function such that all poles of g(z) consist of zeros of f (z) – a1 and f (z) – a2.
We obtain from Lemma 2.1 and the lemma of logarithmic derivatives that

T(r, g) = m(r, g) + N(r, g) = m
(

r,
f ′(f – �n

ηf )
(f – a1)(f – a2)

)
+ N

(
r,

f ′(f – �n
ηf )

(f – a1)(f – a2)

)

≤ m
(

r,
ff ′

(f – a1)(f – a2)

)
+ m

(
r,

f – �n
ηf

f

)

+
2∑

j=1

[
N

(
r,

1
f – aj

)
– NE(r, aj)

]

≤ m
(

r,
a1

a1 – a2
· f ′

f – a1

)
+ m

(
r,

a2

a1 – a2
· f ′

f – a2

)
+ S(r, f )

= S(r, f ).

(2.5)

Let zij (j = 1, 2, . . .) be the multiple common zeros of f – ai and �n
ηf – ai (i = 1, 2), and let

mij and nij be the multiplicities of the zero zij of f – ai and �n
ηf – ai, respectively. Note that

mij, nij ≥ 2. It follows from expression (2.4) of g(z) that zij (j = 1, 2, . . .) are zeros of g(z) with
multiplicity at least min{mij, nij} – 1 ≥ 1. This and (2.5) show that

N∗(r, a1) + N∗(r, a2) ≤ N
(

r,
1
g

)
≤ T(r, g) = S(r, f ). �

Remark 2.1 Checking the proof of Lemma 2.3 carefully, we can see that all the conclu-
sions of it still hold when 2 “CM” is replaced with 2 IM.

Lemma 2.4 Let f (z) be a nonconstant entire function of finite order, and let a1, a2 be two
distinct finite complex constants. If f (z) and �n

ηf (z) share a1 and a2 IM and (1.1) holds,
then f (z) and �n

ηf (z) share a1 and a2 “CM”.

Proof It is easy to find that f (z) and �n
ηf (z) share a1 “CM”, since f (z) and �n

ηf (z) share the
value a1 IM and (1.1) holds.
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From the second fundamental theorem and (1.1), we have

T(r, f ) ≤ N
(

r,
1

f – a1

)
+ N

(
r,

1
f – a2

)
+ S(r, f )

= N
(

r,
1

f – a2

)
+ S(r, f ).

(2.6)

Let k = 1. Then (ii) in Lemma 2.2 can be rewritten as

N
(

r,
1

f – a2

)
≤ 1

2
N1)

(
r,

1
f – a2

)
+

1
2

T(r, f ) + O(1). (2.7)

(2.6) and (2.7) give

T(r, f ) ≤ N1)

(
r,

1
f – a2

)
+ S(r, f ).

And due to

N1)

(
r,

1
f – a2

)
≤ N

(
r,

1
f – a2

)
≤ T(r, f ) + S(r, f ),

the above inequality implies

T(r, f ) = N1)

(
r,

1
f – a2

)
+ S(r, f ) = N

(
r,

1
f – a2

)
+ S(r, f ), (2.8)

and thus

N (2

(
r,

1
f – a2

)
= S(r, f ).

Similarly, the following equality holds:

T
(
r,�n

ηf
)

= N1)

(
r,

1
�n

ηf – a2

)
+ S

(
r,�n

ηf
)

= N
(

r,
1

�n
ηf – a2

)
+ S

(
r,�n

ηf
)
.

Then, by (i) in Lemma 2.3, we can derive that

T(r, f ) = N1)

(
r,

1
�n

ηf – a2

)
+ S(r, f ) = N

(
r,

1
�n

ηf – a2

)
+ S(r, f ), (2.9)

and thus

N (2

(
r,

1
�n

ηf – a2

)
= S(r, f ). (2.10)

By (iv) in Lemma 2.3, one can easily see that

NE(r, a2) – N1)
E (r, a2) ≤ N∗(r, a2) = S(r, f ). (2.11)
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It follows from (2.8), (2.10), and (2.11) that

N
(

r,
1

f – a2

)
– NE(r, a2)

= N
(

r,
1

f – a2

)
– N1)

E (r, a2) + S(r, f )

≤ N
(

r,
1

f – a2

)
–

(
N1)

(
r,

1
f – a2

)
– N (2

(
r,

1
�n

ηf – a2

))
+ S(r, f )

= S(r, f ).

(2.12)

Since f (z) and �n
ηf (z) share a2 IM, from (2.12) we obtain that

N
(

r,
1

�n
ηf – a2

)
– NE(r, a2) = S(r, f ). (2.13)

Thus, f (z) and �n
ηf (z) share the value a2 “CM”. �

Remark 2.2 We can find that (2.8), (2.12), and (2.13) used in the proof of Theorem 1.1
still hold when 2 IM is replaced with 2 “CM”.

Lemma 2.5 ([3]) Let f (z) be a meromorphic function of finite order ρ , ε be a positive con-
stant, η1 and η2 be two distinct nonzero complex constants. Then there exists a subset
E ⊂ (1, +∞) of finite logarithmic measure such that, for all z satisfying |z| = r /∈ [0, 1] ∪ E
and as r → ∞ sufficiently large,

exp
{

–rρ–1+ε
} ≤

∣∣∣∣ f (z + η1)
f (z + η2)

∣∣∣∣ ≤ exp
{

rρ–1+ε
}

.

Lemma 2.6 ([1, 9]) Let f (z) be a meromorphic function with finite order ρ . Then, for any
given ε > 0, there exists a set E ⊂ (1, +∞) of finite linear measure such that, for all z satis-
fying |z| = r /∈ [0, 1] ∪ E and r sufficiently large,

exp
{

–rρ+ε
} ≤ ∣∣f (z)

∣∣ ≤ exp
{

rρ+ε
}

.

Lemma 2.7 ([23]) Suppose that f (z) is a nonconstant meromorphic function in |z| < R and
aj (j = 1, 2, . . . , q) are q distinct finite complex numbers. Then

m

(
r,

q∑
j=1

1
f – aj

)
=

q∑
j=1

m
(

r,
1

f – aj

)
+ O(1)

holds for 0 < r < R.

3 Proof of Theorem 1.1
Suppose that f (z) �≡ �n

ηf (z). Since f (z) is a nonconstant entire function sharing a1 and a2

“CM” with �n
ηf (z),

�n
ηf (z) – a1

f (z) – a1
= p1(z)eq1(z) (3.1)
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and

�n
ηf (z) – a2

f (z) – a2
= p2(z)eq2(z), (3.2)

where pj(z) are meromorphic functions such that ρ(pj) < ρ(f ) (j = 1, 2), and q1(z), q2(z) are
polynomials such that deg p1(z) ≤ ρ(f ), deg q2(z) ≤ ρ(f ).

If p1(z)eq1(z) ≡ p2(z)eq2(z), then we get from (3.1) and (3.2) that f (z) ≡ �n
ηf (z). Next, we

suppose that p1(z)eq1(z) �≡ p2(z)eq2(z). From (3.1) and (3.2), we have

f (z) – a1 =
(a2 – a1)(1 – p2(z)eq2(z))
p1(z)eq1(z) – p2(z)eq2(z) . (3.3)

Since ρ(pj) < ρ(f ) (j = 1, 2), we can deduce from (3.3) that almost all (except at most S(r, f ))
zeros of f (z) – a1 are zeros of g(z) := 1 – p2(z)eq2(z). Hence

N
(

r,
1

f – a1

)
≤ N

(
r,

1
1 – p2eq2

)
+ S(r, f ) ≤ T

(
r, eq2

)
+ S(r, f ). (3.4)

Next, we discuss two cases.
Case 1: deg q2(z) < ρ(f ). It follows from (3.4) that

N
(

r,
1

f – a1

)
= S(r, f ).

Therefore, Lemma 2.3 is valid now. Let us consider the following two functions:

F(z) =
�n

ηf – a1

�n
ηf – a2

, G(z) =
f – a1

f – a2
. (3.5)

Notice that f (z) and �n
ηf (z) share two values a1 and a2 “CM”, and we see that F(z) and

G(z) are meromorphic functions sharing 0 and ∞ “CM”. By (3.5), (ii) in Lemma 2.3, and
the Valiron–Mokhon’ko theorem (see e.g. [16, 22]), we have

T(r, F) = T
(
r,�n

ηf
)

+ S
(
r,�n

ηf
)

= T(r, f ) + S(r, f ),

T(r, G) = T(r, f ) + S(r, f ).
(3.6)

Let

ϕ(z) =
F ′′

F ′ –
G′′

G′ , (3.7)

and we get, by applying the lemma of logarithmic derivatives,

m(r,ϕ) ≤ m
(

r,
F ′′

F ′

)
+ m

(
r,

G′′

G′

)
+ O(1)

= S
(
r, F ′) + S

(
r, G′) = S(r, f ).

(3.8)

Clearly, (3.7) shows that the poles of ϕ(z) are simple, and they can only come from the
zeros of F ′(z) and G′(z) as well as the poles of F(z) and G(z).
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In the following, suppose that z2 is a pole of F(z) and G(z) with the same multiplicity k,
which comes from the zero z2 of f – a2 and �n

ηf – a2 with the same multiplicity k. And
suppose that the following two expansions hold in the neighborhood of z – z2:

F(z) =
A–k

(z – z2)k +
A–k+1

(z – z2)k–1 + · · · ,

G(z) =
B–k

(z – z2)k +
B–k+1

(z – z2)k–1 + · · · ,

a simple computation shows that

ϕ =
F ′′

F ′ –
G′′

G′

=
(

–
k + 1
z – z2

+
(k – 1)A–k+1

kA–k
+ O(z – z2)

)

–
(

–
k + 1
z – z2

+
(k – 1)B–k+1

kB–k
+ O(z – z2)

)

=
k – 1

k

(
A–k+1

A–k
–

B–k+1

B–k

)
+ O(z – z2),

(3.9)

which implies that z2 is not the pole of ϕ(z).
To consider the zeros of F ′(z) and G′(z), we derive from (3.5) that

F ′ =
(a1 – a2)(�n

ηf )′

(�n
ηf – a2)2 , G′ =

(a1 – a2)f ′

(f – a2)2 . (3.10)

Now (iv) in Lemma 2.3 and (3.10) imply that

N
(

r,
1
F ′

)
≤ N

(
r,

1
(�n

ηf )′

)
= S(r, f ), N

(
r,

1
G′

)
≤ N

(
r,

1
f ′

)
= S(r, f ). (3.11)

Then, by (2.12),(2.13),(3.5),(3.7), and (3.11), we can deduce that

N(r,ϕ)

≤ N
(

r,
1
F ′

)
+ N

(
r,

1
G′

)
+ N(r, F) + N(r, G) – 2NE(r, a2) + S(r, f )

= N
(

r,
1

�n
ηf – a2

)
+ N

(
r,

1
f – a2

)
– 2NE(r, a2) + S(r, f ) = S(r, f ).

(3.12)

Thus (3.8) and (3.12) give immediately

T(r,ϕ) = m(r,ϕ) + N(r,ϕ) = S(r, f ). (3.13)

If ϕ(z) �≡ 0, suppose that z∗
2 is a simple common pole of F(z) and G(z), which comes from

the simple common zero z2 of f – a2 and �n
ηf – a2.Then (3.9) implies that z∗

2 is a zero of
ϕ(z) with the multiplicity at least 1, which means that

N1)
E (r, a2) ≤ N

(
r,

1
ϕ

)
≤ T(r,ϕ) = S(r, f ). (3.14)



Chen and Li Journal of Inequalities and Applications        (2020) 2020:220 Page 11 of 16

Combining (2.8), (2.11), and (2.12) shows that

N1)
E (r, a2) = NE(r, a2) + S(r, f )

= N
(

r,
1

f – a2

)
+ S(r, f ) = T(r, f ) + S(r, f ).

(3.15)

Thus clearly T(r, f ) ≤ S(r, f ) follows immediately from (3.14) and (3.15). That is impossi-
ble.

Now, we have proved that ϕ(z) ≡ 0, that is,

F ′′

F ′ ≡ G′′

G′ .

Taking integration of this identity twice, we can derive that

F ≡ αG + β , (3.16)

where α ( �= 0) and β are constants.
Next, we discuss two subcases.
Case 1.1: a1 is not a Nevanlinna exceptional value of f (z). The condition that f (z) and

�n
ηf (z) share the value a1 “CM” ensures that there exists z3 such that f (z3) = �n

ηf (z3) = a1,
and then from (3.5), F(z3) = G(z3) = 0. Therefore β = 0, and (3.16) becomes

F ≡ αG. (3.17)

Since f (z) �≡ �n
ηf (z), we see that α �= 1. Thus, 1 must be a Picard exceptional value of F(z)

and G(z), we can deduce easily from (3.17) that 1, α are Picard exceptional values of F(z),
and 1, 1

α
are Picard exceptional values of G(z). This fact and (3.5) show that

G =
f – a1

f – a2
�= 1

α
.

That is,

f �= a1α – a2

α – 1
, (3.18)

which means that a1α–a2
α–1 is a Picard exceptional value of f (z). Obviously, a1α–a2

α–1 �= a1, a2.
On the other hand, by (ii) in Lemma 2.3, the following equality holds:

N
(

r,
1

f – a1α–a2
α–1

)
= T(r, f ) + S(r, f ).

This contradicts (3.18).
Case 1.2: a1 is a Nevanlinna exceptional value of f (z). Since f (z) and �n

ηf (z) share a1

“CM”, a1 is also a Nevanlinna exceptional value of �n
ηf , and thus 0 is a Nevanlinna excep-

tional value of F(z) and G(z). From (3.5) and (3.16), we see that 0, 1, β , α + β and 0, 1, – β

α
,
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1–β

α
are Nevanlinna exceptional values of F(z) and G(z), respectively. As f (z) �≡ �n

ηf (z), we
get α �= 1. Hence β = 1, α + β = 0. And now (3.16) is of the form

F ≡ –G + 1. (3.19)

From (3.19), we know that F(z) and G(z) share 1
2 CM, which implies that f (z) and �n

ηf (z)
share another value 2a1 – a2 ( �= a1, a2) CM. Then

N
(

r,
1

f – a2

)
+ N

(
r,

1
f – (2a1 – a2)

)

≤ N
(

r,
1

f – �n
ηf

)

≤ T
(
r, f – �n

ηf
)

= m
(
r, f – �n

ηf
)

≤ m
(

r,
�n

ηf
f

)
+ m(r, f ) ≤ T(r, f ) + S(r, f ).

This and (3.15) yield N(r, 1
f –(2a1–a2) ) = S(r, f ). On the other hand, by (i) in Theorem 2.3, the

following equality holds:

N
(

r,
1

f – (2a1 – a2)

)
= T(r, f ) + S(r, f ).

This is a contradiction.
Case 2: deg q2(z) = ρ(f ). If deg q1(z) < ρ(f ), then we can deduce similar contradictions as

in Case 1. Thus, deg q1(z) = ρ(f ). Suppose that deg q1(z) = deg q2(z) = ρ(f ) = d. Obviously,
d ≥ 1. Otherwise, we get a contradiction from (3.3 that

ρ(f ) ≤ max
{
ρ(p1),ρ(p2)

}
.

Set

q1(z) = Adzd + Ad–1zd–1 + · · · + A0

and

q2(z) = Bdzd + Bd–1zd–1 + · · · + B0,

then AdBd �= 0. Denote Ad = r1eiθ1 , Bd = r2eiθ2 , Ad +Bd = r3eiθ3 , where θj ∈ [–π ,π ), j = 1, 2, 3.
From (3.1) and (3.2), we have

�n
ηf

f – a1
=

a2p1eq1 – a1p2eq2 + (a1 – a2)p1p2eq1+q2

(a2 – a1)(1 – p2eq2 )
. (3.20)

Notice that

�n
ηf = �n

η(f – aj) =
n∑

j=0

(–1)jCj
n
(
f
(
z + (n – j)η

)
– aj

)
, j = 1, 2.
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Set  = max{ρ(p1),ρ(p2)} and ε = min{ d–

2 , 1
2 }, then applying Lemma 2.5 we see that there

exists a subset E1 ⊂ (1, +∞) of finite logarithmic measure such that, for all z satisfying
|z| = r /∈ [0, 1] ∪ E1 and as r → ∞ sufficiently large,

exp
{

–rd–1+ε
} ≤

∣∣∣∣ �n
ηf

f – aj

∣∣∣∣ ≤ exp
{

rd–1+ε
}

, j = 1, 2. (3.21)

By Lemma 2.6, for ε given above, there exists a set E2 ⊂ (1, +∞) of finite linear measure
such that, for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and r sufficiently large,

exp
{

–r+ε
} ≤ ∣∣pj(z)

∣∣ ≤ exp
{

r+ε
}

, j = 1, 2. (3.22)

Case 2.1: r1 > max{r2, r3} := r4. For the point ϕ1 = –θ1/d ∈ [–π ,π ), we see that, for all
z = |z|eiϕ1 = reiϕ1 ,

Adzd = r1rd > r4rd = max
{

r2rd, r3rd} ≥ max
{
Re Adzd, Re(Ad + Bd)zd}. (3.23)

Then we deduce from (3.20)–(3.22) that, for all z = reiϕ1 satisfying |z| = r /∈ [0, 1] ∪ E1 ∪ E2

and r sufficiently large,

|a2| exp
{

r1rd(1 + o(1)
)

– r+ε
}

<
∣∣a2p1eq1

∣∣ =
∣∣∣∣(a2 – a1)

(
1 – p2eq2

) �n
ηf

f – a1
+ a1p2eq2 – (a1 – a2)p1p2eq1+q2

∣∣∣∣
≤

∣∣∣∣(a2 – a1)
(
1 – p2eq2

) �n
ηf

f – a1

∣∣∣∣ +
∣∣a1p2eq2

∣∣ +
∣∣(a1 – a2)p1p2eq1+q2

∣∣
<

(|a1| + |a2|
)(

1 + exp
{

r+ε
})

exp
{

rd–1+ε
}

+ |a1| exp
{

r2rd(1 + o(1)
)

+ r+ε
}

+
(|a1| + |a2|

)
exp

{
r3rd(1 + o(1)

)
+ 2r+ε

}
< exp

{
r4rd(1 + o(1)

)}
.

However, from (3.23) we see that this is impossible.
Case 2.2: r2 > max{r1, r3}. Rewrite (3.20) as the form

�n
ηf

f – a2
=

a2p1eq1 – a1p2eq2 + (a1 – a2)p1p2eq1+q2

(a2 – a1)(1 – p1eq1 )
.

With this and reasoning as in Case 2.1, we can deduce a similar contradiction.
Case 2.3: r3 > max{r1, r2}. Reasoning as in Case 2.1, we can deduce a similar contradiction

again.
Case 2.4: r1 = r2 = r3. Since Ad = r1eiθ1 , Bd = r2eiθ2 , Ad + Bd = r3eiθ3 , θ1, θ2, and θ3 must be

distinct and satisfy

|θj – θk| /∈ {0, 2π}, 1 ≤ j < k ≤ 3.

Thus, for ϕ1 = –θ1/d and z = reiϕ1 , we have

Adzd = r1rd > max
{

r1 cos(θ2 + dϕ2)rd, r1 cos(θ2 + dϕ2)rd}
= max

{
Re Bdzd, Re(Ad + Bd)zd}.

With this and arguing as in Case 2.1, we can also deduce a similar contradiction.
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Thus, we finally prove that f (z) ≡ �n
ηf (z).

Remark 3.1 From Lemma 2.4 and Theorem 1.1, we can get Theorem 1.2 immediately.
And we omit it.

4 Proof of Theorem 1.3
We begin our proof by supposing that f (z) �≡ �n

ηf (z). We get immediately from Lemma 2.1
that

T
(
r,�n

ηf
)

= m
(
r,�n

ηf
) ≤ m

(
r,

�n
ηf
f

)
+ m(r, f ) = T(r, f ) + S(r, f ),

which also gives S(r,�n
ηf ) ≤ S(r, f ).

Since f (z) and �n
ηf (z) share two values a1 and a2 IM, we get by applying the second

fundamental theorem that

T(r, f ) ≤ N
(

r,
1

f – a1

)
+ N

(
r,

1
f – a2

)
+ S(r, f )

= N
(

r,
1

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)
+ S(r, f ) ≤ 2T

(
r,�n

ηf
)

+ S(r, f ).

And hence

T
(
r,�n

ηf
) ≥ 1

2
T(r, f ) + S(r, f ). (4.1)

Using Lemma 2.1 and Lemma 2.7, one can easily prove that

m
(

r,
1

f – a1

)
+ m

(
r,

1
f – a2

)

= m
(

r,
1

f – a1
+

1
f – a2

)
+ O(1)

≤ m
(

r,
1

�n
ηf

)
+ m

(
r,

�n
ηf

f – a1
+

�n
ηf

f – a2

)
+ O(1) ≤ m

(
r,

1
�n

ηf

)
+ S(r, f ).

(4.2)

The assumption δ(a1, f ) + δ(a2, f ) ≥ λ means that

N
(

r,
1

f – a1

)
+ N

(
r,

1
f – a2

)
≤ (2 – λ)T(r, f ) + S(r, f ). (4.3)

We get by combining (4.2) and (4.3) that

m
(

r,
1

�n
ηf

)
≥ 2T(r, f ) – N

(
r,

1
f – a1

)
– N

(
r,

1
f – a2

)
+ O(1)

≥ λT(r, f ) + S(r, f ).

(4.4)
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On the other hand, we can derive by using Lemma 2.7 and the lemma of logarithmic
derivatives that

m
(

r,
1

�n
ηf

)
+ m

(
r,

1
�n

ηf – a1

)
+ m

(
r,

1
�n

ηf – a2

)

= m
(

r,
1

�n
ηf

+
1

�n
ηf – a1

+
1

�n
ηf – a2

)
+ O(1)

≤ m
(

r,
(�n

ηf )′

�n
ηf

+
(�n

ηf )′

�n
ηf – a1

+
(�n

ηf )′

�n
ηf – a2

)
+ m

(
r,

1
(�n

ηf )′

)
+ O(1)

≤ m
(

r,
1

(�n
ηf )′

)
+ S(r, f ).

(4.5)

Noting that f (z) shares two values a1 and a2 IM with �n
ηf (z), we can derive that

N
(

r,
1

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)

≤ N
(

r,
1

f – �n
ηf

)
≤ T

(
r, f – �n

ηf
)

= m
(
r, f – �n

ηf
)

≤ m
(

r,
�n

ηf
f

)
+ m(r, f ) ≤ T(r, f ) + S(r, f ).

(4.6)

Furthermore, from (4.6) we know

N
(

r,
1

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)

≤ N
(

r,
1

�n
ηf – a1

)
+ N

(
r,

1
�n

ηf – a2

)
+ N

(
r,

1
(�n

ηf )′

)

≤ T(r, f ) + N
(

r,
1

(�n
ηf )′

)
+ S(r, f ).

(4.7)

Hence (4.5) and (4.7) lead to

m
(

r,
1

�n
ηf

)
+ 2T

(
r,�n

ηf
)

+ O(1)

= m
(

r,
1

�n
ηf

)
+ T

(
r,

1
�n

ηf – a1

)
+ T

(
r,

1
�n

ηf – a2

)

≤ T(r, f ) + T
(

r,
1

(�n
ηf )′

)
+ S(r, f )

≤ T(r, f ) + T
(
r,�n

ηf
)

+ S(r, f ).

Since λ > 1
2 , we can conclude easily from the above inequality and (4.4) that

T
(
r,�n

ηf
) ≤ T(r, f ) – m

(
r,

1
�n

ηf

)
+ S(r, f )

≤ (1 – λ)T(r, f ) + S(r, f ) <
1
2

T(r, f ) + S(r, f ),

which contradicts (4.1). Hence f (z) ≡ �n
ηf (z).
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