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Abstract
Wavelets are particularly useful because of their natural adaptive ability to
characterize data with intrinsically local properties. When the data contain outliers or
come from a population with a heavy-tailed distribution, L1-estimation should obtain
a better fit. In this paper, we propose a L1-wavelet method for nonparametric
regression, and derive the asymptotic properties of the L1-wavelet estimator,
including the Bahadur representation, the rate of convergence and asymptotic
normality. The rate of convergence of it is comparable with the optimal convergence
rate of the nonparametric estimation in nonparametric models, and it does not
require the continuously differentiable conditions of a nonparametric function.
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1 Introduction
Consider the problem of estimating the underlying regression function from a set of noisy
data. The nonparametric regression is an underlying framework. It has the following stan-
dard form:

yi = g(ti) + εi, i = 1, . . . , n, (1.1)

where the yi are the noisy samples of an unknown function g(·) defined on [0, 1], {ti} are
non-random design points with 0 ≤ t1 ≤ · · · ≤ tn ≤ 1, and the εi are i.i.d. random errors
with mean zero.

Nonparametric regression is a classic smoothing technique for recovering a signal func-
tion from data, without having a strong prior restriction on its form [1, 2]. There is much
literature on nonparametric regression. Most methods developed so far are based on the
mean regression function by using a least-squares estimation (L2). For example, Gasser
and Müller [3] proposed a kernel estimation by a Gasser–Müller kernel weight; Fan [4, 5]
added more insights to the local linear method for the mean regression; and Braun and
Huang [6] proposed a kernel spline regression by replacing the polynomial approximation
for local polynomial kernel regression with a spline basis. The least-square-based meth-
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ods certainly have some nice properties as regards Gaussian errors, but this method will
not perform well because of the high sensitiveness to extreme outliers, specially to the
errors having a heavy-tailed distribution. More robust estimation methods are required.
The local median and M-estimators have been studied; see, for example, [7–13]. Also see
[14, 15] for more details on quantile regression and robust estimation, respectively. As
pointed out in [9], among many robust estimation methods, the L1 method based on least
absolute deviations behaves quite well because of downweight outliers, unique solutions
and no transition point in the influence function (such as the additional parameter c in
Huber’s ρc function). The above methods basically require that the unknown function g
has high smoothness. But in reality, the condition may not be satisfied. In fact, objects of
some practical areas, such as signal and image processing, are frequently inhomogeneous.
In this paper, we consider the wavelet technique to recover the signal function g based on
L1 method for the robust case.

We aim to study the asymptotic properties on L1-wavelet estimator for the nonpara-
metric model (1.1). Wavelet techniques, due to their ability to adapt to local features of
curves, have received a lot of attention, and have been used to estimate the nonparametric
curve. See, for example, [16–19]. Wavelet methods are prominent because of their com-
putational ease and having the minimax results over very wide classes of function spaces
for the signal function g . For linear wavelet smoothing, Antoniadis et al. [16] is a key ref-
erence that introduces wavelet versions of some classical kernel and orthogonal series es-
timators, and studies their asymptotic properties such as mean square consistent, bias,
variance and asymptotic normal. Huang [20] also gave asymptotic bias and variance of
the wavelet density estimator by wavelet-based reproducing kernels. Zhou and You [21]
constructed wavelet estimators for varying-coefficient partially linear regression models,
and established their asymptotic normalities and some convergence rates. For varying-
coefficient models, the convergence rate and asymptotic normality of wavelet estimators
were considered by [22, 23] provided asymptotic bias and variance of wavelet estimator
for regression function under a mixing stochastic process. Recently, Chesneau et al. [24]
proposed the nonparametric wavelet estimators of the quantile density function and its
consistency. Li and Xiao [25] considered a wavelet estimator for the mean regression func-
tion with strong mixing errors and investigated their asymptotic rates of convergence by
using the thresholding of the empirical wavelet coefficients. Berry–Esseen type bounds
for wavelet estimators for semiparametric regression models were studied by [26, 27]. For
the nonparametric models (1.1), as we learned, no study on L1-wavelet estimators is re-
ported. For this model, the estimation should be combined with the special feature of the
model.

In this paper, we develop L1-wavelet method for nonparametric regression model (1.1)
by adopting wavelet to detect and represent localized features of the signal function g ,
and applying L1 to yield better recovery for outliers or heavy-tailed data. The advantage
of L1-wavelet method is in avoiding the restrictive smoothness requirement for nonpara-
metric function of the traditional smoothing approaches, such as kernel and local polyno-
mial methods, and to robustify the usual mean regression. Last, we investigate asymptotic
properties of the L1-wavelet estimators, including the Bahadur representation, the rate of
convergence and asymptotic normality.
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The paper is organized as follows. In Sect. 2, we provide some necessary background on
wavelet and develop L1-wavelet estimation for the model (1.1). Asymptotic properties of
L1-wavelet estimators are presented in Sect. 3. Technical proofs are deferred to Sect. 4.

2 L1-Wavelet estimation
Wavelet analysis requires a description of two related and suitably chosen orthonormal
basic functions: the scaling function φ and the wavelet ψ . A wavelet system is generated
by dilation and translation of φ and ψ through

φm,k(t) = 2m/2φ
(
2mt – k

)
, ψm,k(t) = 2m/2ψ

(
2mt – k

)
, m, k ∈ Z.

A multiresolution analysis of L2(R) consists of a nested sequence of closed subspace Vm,
m ∈ Z of L2(R),

· · · ⊂ V–2 ⊂ V–1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

whereL2(R) is the set of square integral functions over real line. Since {φ(·–k), k ∈ Z} is an
orthogonal family of L2(R) and V0 is the subspace spanned, {φ0k , k ∈ Z} and {φmk , k ∈ Z}
are the orthogonal bases of V0 and Vm, respectively. From the Moore–Aronszajn theorem
[28], it follows that

E(t, s) =
∑

k

φ(t – k)φ(s – k)

is a reproducing kernel of V0. By self-similarity of multiresolution subspaces,

Em(t, s) = 2mE
(
2mt, 2ms

)

is a reproducing kernel of Vm. Thus, the projection of g on the space Vm is given by

PVm g(t) =
∫

2mE
(
2mt, 2ms

)
g(s) ds.

This motivates us to define a L1-wavelet estimator of g by

ĝ(t) = argmina

n∑

i=1

|yi – a|
∫

Ai

Em(t, s) ds, (2.1)

where Ai are intervals that partition [0, 1], so that ti ∈ Ai. One way of defining the intervals
Ai = [si–1, si) is by taking s0 = 0, sn = 1, and si = (ti + ti+1)/2, i = 1, . . . , n – 1.

For the ith sample point, define e+
i and e–

i to be the positive and negative parts of ei. Then,
with the noisy samples, problem (2.1) can be reduced to the following linear program:

Minimize
n∑

i=1

(
e+

i + e–
i
)∫

Ai

Em(t, s) ds,

Subject to a + e+ – e– = y,

e+, e– ≥ 0,
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where a = a1p, 1p is a p dimensional vector whose each component is 1, e+ = (e+
1 , . . . , e+

n)T ,
e– = (e–

1 , . . . , e–
n)T and y = (y1, . . . , yn)T . In addition,

∫
Ai

Em(t, s) ds can be calculated by the
cascade algorithm given by [16]. Thus, the L1-wavelet estimator can be easily obtained.
This linear program is just for calculating the estimator. To establish the asymptotic prop-
erties, we work only with (2.1).

3 Asymptotic properties
We begin with the following assumptions required to derive the asymptotic properties of
the proposed estimator in Sect. 2.

(A1) The noisy errors εi are i.i.d. with median 0 and a continuous, positive density fε in
a neighborhood of 0.

(A2) g belongs to the Sobolev space Hν(R) with order ν > 1/2.
(A3) g satisfies the Lipschitz of order condition of order γ > 0.
(A4) φ has a compact support, and is in the Schwarz space with order l > ν , it satisfies

the Lipschitz condition with order l. Furthermore, |φ̂(ξ ) – 1| = O(ξ ) as ξ → 0,
where φ̂ is the Fourier transform of φ.

(A5) maxi |ti – ti–1| = O(n–1).
(A6) We also assume that, for some Lipschitz function κ(·),

ρ(n) = max
i

∣∣
∣∣si – si–1 –

κ(si)
n

∣∣
∣∣ = o

(
n–1).

(A7) (i) n2–m → ∞; (ii) 2m = O(n1–2p), 1/(2 + δ) ≤ p ≤ 1/2 for δ > 0. (iii) Let
v∗ = min(3/2,ν,γ + 1/2) – ε1 and ε1 = 0 for ν 	= 3/2, ε1 > 0 for ν = 3/2. Assume that
n2–2mv∗ → 0.

Remark 3.1 The above conditions are mild and easily satisfied. (A1) is crucial to the
asymptotic behavior of ĝ(·) based on L1 estimation (2.1). (A2)–(A6) and (A7)(i)(iii) have
been used in [16]. Note that, if g ∈ Hν(R) with ν > 3/2, then g is continuously differen-
tiable; thus (A3) is redundant when ν > 3/2. So, (A2) is weaker than smoothness. For (A7),
m acts as a tuning parameter, such as the bandwidth does for standard kernel smoothers;
(A7) is the standard assumption for asymptotic behaviors; For example, take δ = 2 and
p = 1/4, then 2m = O(n1/2). Thus, (i) holds; furthermore, taking ν > 1 and γ > 1/2, then (iii)
holds.

Our results are as follows.

Theorem 3.1
(i) (Bahadur representation) Suppose that (A1)–(A5) and (A7)(i) hold, then

ĝ(t) = g(t) –
1
2

f –1
ε (0)

n∑

i=1

sign(εi)
∫

Ai

Em(t, s) ds + Rn(m;γ ,ν),

with

Rn(m;γ ,ν) = Op

{
n–γ + ηm +

√
2m

n1+γ

}
,

where sign(·) is a sign function.



Zhou and Zhu Journal of Inequalities and Applications        (2020) 2020:216 Page 5 of 11

(ii) (Rate of convergence) Assume that (A1)–(A5) and (A7)(ii) hold, then

sup
t∈[0,1]

∣∣ĝ(t) – g(t)
∣∣ = Op

{√
2m

n
log n + n–γ + ηm

}
.

Remark 3.2 Theorem 3.1(i) gives the Bahadur representation of the L1-wavelet estima-
tion for a nonparametric model. For 1/2 < ν < 3/2, ηm is a lower rate of convergence than
the one of ν ≥ 3/2; Meanwhile, g ∈ Hν(R) is not differentiable if 1/2 < ν < 3/2. If we take
2m = O(n1–γ ) and ν = (γ + 1)/[2(1 – γ )] with 0 < γ < 1/2, then g ∈ Hν(R) (1/2 < ν < 3/2),
and Rn(m;γ ,ν) = Op(n–γ ) (0 < γ < 1/2), It implies that Rn(m;γ ,ν) has an order very close
to Op(n–1/2), which is comparable with the Bahadur order op((nh)–1/2) for kernel weighted
local polynomial estimation [29], where the bandwidth h → 0 and the function requires
second-order differentiability. For example, the triangular function having Fourier trans-
form sin2(ξ /2)/(ξ /2)2 belongs to H1(R) and is Lipschitz of order 1, so it satisfies our con-
ditions for g but is not differentiable. Such a function has not been studied before.

Remark 3.3 Theorem 3.1(ii) states the rate of convergence of L1-wavelet estimation for a
nonparametric model. As in Remark 3.2, we consider the lower rate case of ηm, i.e., 1/2 <
ν < 3/2. If we take 2m = O(nγ ) (γ ≥ 1/3), then supt∈[0,1] |ĝ(t) – g(t)| = Op(n–(1–γ )/2 log n).
Furthermore, taking γ = 1/3, one gets

sup
t∈[0,1]

∣
∣ĝ(t) – g(t)

∣
∣ = Op

(
n–1/3 log n

)
,

which is comparable with the optimal convergence rate of the nonparametric estimation
in nonparametric models. Meanwhile, it is the same as the results of [21] (in probability)
and [22] (almost sure) for any t ∈ [0, 1] based on a least-square wavelet estimator, but they
require that g is continuously differentiable, that is, g ∈Hν(R) (ν > 3/2).

To obtain an asymptotic expansion of the variance and an asymptotic normality result,
we need to consider an approximation to ĝ(t) based on its values at dyadic points of or-
der m. That is, we define ĝd(t) = ĝn(t(m)) with t(m) = 
2mt�/2m, where 
z� denotes the max-
imum integer not greater than z.

Theorem 3.2 (Asymptotic normality) Support that (A1)–(A6) and (A7)(iii) hold, then

√
n2–m

(
ĝd(t) – g(t)

) D−→ N
(
0, 4–1f –2

ε (0)ω2
0κ(t)

)
,

where ω2
0 =

∫
R

E2
0(0, u) du =

∑
k∈Z φ2(k).

Remark 3.4 ĝd(t) is the piecewise-constant approximation of ĝ(t) at resolution 2–m. The
reason to consider this is that the variance of ĝ is unstable as a function of t, because
var(ĝ(t)) = 2mn–1κ(t)

∫ 1
0 E2

0(tm, s) ds, where tm = 2mt – [2mt]. We know that, if t is non-
dyadic, then the sequence tm wanders around the unit interval and fails to converge. Also
see [16].
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4 Technical proofs
In order to prove the main results, we first present several lemmas.

Lemma 4.1 Suppose that (A4) holds. We have:
(i) E0(t, s) ≤ ck/(1 + |t – s|)k and Ek(t, s) ≤ 2kck/(1 + 2k|t – s|)k , where k is a positive

integer and ck is a constant depending on k only.
(ii) sup0≤t,s≤1 |Em(t, s)| = O(2m).

(iii) sup0≤t≤1
∫ 1

0 |Em(t, s)|ds ≤ c, where c is a positive constant.
(iv)

∫ 1
0 Em(t, s) ds → 1 uniformly in t ∈ [0, 1], as m → ∞.

The proofs of (i) and (ii) can be found in [16], and (iii) follows from (i); the proof of (iv)
can be found in [30].

Lemma 4.2 Suppose that (A4)–(A5) hold and h(·) satisfies (A2)–(A3). Then

sup
0≤t≤1

∣∣∣
∣∣
h(t) –

n∑

i=1

h(ti)
∫

Ai

Em(t, s) ds

∣∣∣
∣∣

= O
(
n–γ

)
+ O(ηm),

where

ηm =

⎧
⎪⎪⎨

⎪⎪⎩

(1/2m)ν–1/2 if 1/2 < ν < 3/2,
√

m/2m if ν = 3/2,

1/2m if ν > 3/2.

It follows easily from Theorem 3.2 of [16].

Lemma 4.3 Let {Vi, i = 1, . . . , n} be a sequence of independent random variables with mean
zero and finite 2 + δth moments, and {aij, i, j = 1, . . . , n} a set of positive numbers such that
maxij |aij| ≤ n–p1 for some 0 ≤ p1 ≤ 1 and

∑n
i=1 aij = O(np2 ) for some p2 ≥ max(0, 2/(2 + δ) –

p1). Then

max
1≤j≤n

∣
∣∣
∣∣

n∑

i=1

aijVij

∣
∣∣
∣∣

= O
(
n–(p1–p2)/2 log n

)
, a.s.

It can be found in [31].

Lemma 4.4 Let {λn(θ ), θ ∈ Θ} be a sequence of random convex functions defined on a
convex, open subset Θ of Rd . Suppose λ(·) is a real-valued function on Θ for which λn(θ ) →
λ(θ ) in probability, for each θ in Θ . Then for each compact subset K of Θ , in probability,

sup
θ∈K

∣∣λn(θ ) – λ(θ )
∣∣ → 0.

See [32].
Below, we give the proof of the main results. The proof of Theorem 3.1 uses the idea

of [32] and the convex lemma (Lemma 4.4). To complete the proof of Theorem 3.2, it is
enough to check the Lindeberg-type condition.
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Proof of Theorem 3.1 (i) From (2.1), note that ĝ(t) = â and â minimizes

n∑

i=1

|yi – a|
∫

Ai

Em(t, s) ds.

Let θ = a – g(t) and ε∗
i = εi + [g(ti) – g(t)]. Then θ minimizes the function

Gn(θ ) =
n∑

i=1

{∣∣ε∗
i – θ

∣∣ –
∣∣ε∗

i
∣∣}

∫

Ai

Em(t, s) ds.

The idea behind the proof, as in [32], is to approximate Gn(θ ) by a quadratic function
whose minima have an explicit expression, and then to show that θ̂ is close enough to
those minima that share their asymptotic behavior.

We now set out to approximate Gn(θ ) by a quadratic function of θ . Write

Gn(θ ) = Wnθ + Rn(θ ),

where Wn = –
∑n

i=1 sign(εi)
∫

Ai
Em(t, s) ds, which does not depend on θ , and

Rn(θ ) =
n∑

i=1

{∣∣ε∗
i – θ

∣∣ –
∣∣ε∗

i
∣∣ + sign(εi)θ

}∫

Ai

Em(t, s) ds. (4.1)

We have

Gn(θ ) = E
(
Gn(θ )

)
+ Wnθ +

[
Rn(θ ) – E

(
Rn(θ )

)]
. (4.2)

From the error assumption (A1), it is ensured that the function �(t) = E[|εi – t| – |εi|] has
a unique minimum at zero, and �(t) = t2fε(0) + o(t2). Therefore, by Lemmas 4.1 and 4.2,

E
(
Gn(θ )

)
=

n∑

i=1

{
fε(0)θ2 – 2fε(0)

[
g(ti) – g(t)

]
θ
}∫

Ai

Em(t, s) ds + o
(
δ2

n
)

= fε(0)θ2 – 2fε(0)θ

{ n∑

i=1

g(ti)
∫

Ai

Em(t, s) ds – g(t)

}

+ o
(
δ2

n
)

= fε(0)θ2 + O
[(

n–γ + ηm
)
θ
]

+ o
(
δ2

n
)
, (4.3)

where δn = max{(n–γ +ηm), |θ |}. For (4.1), note that ||ε∗
i –θ |– |ε∗

i |+ sign(εi)θ | ≤ 2|θ |I{|εi| ≤
|θ | + |g(ti) – g(t)|}, then we obtain

ER2
n(θ ) ≤ 4θ2

n∑

i=1

EI
{|εi| ≤ |θ | +

∣
∣g(ti) – g(t)

∣
∣}

{∫

Ai

Em(t, s) ds
}2

= 8θ2fε(0)
n∑

i=1

∣
∣g(ti) – g(t)

∣
∣
{∫

Ai

Em(t, s) ds
}2(

1 + o(1)
)

= O
(

2m

n1+γ
θ2

)
.
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We get

Rn(θ ) – E
(
Rn(θ )

)
= Op

(
θ

√
2m

n1+γ

)
. (4.4)

Let an = Op{n–γ + ηm +
√

2m

n1+γ }. Combining (4.2)–(4.4), for each fixed θ , we have

Gn(θ ) = fε(0)θ2 + Wnθ + O
[(

n–γ + ηm
)
θ
]

+ Op

(
θ

√
2m

n1+γ

)

= fε(0)θ2 + (Wn + an)θ , (4.5)

with an = op(1) uniformly. Note that

Wn = –
n∑

i=1

sign(εi)
∫

Ai

Em(t, s) ds.

It is easy to see that Wn has a bounded second moment and hence is stochastically
bounded. Since the convex function Gn(θ ) – (Wn + an)θ converges in probability to the
convex function fε(0)θ2, it follows from the convexity lemma, Lemma 4.4, that, for every
compact set K ,

sup
θ∈K

∣
∣Gn(θ ) – (Wn + an)θ – fε(0)θ2∣∣ = op(1). (4.6)

Thus, the quadratic approximation to the convex function Gn(θ ) holds uniformly for θ

in any compact set. So, using the convexity assumption again, the minimizer θ̂ of Gn(θ )
converges in probability to the minimizer

θ̄ = –
1
2

f –1
ε (0)(Wn + an), (4.7)

that is,

P
(|θ̂ – θ̄ | > δ

) → 0.

The assertion can be proved by some elementary arguments, which is similar to the proof
of Theorem 1 in [32]. Based on (4.6), let Gn(θ ) = (Wn + an)θ + fε(0)θ2 + rn(θ ) which can be
written as

Gn(θ ) = fε(0)
{|θ – θ̄ |2 – |θ̄ |2} + rn(θ ), (4.8)

with supθ∈K |rn(θ )| = op(1). Because θ̄ is stochastically bounded. The compact set K can
be chosen to contain a closed ball B(n) with center θ̄ and radius δ in probability, thereby
implying that

�n = sup
θ∈B(n)

∣
∣rn(θ )

∣
∣ = op(1).
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Now consider the behavior of Gn(θ ) outside B(n). Suppose θ = θ̄ + βμ, with β > δ and μ

is a unit vector. Define θ∗ as the boundary point Bn that lies on the line segment from θ̄ to
θ , i.e. θ∗ = θ̄ + δμ. Convexity of Gn(θ ), (4.8) and the definition of �n imply

δ

β
Gn(θ ) +

(
1 –

δ

β

)
Gn(θ̄ ) ≥ Gn

(
θ∗)

≥ fε(0)δ2 – fε(0)|θ̄ |2 – �n

≥ fε(0)δ2 + Gn(θ̄ ) – 2�n.

It follows that

inf
|θ–θ̄ |>δ

Gn(θ ) ≥ Gn(θ̄ ) +
β

δ

[
fε(0)δ2 – 2�n

]
,

when 2�n < fε(0)δ2, which happens with probability tending to one, the minimum of Gn(θ )
cannot occur at any θ with |θ – θ̄ | > δ. This implies that, for any δ > 0 and for large enough
n, the minimum of Gn(θ ) must be achieved with B(n), i.e., |θ̂ – θ̄ | ≤ δ with probability
tending to one. Thus, it completes the proof of (i).

(ii) In the following, we will prove that

Wn = O
{(

2m

n

)1/2

log n
}

, a.s. (4.9)

By Lemma 4.1, we have

max
i,m

∣
∣∣
∣

∫

Ai

Em(t, s) ds
∣
∣∣
∣ = O

(
2m/n

)
= O

(
n–2p)

and

n∑

i=1

∫

Ai

Em(t, s) ds =
∫ 1

0
Em(t, s) ds = O(1) = O

(
np2

)
,

where p1 = 2p with 0 ≤ p1 ≤ 1 and p1 ≥ 2/(2 + δ), and p2 = 0, which can be satisfied by
Conditions (A1) and (A7)(ii). By Lemma 4.3, Wn = O(n–p log n). Furthermore, we get (4.9).
So, (ii) holds. �

Proof of Theorem 3.2 From Theorem 3.1(i), we have

2fε(0)
{

ĝ(t) – g(t)
}

= Zn(t) + Rn(m;γ ,ν), (4.10)

where Zn(t) =
∑n

i=1 sign(εi)
∫

Ai
Em(t, s) ds and Rn(m;γ ,ν) = Op{n–γ + ηm +

√
2m

n1+γ }. From
(A7)(iii) n2–2mv∗ → 0, one gets

√
n2–mRn(m;γ ,ν) = op(1). (4.11)
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Now, let us verify the asymptotic normality of
√

n2–mZn(t(m)). First, we calculate the vari-
ance of it. By the proofs of Theorem 3.3 and Lemma 6.1 of [16], we have

∣
∣var

(√
n2–mZn

(
t(m))) – κ(t)ω2

0
∣
∣

=

∣∣
∣∣∣
n2–m

n∑

i=1

(∫

Ai

Em
(
t(m), s

)
ds

)2

– κ(t)ω2
0

∣∣
∣∣∣

≤
∣
∣∣∣
∣
n2–m

n∑

i=1

(∫

Ai

Em
(
t(m), s

)
ds

)2

– 2–m
∫ 1

0
E2

m
(
t(m), s

)
κ(s) ds

∣
∣∣∣
∣

+
∣∣
∣∣2

–m
∫ 1

0
E2

m
(
t(m), s

)
κ(s) ds – κ(t)ω2

0

∣∣
∣∣

≤ n2–m

∣
∣∣
∣∣

n∑

i=1

(si – si–1)2E2
m
(
t(m), ui

)
–

1
n

(si – si–1)E2
m
(
t(m), vi

)
k(vi)

∣
∣∣
∣∣

+ o(1)

(where ui and vi belong to Ai)

= n2–mO
(
n–1)O

(
n2–m)(

ρ(n)22m +
22m

n2 +
22m

n
2m

n

)
+ o(1)

≤ O
(
nρ(n) + 2m/n

)
= o(1).

So,

var
(√

n2–mZn
(
t(m))) = κ(t)ω2

0 + o(1). (4.12)

To complete the proof, we only need to check the Lindeberg-type condition

max
1≤i≤n

n2–m(
∫

Ai
Em(t, s) ds)2

var(
√

n2–mZn(t(m)))
→ 0.

From (4.12) and Lemma 4.1, one sees that the order is O(2m/n) → 0. Thus, we complete
Theorem 3.2. �
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