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Abstract
The results reported in this paper are concerned with the existence and uniqueness
of solutions of discrete fractional order two-point boundary value problem. The
results are developed by employing the properties of Caputo and Riemann–Liouville
fractional difference operators, the contraction mapping principle and the Brouwer
fixed point theorem. Furthermore, the conditions for Hyers–Ulam stability and
Hyers–Ulam–Rassias stability of the proposed discrete fractional boundary value
problem are established. The applicability of the theoretical findings has been
demonstrated with relevant practical examples. The analysis of the considered
mathematical models is illustrated by figures and presented in tabular forms. The
results are compared and the occurrence of overlapping/non-overlapping has been
discussed.
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1 Introduction
Partial differential equations are invariably important in almost all fields of applied math-
ematics and science [1–3]. Particularly, one can observe that partial differential equations
have been utilized in few places to help in the use of ordinary differential equations such
as in the study of waves in liquids, propagation of sound, gravitational attraction and vi-
brations of strings [4]. On the other hand, partial fractional differential equations have
presented adequate interpretations for many physical problems in areas such as fluid me-
chanics, biological populations, viscoelasticity, advection–diffusion, nuclear science and
signals processing [5, 6]. In many cases, like the heat equation, wave equation, Poisson
equation and Laplace equation, the problems remained unsolved due to the nonlinearity
property of these equations. Owing to this limitation, various techniques like numerical
methods for approximating solutions are used to problems modeled by nonlinear partial
differential equations involving initial and boundary conditions [7–12].

Very recently, fractional differential equations (FDEs) have become intensively rich the-
ory and found applications in various fields. These equations, which involve derivatives or
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integrals of fractional order, have resulted in a great interest for many researchers due to
their effective applications in physics, chemistry, chaotic dynamical systems and random
walks with memory in different fields of applied mathematics and engineering. Partic-
ularly emphasis has been put to the topics on existence, uniqueness and stability of so-
lutions of differential equations of fractional order; see [13–25] and the references cited
therein. The corresponding discrete counter part, fractional order difference equations
(FODEs), have appeared as a new research area for mathematicians and scientists. The
study of discrete fractional calculus was initiated by Miller and Ross [26] and then de-
veloped by several other researchers [27–41]. In the meantime, researchers have adopted
the fact that dealing with FODEs provides a more accurate description than FDEs and
the use of FODEs facilitates applications that require computational and simulation anal-
ysis.

The organization of the remaining part of the paper is outlined as follows: Fundamental
definitions and concepts are introduced in Sect. 2. Section 3 is devoted to the discussion
on existence and uniqueness results for a discrete FBVP (3.1). The main results of this sec-
tion are obtained by using the contraction mapping principle and the Brouwer fixed point
theorem. In Sect. 4, we develop conditions for Hyers–Ulam and Hyers–Ulam–Rassias sta-
bility of the discrete FBVP. The applications are discussed in Sect. 5 which is followed by
our conclusion.

2 Auxiliary preliminaries
Now we present some fundamental definitions and essential lemmas of discrete fractional
calculus that are to be used throughout this paper.

Definition 2.1 (see [31, 32]) Let α > 0. The αth fractional sum of a function � is defined
as

�–α�(x) =
1

�(α)

x–α∑

�=a

(x – � – 1)(α–1)�(�),

for all x ∈ {a + α, a + α + 1, . . .} := Na+α and x(α) := �(x+1)
�(x+1–α) .

Definition 2.2 (see [30–32]) Let α > 0 and set μ = n – α. The αth fractional Caputo dif-
ference operator is defined as

C
0 �α

x �(x) = �–μ
(
�n�(x)

)
=

1
�(μ)

x–μ∑

�=a

(x – � – 1)(μ–1)�n�(�),

for all x ∈Na+μ and n – 1 < α ≤ n, where n = �α� and �.� is the ceiling of a number.

Lemma 2.3 (see [28, 39]) Let x and α be any numbers for which x(α) and x(α–1) are defined.
Then �x(α) = αx(α–1).

Lemma 2.4 (see [38, 39]) Let 0 ≤ N – 1 < α ≤ N . Then

�–αRL
0 �α

x �(x) = �(x) –
N–1∑

j=0

x(α–N+j)

�(α + j – 1)
�j[�α–N�(a)

]
,
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= �(x) + B1x(α–1) + B2x(α–2) + · · · + BN x(α–N),

for Bi ∈ R, where i = 1, 2, . . . , N .

Lemma 2.5 (see [27, 31, 32]) Suppose that α > 0 and � is defined on Na. Then

�–αC
0 �α

x �(x) = �(x) –
n–1∑

j=0

(x – a)(j)

j!
�j�(a)

= �(x) + C0 + C1x + · · · + Cn–1x(n–1),

for Ci ∈ R, where i = 0, 1, 2, . . . , n – 1.

Lemma 2.6 (see [30, 37]) If α and x are any numbers, then
1

∑x–α
�=0 (x – � – 1)(α–1) = �(x+1)

α�(x–α+1) .
2

∑L
�=0(α + L – � – 1)(α–1) = 1

α

�(α+L+1)
�(L+1) .

Lemma 2.7 (see [29]) Let μ ∈ R\{. . . , –2, –1}. Then

�–αx(μ) =
�(μ + 1)

�(μ + α + 1)
x(α+μ).

3 Existence and uniqueness of solutions
In this section, we will discuss the existence and uniqueness of solutions to a discrete
fractional boundary value problem (FBVP) of the form

⎧
⎨

⎩

C
0 �α

x w(x) = �(x + α – 1, w(x + α – 1)), 1 < α ≤ 2,

�w(α – 2) = A, w(α + L) = B,
(3.1)

for x ∈ [0, L]N0 = {0, 1, . . . , L}, A, B are some real constants, � : [α – 2,α + L]Nα–2 ×R →R is
continuous function, C

0 �α
x is the Caputo fractional difference operator (CFDO) and L ∈N1.

Now, we state and prove an important theorem which will be helpful to obtain a form of
the solution of (3.1), provided that the solution exists.

Theorem 3.1 Let 1 < α ≤ 2 and � : [α – 2,α + L]Nα–2 → R be given. Then a function w is
a solution to the discrete FBVP

⎧
⎨

⎩

C
0 �α

x w(x) = �(x + α – 1), x ∈ [0, L]N0 ,

�w(α – 2) = A, w(α + L) = B,
(3.2)

if and only if w(x), for x ∈ [α – 2,α + L]Nα–2 is a solution to the following fractional Taylor’s
difference formula:

w(x) = p(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1)

–
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1),

(3.3)
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where p is the unique solution to the discrete FBVP

⎧
⎨

⎩

C
0 �α

x p(x) = 0,

�p(α – 2) = A, p(α + L) = B.
(3.4)

Proof Suppose that p is a solution to (3.4). Using Definition 2.1 together with Lemma 2.5
shows that

p(x) = C0 + C1x, x ∈ [α – 2,α + L]Nα–2 , (3.5)

where C0, C1 ∈R. Applying the operator � to both sides in (3.5), we get

�p(x) = C1. (3.6)

Using the boundary conditions �p(α – 2) = A and p(α + L) = B in (3.5) and (3.6), then it
turns out that C0 = B – A(α + L) and C1 = A. Using C0 and C1 in p(x), we are left with

p(x) = A
[
x – (α + L)

]
+ B. (3.7)

Let w(x) be a solution to (3.2). In view of Lemma 2.5, we obtain a general solution to (3.2)
in the form

w(x) = �–α�(x + α – 1) + C2 + C3x, x ∈ [α – 2,α + L]Nα–2 ,

where C2, C3 ∈R. Whence, by Definition 2.1, we have

w(x) =
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1) + C2 + C3x. (3.8)

Applying the operator � on both sides in (3.8), we get

�w(x) =
1

�(α – 1)

x–α+1∑

�=0

(x – � – 1)(α–2)�(� + α – 1) + C3. (3.9)

By the boundary conditions �w(α – 2) = A and w(α + L) = B, we obtain C2 = B – A(α + L) –
1

�(α)
∑L

�=0(α + L – � – 1)(α–1)�(� + α – 1) and C3 = A. Using the values of C2, C3 and p(x) in
w(x), we deduce that

w(x) = p(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1)

–
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1).

(3.10)

Conversely, it is easy to show that the solution (3.10) satisfies the discrete FBVP (3.2). The
proof of the theorem is complete. �
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For applications using the contraction mapping principle and the Brouwer fixed point
theorems, the following operator is defined:

(Tw)(x) = p(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)

–
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)
,

(3.11)

for x ∈ [α–2,α+L]Nα–2 . Obviously, w(x) is a solution to (3.1) if it is a fixed point of the oper-
ator T . For our convenience, we consider the Banach space E with norm ‖w‖ = max |w(x)|
for x ∈ [α – 2,α + L]Nα–2 .

Theorem 3.2 Assume the following.
(H1) There exists a constant K > 0 such that |�(x, w) – �(x, w1)| ≤ K |w – w1| for each

x ∈ [α – 2,α + L]Nα–2 and all w, w1 ∈ E.
Then the discrete FBVP (3.1) has a unique solution on E provided that

2�(α + L + 1)
�(α + 1)�(L + 1)

<
1
K

. (3.12)

Proof Let w, w1 ∈ E. Then, for each x ∈ [α – 2,α + L]Nα–2 , we have

∣∣(Tw)(x) – (Tw1)(x)
∣∣

≤ 1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)

× ∣∣�
(
� + α – 1, w(� + α – 1)

)
– �

(
� + α – 1, w1(� + α – 1)

)∣∣

+
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)

× ∣∣�
(
� + α – 1, w(� + α – 1)

)
– �

(
� + α – 1, w1(� + α – 1)

)∣∣

≤ K
�(α)

x–α∑

�=0

(x – � – 1)(α–1)∣∣w(� + α – 1) – w1(� + α – 1)
∣∣

+
K

�(α)

L∑

�=0

(α + L – � – 1)(α–1)∣∣w(� + α – 1) – w1(� + α – 1)
∣∣.

It follows that

‖Tw – Tw1‖

≤ K‖w – w1‖
�(α)

x–α∑

�=0

(x – � – 1)(α–1) +
K‖w – w1‖

�(α)

L∑

�=0

(α + L – � – 1)(α–1)

≤ K‖w – w1‖
�(α)

· �(x + 1)
α�(x – α + 1)

+
K‖w – w1‖

�(α)
�(α + L + 1)
α�(L + 1)

≤
[

2�(α + L + 1)
�(α + 1)�(L + 1)

]
K‖w – w1‖,
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which implies that T is a contraction. By the contraction mapping principle, T has a unique
fixed point which is a unique solution to the discrete FBVP (3.1). The proof is complete. �

Theorem 3.3 Assume that � : [α – 2,α + L]Nα–2 × R → R is continuous and M ≥
maxx∈[α–2,α+L] |p(x)|, where p is the unique solution of the discrete FBVP (3.4). Let Q =
max{|�(x, w)| : x ∈ [α – 2,α + L]Nα–2 , w ∈ E, |w| ≤ 2M}. Then the discrete FBVP (3.1) has a
solution provided

Q ≤ M�(α + 1)�(L + 1)
2�(α + L + 1)

. (3.13)

Proof Let M > 0 and we define the set S = {w(x) ∈ E : ‖w‖ ≤ 2M}. To prove this theorem,
we only need to show that T maps S in S. For w(x) ∈ S, we have

∣∣(Tw)(x)
∣∣ =

∣∣∣∣∣p(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)

–
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)
∣∣∣∣∣

≤ ∣∣p(x)
∣∣ +

1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)∣∣�
(
� + α – 1, w(� + α – 1)

)∣∣

+
1

�(α)

L∑

�=0

(α + L – � – 1)(α–1)∣∣�
(
� + α – 1, w(� + α – 1)

)∣∣

≤ M +
Q

�(α)

[ x–α∑

�=0

(x – � – 1)(α–1) +
L∑

�=0

(α + L – � – 1)(α–1)

]

≤ M +
Q

�(α + 1)

[
�(x + 1)

�(x + 1 – α)
+

�(α + L + 1)
�(L + 1)

]
,

‖Tw‖ ≤ M + 2Q
�(α + L + 1)

�(α + 1)�(L + 1)
.

From (3.13), we have ‖Tw‖ ≤ 2M, which implies that T maps S in S. Thus, T has at least
one fixed point which is a solution to the BVP (3.1) according to the Brouwer fixed point
theorem. �

4 Stability analysis
In this section, the stability analysis is presented for the following discrete FBVP:

⎧
⎨

⎩

RL
0 �α

x w(x) = �(x + α – 1, w(x + α – 1)), 1 < α ≤ 2,

�w(α – 2) = A, w(α + L) = B,
(4.1)

for x ∈ [0, L]N0 , where RL
0 �α

x is the Riemann–Liouville fractional difference operator
(RLFDO). We now investigate the solution of (4.1), provided that the solution exists.
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Theorem 4.1 Let 1 < α ≤ 2 and � : [α – 2,α + L]Nα–2 → R be given. A solution to the
discrete FBVP

⎧
⎨

⎩

RL
0 �α

x w(x) = �(x + α – 1), x ∈ [0, L]N0 ,

�w(α – 2) = A, w(α + L) = B,
(4.2)

has the form

w(x) = q(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1)

+
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1),

(4.3)

where u(x) = �(L+2)
�(α+L+1) [β�(α)(x(α–2) – x(α–1)

L+2 ) – x(α–1)] such that β = L+2
(α–2)(L+2)�(α–1)–�(α) and q

is the unique solution to the discrete FBVP

⎧
⎨

⎩

RL
0 �α

x q(x) = 0,

�q(α – 2) = A, q(α + L) = B,
(4.4)

where RL
0 �α

x is the RLFDO.

Proof Let q be a solution to (4.4) defined on [α – 2,α + L]Nα–2 . Using Definition 2.1 and
Lemma 2.4, we get

q(x) = C4x(α–1) + C5x(α–2), (4.5)

for some C4, C5 ∈R. Applying the operator � on both sides in (4.5), we get

�u(x) = C4(α – 1)x(α–2) + C5(α – 2)x(α–3).

Using the boundary conditions �q(α – 2) = A and q(α + L) = B, we deduce that

C4 =
B�(L + 2)

�(α + L + 1)

[
1 +

β�(α)
L + 2

]
–

Aβ

L + 2
, and C5 = βA –

βB�(α)�(L + 2)
�(α + L + 1)

.

Substituting the values of C4 and C5 in q, we obtain

q(x) =
B�(L + 2)

�(α + L + 1)
x(α–1) + β

(
A –

�(α)�(L + 2)
�(α + L + 1)

B
)[

x(α–2) –
x(α–1)

L + 2

]
. (4.6)

Assume that w is a solution to (4.2). From Lemma 2.4, we obtain a general solution for
(4.2) as

w(x) =
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1) + C6x(α–1) + C7x(α–2), (4.7)
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for some C6, C7 ∈R. Applying the operator � on both sides in (4.7), we get

�w(x) =
1

�(α – 1)

x–α+1∑

�=0

(x – � – 1)(α–2)�(� + α – 1)

+ C6(α – 1)x(α–2) + C7(α – 2)x(α–3).

In view of �w(α – 2) = A and w(α + L) = B, we get the value of C6 and C7 as follows:

C6 =
�(L + 2)

�(α + L + 1)

[
1 +

β�(α)
L + 2

](
B –

1
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1)

)

–
Aβ

L + 2

and

C7 = βA –
β�(α)�(L + 2)
�(α + L + 1)

[
B –

1
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1)

]
.

Substituting the values of C6, C7 and q into (4.7), we obtain w in the form

w(x) = q(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�(� + α – 1)

+
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�(� + α – 1).

(4.8)

�

The definitions of Ulam stability for fractional difference equation are introduced in the
sequel on the basis of [32, 37].

Definition 4.2 If, for every function v ∈ E of

∣∣RL
0 �α

x v(x) – �
(
x + α – 1, v(x + α – 1)

)∣∣ ≤ ε, x ∈ [0, L]N0 , (4.9)

where ε > 0, there exists a solution w ∈ E of (4.1) and positive constant δ1 > 0 such that

∣∣v(x) – w(x)
∣∣ ≤ δ1ε, x ∈ [α – 2,α + L]Nα–2 , (4.10)

then the discrete FBVP (4.1) is said to be Hyers–Ulam stable.

Definition 4.3 If, for every function v ∈ E of

∣∣RL
0 �α

x v(x) – �
(
x + α – 1, v(x + α – 1)

)∣∣ ≤ ε
(x + α – 1), x ∈ [0, L]N0 , (4.11)

where ε > 0, there is a solution w ∈ E of (4.1) and positive constant δ2 > 0 such that

∣∣v(x) – w(x)
∣∣ ≤ δ2ε
(x + α – 1), x ∈ [α – 2,α + L]Nα–2 , (4.12)

then the discrete FBVP (4.1) is said to be Hyers–Ulam–Rassias stable.
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Remark 4.4 A function v ∈ E is a solution to (4.9) if and only if there exists g : [α – 2,α +
L] →R satisfying

(H2) |g(x + α – 1)| ≤ ε, x ∈ [0, b]N0 ,
(H3) RL

0 �α
x v(x) = �(x + α – 1, v(x + α – 1)) + g(x + α – 1), x ∈ [0, b]N0 .

A similar remark can be formulated for inequality (4.11).

Lemma 4.5 If v solves (4.9), then

∣∣∣∣∣v(x) – q(x) –
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)
∣∣∣∣∣

≤ ε�(α + L + 1)
�(α + 1)�(L + 1)

.

Proof If v solves the inequality (4.9), then from Remark 4.4 and Lemma 2.4, the solution
to (H3) satisfies

v(x) = q(x) +
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

+
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

+
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)g(� + α – 1).

Hence,

∣∣∣∣∣v(x) – q(x) –
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)
∣∣∣∣∣

=

∣∣∣∣∣
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)g(� + α – 1)

∣∣∣∣∣

≤ 1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)∣∣g(� + α – 1)
∣∣

≤ ε

�(α)
�(x + 1)

α�(x + 1 – α)

≤ ε�(α + L + 1)
�(α + 1)�(L + 1)

. �
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Theorem 4.6 Suppose that the hypothesis (H1) together with the inequality (4.9) is satis-
fied. Then the discrete FBVP (4.1) is Hyers–Ulam stable provided that

K <
�(α + 1)�(L + 1)

2�(α + L + 1)
. (4.13)

Proof With the help of solution (4.8) and Lemma 4.5, for x ∈ [α – 2,α + L]Nα–2 , we have

∣∣v(x) – w(x)
∣∣

≤
∣∣∣∣∣v(x) – q(x) –

1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, w(� + α – 1)

)
∣∣∣∣∣

≤
∣∣∣∣∣v(x) – q(x) –

1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)
∣∣∣∣∣

+
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)

× ∣∣�
(
� + α – 1, v(� + α – 1)

)
– �

(
� + α – 1, w(� + α – 1)

)∣∣

+
|u(x)|
�(α)

L∑

�=0

(α + L – � – 1)(α–1)

× ∣∣�
(
� + α – 1, v(� + α – 1)

)
– �

(
� + α – 1, w(� + α – 1)

)∣∣.

It follows that

∣∣v(x) – w(x)
∣∣ ≤ ε�(α + L + 1)

�(α + 1)�(L + 1)

+
K

�(α)

x–α∑

�=0

(x – � – 1)(α–1)∣∣v(� + α – 1) – w(� + α – 1)
∣∣

+
K |u(x)|
�(α)

L∑

�=0

(α + L – � – 1)(α–1)∣∣v(� + α – 1) – w(� + α – 1)
∣∣

≤ ε�(α + L + 1)
�(α + 1)�(L + 1)

+
K‖v – w‖

�(α)

[
�(x + 1)

α�(x + 1 – α)

]

+
K‖v – w‖|u(x)|

�(α)

[
�(α + L + 1)
α�(L + 1)

]
.

Therefore, we are left with

‖v – w‖ ≤ ε�(α + L + 1)
�(α + 1)�(L + 1)

+
2K�(α + L + 1)
�(α + 1)(L + 1)

‖v – w‖.
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From the above inequalities, we have ‖v – w‖ ≤ δ1ε, where δ1 = �(α+L+1)
�(α+1)�(L+1)–2K�(α+L+1) > 0.

Thus, Eq. (4.1) is Hyers–Ulam stable. �

We assume the following.
(H4) Let 
 ∈ [α – 2,α + L]Nα–2 → R

+ be an increasing function, and there exists a con-
stant λ > 0 such that

ε

�(α)

x–α∑

�=0

(x – � – 1)(α–1)
(� + α – 1) ≤ λε
(x + α – 1), x ∈ [0, L]N0 .

Lemma 4.7 If v solves (4.11), then

∣∣∣∣∣v(x) – q(x) –
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)
∣∣∣∣∣

≤ λε
(x + α – 1).

Proof From inequality (4.11), for x ∈ [α – 2,α + L]Nα–2 , we can find a function RL
0 �α

x v(x) =
�(x + α – 1, v(x + α – 1)) + g(x + α – 1) and |g(x + α – 1)| ≤ ε
(x + α – 1). It follows that

∣∣∣∣∣v(x) – q(x) –
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)

–
u(x)
�(α)

L∑

�=0

(α + L – � – 1)(α–1)�
(
� + α – 1, v(� + α – 1)

)
∣∣∣∣∣

=

∣∣∣∣∣
1

�(α)

x–α∑

�=0

(x – � – 1)(α–1)g(� + α – 1)

∣∣∣∣∣

≤ 1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)∣∣g(� + α – 1)
∣∣

≤ ε

�(α)

x–α∑

�=0

(x – � – 1)(α–1)
(� + α – 1)

≤ λε
(x + α – 1). �

Theorem 4.8 If the hypotheses (H1), (H4) and the inequality (4.13) are satisfied, then a
discrete FBVP (4.1) is Hyers–Ulam–Rassias stable.

Proof With the help of Lemma 2.6, Lemma 4.7 and solution (4.8), we obtain

‖v – w‖ ≤ δ2ε
(x + α – 1);

where δ2 = λ�(α+1)�(L+1)
�(α+1)�(L+1)–2K�(α+L+1) > 0. Thus (4.1) is Hyers–Ulam–Rassias stable. �
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5 Applications
Some suitable examples are presented to validate the theoretical results and numerical
solutions to the discrete FBVP (3.1) and (4.1) with different applications by using Caputo
and Riemann–Liouville fractional difference operators. Computational aspects regarding
numerical values and diagrams are executed with MATLAB.

5.1 Steady-state heat equation
Consider the mathematical model of heat flow in a rod made out of a heat–conducting
material, subject to an external heat source along its length and some boundary conditions
at each end. Let w(x, t) denote the temperature distribution at the real position x varying
only with any real time t, where a < x < b along some finite length of the rod. The general
form of the one dimensional non-homogeneous heat equation with heat generation [4] is
given as

wt(x, t) =
(
k(x)wx(x, t)

)
x + ψ(x, t), (5.1)

where k(x) is the coefficient of heat conduction, which may vary with x, and ψ(x, t) is
the heat source (or sink). Equation (5.1) is often called the diffusion equation. The heat
equation (5.1) reduces to

wt(x, t) = kwxx(x, t) + ψ(x, t), (5.2)

subject to the initial condition

w(x, 0) = w(x), (5.3)

and the Neumann–Dirichlet boundary conditions

wx(a, t) = A(t), and w(b, t) = B(t), (5.4)

where the rod is assumed to be insulated at one end and the temperature is specified at
the other end. In general, we expect the temperature distribution to change with time.
However, if ψ(x, t), A(t) and B(t) are all time independent, Eqs. (5.2), (5.3) and (5.4) are
called initial boundary value problems.

Now we are interested in computing the steady-state solution to the above problem and
by setting wt = 0 in (5.2), we obtain the steady-state heat equation in x as the following
ordinary differential equation:

⎧
⎨

⎩
w′′(x) = �(x), a < x < b,

w′(a) = A, w(b) = B,
(5.5)

where �(x) = – ψ(x)
k , a, b, A and B are real valued constants. The above steady-state heat

equation with Neumann–Dirichlet boundary conditions (5.5) is transformed to the dis-
crete FBVPs (3.2) and (4.2).
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Example 5.1 Suppose that �(x) = x(8), L = 1, A = 0 and B = 0 where we have different
fractional orders α like α = 1.1, α = 1.4, α = 1.7 and α = 2. Then the discrete fractional
order steady-state boundary value problems (3.2) and (4.2) become

⎧
⎨

⎩

∗
0�

α
x w(x) = (x + α – 1)(8), x ∈ [0, 1]N0 ,

�w(α – 2) = 0, w(α + 1) = 0,
(5.6)

where ∗
0�

α
x = C

0 �α
x or ∗

0�
α
x = RL

0 �α
x . The solutions of (5.6) can be formulated for different

values of α by using the procedure discussed in the previous sections. Indeed, by using
Definition 2.1 and Lemma 2.7 in (3.3) and (4.3) we obtain

1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)(� + α – 1)(8) = �–α(x + α – 1)(8)

=
�(9)

�(9 + α)
(x + α – 1)(α+8),

1
�(α)

x–α∑

�=0

(x – � – 1)(α–1)(� + α – 1)(8) =
�(9)

�(9 + α)
· �(x + α)
�(x – 8)

.

Similarly, we find

1
�(α)

L∑

�=0

(α + L – � – 1)(α–1)(� + α – 1)(8) =
�(9)

�(9 + α)
· �(2α + 1)

�(α – 7)
.

If ∗
0�

α
x = C

0 �α
x then the analytical solution to (5.6) has the form

w(x) = p(x) +
�(9)

�(9 + α)

[
�(x + α)
�(x – 8)

]
–

�(9)
�(9 + α)

[
�(2α + 1)
�(α – 7)

]
,

where p(x) is defined in Theorem 3.1. If ∗
0�

α
x = RL

0 �α
x then the analytical solution to (5.6) is

w(x) = q(x) +
�(9)

�(9 + α)

[
�(x + α)
�(x – 8)

]
+ u(x)

�(9)
�(9 + α)

[
�(2α + 1)
�(α – 7)

]
,

where q and u are defined as in Theorem 4.1. For the values of the fractional orders α ∈
(1, 2] and x ∈ [0, 1], the solutions with respect to the Riemann–Liouville operator exhibit
better results than the Caputo difference operator, as seen in Fig. 1(a) and Fig. 1(b) and as
shown in Table 1 and Table 2. When α = 2, the graphs of both solutions are provided in
Fig. 1(c). Note that both curves are overlapping. In three dimensions the solution surfacing
over different values of α and x are shown in Fig. 2.

Example 5.2 Suppose that �(x) = x(6), L = 4, A = 0 and B = 1 where we have different
fractional orders α like α = 1.1, α = 1.4, α = 1.7 and α = 2. Then the discrete fractional
order steady-state boundary value problems (3.2) and (4.2) become

⎧
⎨

⎩

∗
0�

α
x w(x) = (x + α – 1)(6), x ∈ [0, 4]N0 ,

�x(α – 2) = 0, x(α + 4) = 1,
(5.7)
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Figure 1 Steady-state solutions curves for x using (a) CFDO, (b) RLFDO and (c) comparison of steady-state
solutions at α = 2 of Example 5.1

Table 1 Steady-state solutions to fractional order α ∈ (1, 2] varying x ∈ [0, 1] using CFDO

α x

0 0.2 0.4 0.6 0.8 1

1.1 –12.6308 379.5102 398.6517 265.5418 108.0197 –12.6308
1.4 –21.9303 175.2079 196.3280 132.6556 47.8625 –21.9303
1.7 –11.8009 94.3783 110.9082 78.4466 30.3342 –11.8009
2 0 60.3317 72.2430 54.8485 26.3561 0

Table 2 Steady-state solutions to fractional order α ∈ (1, 2] varying x ∈ [0, 1] using RLFDO

α x

0 0.2 0.4 0.6 0.8 1

1.1 –11.6531 380.3625 399.3875 266.1692 108.5459 –12.1991
1.4 –17.0644 179.7338 200.4577 136.3639 51.1397 –19.0852
1.7 –9.3400 96.8351 113.2805 80.6855 32.4082 –9.9130
2 0 60.3317 72.2430 54.8485 26.3561 0

where ∗
0�

α
x is either C

0 �α
x or RL

0 �α
x . By using a similar method to Example 5.1, we obtain the

steady-state solutions to this problem. If ∗
0�

α
x = C

0 �α
x then the analytical solution to (5.7) is

w(x) = p(x) +
�(7)

�(7 + α)

[
�(x + α)
�(x – 6)

]
–

�(7)
�(7 + α)

[
�(2α + 4)
�(α – 2)

]
,

where p is defined in Theorem 3.1. If ∗
0�

α
x = RL

0 �α
x then the analytical solution to (5.7) is

w(x) = q(x) +
�(7)

�(7 + α)

[
�(x + α)
�(x – 6)

]
+ u(x)

�(7)
�(7 + α)

[
�(2α + 4)
�(α – 2)

]
,
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Figure 2 Surface plots of corresponding steady-state solutions to different values of α and x using (a) CFDO
and (b) RLFDO of Example 5.1

Figure 3 Steady-state solutions curve varies x using (a) CFDO and (b) RLFDO of Example 5.2

Table 3 Steady-state solutions to fractional order α ∈ (1, 2] varying x ∈ [0, 4] using CFDO

α x

0 0.8 1.6 2.4 3.2 4

1.1 2.8703 6.4278 0.4364 4.4414 1.9626 2.8703
1.4 9.4796 11.6840 7.7750 10.6799 8.7377 9.4796
1.7 13.0258 14.4482 11.8027 13.9575 12.4130 13.0258
2 1.0000 1.9489 0.1038 1.7332 0.4891 1.0000

Table 4 Steady-state solutions to fractional order α ∈ (1, 2] varying x ∈ [0, 4] using RLFDO

α x

0 0.8 1.6 2.4 3.2 4

1.1 2.4241 6.0714 0.1503 4.2122 1.7813 2.7303
1.4 5.8591 8.5303 5.1595 8.5738 7.1033 8.2826
1.7 7.8519 9.3432 7.1890 9.9419 9.0286 10.2804
2 1.0000 1.2822 –1.2295 –0.2668 –2.1776 –2.3333

where q and u are defined as in Theorem 4.1. For the values of the fractional orders α ∈
(1, 2] and x ∈ [0, 4], it is realized that the solutions with respect to the Riemann–Liouville
operator exhibit better results than the Caputo difference operator, as seen in Fig. 3(a)
and Fig. 3(b) and as shown in Table 3 and Table 4. As we see in Fig. 3, the trajectories of
both solutions do not overlap for fractional orders α ∈ (1, 2] with x increasing. In three
dimensions, the solution surfaces over different values of α and x are shown in Fig. 4.
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Figure 4 Surface plots of corresponding steady-state solutions to different values of α and x using (a) CFDO
and (b) RLFDO of Example 5.2

5.2 Simple gravity pendulum
In [4], the following differential equation, which represents the motion of a simple pendu-
lum, is considered:

d2w
dx2 +

g
γ

sin
(
w(x)

)
= 0, (5.8)

where g is the acceleration due to the gravitational constant, γ is the length of the pendu-
lum and w is the angular displacement.

Example 5.3 Let us consider the parameters A = 0, B = 1, L = 1 with fractional order α =
1.3. Then the discrete fractional order boundary value problems (3.1) and (4.1) for the
simple pendulum become

⎧
⎨

⎩

∗
0�

1.3
x w(x) = �(x + 0.3, w(x + 0.3)), x ∈ [0, 1]N0 ,

�w(–0.7) = 0, w(2.3) = 1,
(5.9)

where ∗
0�

1.3
x = C

0 �1.3
x or ∗

0�
1.3
x = RL

0 �1.3
x and �(x + 0.3, w(x + 0.3)) = – g

γ
sin(w(x + 0.3)). For

the values of g = 9.8 m/s2, γ = 60 m, we choose K = g
γ

= 0.1633. If ∗
0�

1.3
x = C

0 �1.3
x , in this

case, inequality (3.12) takes the form

K
[

2�(α + L + 1)
�(α + 1)�(L + 1)

]
≈ 0.7513 < 1.

Therefore, from Theorem 3.2, we conclude that the boundary value problem (5.9) has a
unique solution. Furthermore, if ∗

0�
1.3
x = RL

0 �1.3
x , we obtain

�(α + 1)�(L + 1)
2�(α + L + 1)

≈ 0.2174.

If K = 0.1633 < 0.2174 and the inequality

∣∣RL
0 �1.3

x v(x) – �
(
x + 0.3, v(x + 0.3)

)∣∣ ≤ ε, x ∈ [0, 1]N0 ,

holds, then the boundary value problem (5.9) is Hyers–Ulam stable by Theorem 4.6.
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5.3 Temperature distribution equation
In [8, 10, 16], the authors considered the following mathematical model, which describes
the temperature distribution in lumped system of combined convection–radiation in a
slab made of materials with variable thermal conductivity:

⎧
⎨

⎩
Dαw(x) – ηw4(x) = 0, 1 < α ≤ 2, x ∈ [0, 1],

w′(0) = 0, w(1) = 1,
(5.10)

where w = T–Ta
Ti–Ta

and x = t
Vρca/Sh are dimensionless temperature and time, respectively.

The parameter η = (T – Ta)ξ , where V , S, ρ , c, Ti, Ta, ca and h are the volume, surface
area, density, specific heat, the initial temperature, temperature of the convection environ-
ment, specific heat at temperature Ta and heat transfer coefficient of the lumped system,
respectively.

Example 5.4 Suppose that α = 1.4, L = 1, η = 4×10–10 and M = 250 with �(x, w) = ηw4(x).
Then we obtain the discrete fractional order heat transfer boundary value problem (5.10)
and it takes the form

⎧
⎨

⎩

C
0 �1.4

x w(x) = ηw4(x + 0.4), x ∈ [0, 1],

�w(–0.6) = 0, w(2.4) = 1.
(5.11)

The main result of (5.11) is discussed in Sect. 2. The Banach space is

E :=
{

w(x)|[–0.6, 2.4]N–0.6 →R,‖w‖ ≤ 500
}

.

We note that

M�(α + 1)�(L + 1)
2�(α + L + 1)

= 250(0.2083) ≈ 52.0833.

It is clear that |�(x, w)| ≤ 25 < 52.0833, whenever w ∈ [–500, 500]. Therefore by Theo-
rem 3.3, we conclude that the boundary value problem (5.11) has at least one solution.

6 Conclusion
This work made a study of a discrete fractional boundary value problem with the Ca-
puto and Riemann–Liouville difference operators. The existence and uniqueness of so-
lutions and various types of Hyers–Ulam stability are discussed for the addressed prob-
lem based on the properties of fractional operators, the contraction mapping principle
and the Brouwer fixed point theorem. Theoretical results are complemented with suit-
able examples accompanied by numerical solutions for different values of α and x. The
discrete FBVP appearing in mathematical models of engineering applications is solved via
the Riemann–Liouville and Caputo difference operators. Subsequently, the dynamics ex-
hibited by RLFDO and CFDO for the proposed models is illustrated through diagrams.
Furthermore, the occurrence of overlapping or non-overlapping cases is presented in the
graphical representations.

Results obtained in the present paper can be considered as a contribution to the devel-
oping field of discrete fractional boundary value problems describing mathematical and
physical applications.
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