
Ding Journal of Inequalities and Applications        (2020) 2020:215 
https://doi.org/10.1186/s13660-020-02481-y

R E S E A R C H Open Access

Blow-up analysis for parabolic p-Laplacian
equations with a gradient source term
Juntang Ding1*

*Correspondence:
djuntang@sxu.edu.cn
1School of Mathematical Sciences,
Shanxi University, Taiyuan 030006,
P.R. China

Abstract
In this work, we deal with the blow-up solutions of the following parabolic
p-Laplacian equations with a gradient source term:

⎧
⎪⎨

⎪⎩

(b(u))t =∇ · (|∇u|p–2∇u) + f (x,u, |∇u|2, t) in Ω × (0, t∗),
∂u
∂n = 0 on ∂Ω × (0, t∗),
u(x, 0) = u0(x) ≥ 0 in Ω ,

where p > 2, the spatial domainΩ ⊂ R
N (N ≥ 2) is bounded, and the boundary ∂Ω is

smooth. Our research relies on the creation of some suitable auxiliary functions and
the use of the differential inequality techniques and parabolic maximum principles.
We give sufficient conditions to ensure that the solution blows up at a finite time t∗.
The upper bounds of the blow-up time t∗ and the upper estimates of the blow-up
rate are also obtained.
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1 Introduction
The blow-up solutions of parabolic p-Laplician equations have been studied by many au-
thors (see, for instance, [1–10]). In this work, we research the blow-up solutions of the
following parabolic p-Laplacian equations with a gradient source term:

⎧
⎪⎪⎨

⎪⎪⎩

(b(u))t = ∇ · (|∇u|p–2∇u) + f (x, u, |∇u|2, t) in Ω × (0, t∗),
∂u
∂n = 0 on ∂Ω × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in Ω .

(1.1)

In (1.1), p > 2, the spatial domain Ω ⊂ R
N (N ≥ 2) is bounded, the boundary ∂Ω is smooth,

and t∗ is blow-up time, b(s) is a C3(R+) function with b′(s) > 0, s ∈ R+, f (x, s, r, t) is a non-
negative C1(Ω × R+ × R+ × R+) function, and u0(x) is a nonnegative C2(Ω) function
satisfying ∂u0(x)

∂n = 0, x ∈ ∂Ω .
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As far as I know, there are many papers on the blow-up problems of parabolic equations
with a gradient term (see, for instance, [11–23]). For the sake of research (1.1), we mainly
focus on the papers [12, 22]. In [22], Zhang et al. researched the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

(b(u))t = ∇ · (ρ(|∇u|p)|∇u|p–2∇u) + h(x)k(t)f (u) in Ω × (0, t∗),

u(x, t) = 0 on ∂Ω × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in Ω .

(1.2)

In (1.2), p ≥ 2, the spatial domain Ω ⊂ R
N (N ≥ 2) is bounded, and the boundary ∂Ω is

smooth. They derived some conditions which ensure the solution of (1.2) blows up in a fi-
nite t∗ or exists globally. Moreover, an upper bound and a lower bound of the blow-up time
were also specified when the blow-up occurs. Their research relied on using differential
inequality techniques. In [12], Ding et al. studied the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

(b(u))t = �u + f (x, u, |∇u|2, t) in Ω × (0, t∗),
∂u
∂n = r(u) on ∂Ω × (0, t∗),

u(x, 0) = u0(x) > 0 in Ω .

(1.3)

In (1.3), the spatial domain Ω ⊂R
N (N ≥ 2) is bounded, and the boundary ∂Ω is smooth.

By combining the parabolic maximum principles and the differential inequality tech-
niques, they obtained sufficient conditions for the existence of the blow-up solution and
the global solution of (1.3). In addition, the upper bounds of the blow-up time t∗ and the
upper estimates of the blow-up rate were also given.

Inspired by the above two research works, in this paper we study the blow-up solutions
of (1.1). Since the source term of the equation in (1.1) contains a gradient term, and the
source term of the equation in (1.2) does not, the research methods in [22] cannot be used
to research (1.1). In this paper, we use the method in [12] to study (1.1). In other words,
we combine the parabolic maximum principles with the differential inequality techniques
to study (1.1). The difficulty in using this research method is that some suitable auxiliary
functions need to be constructed. We note that although the source terms in equations of
(1.1) and (1.3) are the same, the boundary conditions are different. Therefore, the auxiliary
functions in the paper [12] are not suitable for researching (1.1). In this paper, we need to
construct some auxiliary functions that are completely different from those in [12] to study
the blow-up solution of (1.1). We give sufficient conditions to guarantee that the solution
of (1.1) blows up at a finite time t∗. The upper bounds of the blow-up time t∗ and the upper
estimates of the blow-up rate are also obtained.

For convenience, in this paper we use a comma to represent partial derivative and adopt
the summation convention, for example,

u,i u,j u,ij =
N∑

i=1

N∑

j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

.
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2 The main result and its proof
Due to the need to study the blow-up solution of (1.1), we define the following two con-
stants:

α = min
x∈Ω

∇ · (|∇u0|p–2∇u0) + f (x, u0, |∇u0|2, 0)
eu0

, (2.1)

β = inf
(x,s,t)∈Ω×R+×R+

f (x, s, 0, t)
es , (2.2)

where u0 is the initial value of (1.1). For the same purpose, we also construct two auxiliary
functions as follows:

G(x, t) = b′(u)ut – αeu, (x, t) ∈ Ω × [0, t∗), (2.3)

H(s) =
∫ +∞

s

b′(τ )
eτ

dτ , s ∈R+, (2.4)

where u(x, t) is a nonnegative C3(Ω × (0, t∗)) ∩ C2(Ω × [0, t∗)) solution of (1.1). Now we
have

H ′(s) = –
b′(s)

es < 0, s ∈R+,

which implies that the function H has an inverse function H–1. The following Theorem 2.1
is the main result of the blow-up solution to (1.1).

Theorem 2.1 Let u be a nonnegative C3(Ω × (0, t∗)) ∩ C2(Ω × [0, t∗)) solution of (1.1).
Assume the following four assumptions are true:

(i)

β ≥ α > 0. (2.5)

(ii)

∫ +∞

M0

b′(τ )
eτ

dτ < +∞, M0 = max
x∈Ω

u0(x). (2.6)

(iii) For s ∈R+,

(p – 1)
(

1
b′(s)

)′
+ (p – 2)

1
b′(s)

≥ 0,
(

1
b′(s)

)′′
+ 2

(
1

b′(s)

)′
+

1
b′(s)

≥ 0. (2.7)

(iv) For (x, s, r, t) ∈ Ω ×R+ ×R+ ×R+,

fr(x, s, r, t) ≥ 0, ft(x, s, r, t) ≥ 0,

fs(x, s, r, t)
b′(s)

– (p – 1)f (x, s, r, t)
[(

1
b′(s)

)′
+

1
b′(s)

]

≥ 0. (2.8)
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Then, u(x, t) must blow up at a finite time t∗ and

t∗ ≤ 1
α

∫ +∞

M0

b′(τ )
eτ

dτ ,

as well as

u(x, t) ≤ H–1(α
(
t∗ – t

))
, (x, t) ∈ Ω × [0, t∗).

Proof By directly calculating the auxiliary function G(x, t) defined in (2.3), we have

G,i = b′′utu,i +b′ut ,i –αeuu,i (2.9)

and

G,ij = b′′′utu,i u,j +b′′ut ,j u,i +b′′ut ,i u,j +b′′utu,ij +b′ut ,ij –αeuu,i u,j –αeuu,ij . (2.10)

By (2.10), we get

�G = Gii = b′′′|∇u|2ut + 2b′′(∇u · ∇ut) + b′′ut�u + b′�ut – αeu|∇u|2 – αeu�u. (2.11)

Making use of the first equation of (1.1), we derive

Gt =
(
b′(u)ut

)

t – αeuut =
[(

b(u)
)

t

]

t – αeuut

=
[∇ · (|∇u|p–2∇u

)
+ f (x, u, q, t)

]

t – αeuut

=
[|∇u|p–2�u + (p – 2)|∇u|p–4u,i u,j u,ij +f (x, u, q, t)

]

t – αeuut

= (p – 2)|∇u|p–4(∇u · ∇ut)�u + |∇u|p–2�ut

+ (p – 2)(p – 4)|∇u|p–6(∇u · ∇ut)u,i u,j u,ij +2(p – 2)|∇u|p–4ut ,i u,j u,ij

+ (p – 2)|∇u|p–4u,i u,j ut ,ij +fuut + 2fq(∇u · ∇ut) + ft – αeuut , (2.12)

where q = |∇u|2. It follows from (2.10)–(2.12) that

|∇u|p–2

b′ �G + (p – 2)
|∇u|p–4

b′ u,i u,j G,ij –Gt

= (p – 1)
b′′′

b′ |∇u|put + 2(p – 1)
b′′

b′ |∇u|p–2(∇u · ∇ut) +
b′′

b′ |∇u|p–2ut�u

– α(p – 1)
eu

b′ |∇u|p – α
eu

b′ |∇u|p–2�u + (p – 2)
b′′

b′ |∇u|p–4utu,i u,j u,ij

– α(p – 2)
eu

b′ |∇u|p–4u,i u,j u,ij –(p – 2)|∇u|p–4(∇u · ∇ut)�u

– (p – 2)(p – 4)|∇u|p–6(∇u · ∇ut)u,i u,j u,ij –2(p – 2)|∇u|p–4ut ,i u,j u,ij

+
(
αeu – fu

)
ut – 2fq(∇u · ∇ut) – ft . (2.13)

With (2.9), we obtain

ut ,i =
1
b′ G,i –

b′′

b′ utu,i +α
eu

b′ u,i (2.14)
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and

∇ut =
1
b′ ∇G –

b′′

b′ ut∇u + α
eu

b′ ∇u. (2.15)

We insert (2.14) and (2.15) into (2.13) to derive

|∇u|p–2

b′ �G + (p – 2)
|∇u|p–4

b′ u,i u,j G,ij

+
1
b′

(

(p – 2)(p – 4)|∇u|p–6u,i u,j u,ij +(p – 2)|∇u|p–4�u – 2(p – 1)
b′′

b′ |∇u|p–2

+ 2fq

)

(∇u · ∇G) + 2(p – 2)
|∇u|p–4

b′ u,i u,ij G,i –Gt

=
(

(p – 1)
b′′′

b′ – 2(p – 1)
(b′′)2

(b′)2

)

|∇u|put +
(

2α(p – 1)
b′′eu

(b′)2 – α(p – 1)
eu

b′

)

|∇u|p

+ (p – 1)
b′′

b′ |∇u|p–2ut�u – α(p – 1)
eu

b′ |∇u|p–2�u

+ (p – 1)(p – 2)
b′′

b′ |∇u|p–4utu,i u,j u,ij –α(p – 1)(p – 2)
eu

b′ |∇u|p–4u,i u,j u,ij

+
(
αeu – fu

)
ut + 2

fqb′′

b′ |∇u|2ut – 2α
fqeu

b′ |∇u|2 – ft . (2.16)

By the first equation of (1.1), we have

|∇u|p–2�u = b′ut – (p – 2)|∇u|p–4u,i u,j u,ij –f . (2.17)

We insert (2.17) into (2.16) to get

|∇u|p–2

b′ �G + (p – 2)
|∇u|p–4

b′ u,i u,j G,ij

+
1
b′

(

(p – 2)(p – 4)|∇u|p–6u,i u,j u,ij +(p – 2)|∇u|p–4�u – 2(p – 1)
b′′

b′ |∇u|p–2

+ 2fq

)

(∇u · ∇G) + 2(p – 2)
|∇u|p–4

b′ u,i u,ij G,i –Gt

=
(

(p – 1)
b′′′

b′ – 2(p – 1)
(b′′)2

(b′)2

)

|∇u|put +
(

2α(p – 1)
b′′eu

(b′)2 – α(p – 1)
eu

b′

)

|∇u|p

+ (p – 1)b′′(ut)2 –
(

α(p – 2)eu + fu + (p – 1)
fb′′

b′

)

ut

+ α(p – 1)
f eu

b′ + 2
fdb′′

b′ |∇u|2ut – 2α
fdeu

b′ |∇u|2 – ft . (2.18)

It follows from (2.3) that

ut =
1
b′ G + α

eu

b′ . (2.19)



Ding Journal of Inequalities and Applications        (2020) 2020:215 Page 6 of 11

We insert (2.19) into (2.18) to obtain

|∇u|p–2

b′ �G + (p – 2)
|∇u|p–4

b′ u,i u,j G,ij

+
1
b′

(

(p – 2)(p – 4)|∇u|p–6u,i u,j u,ij +(p – 2)|∇u|p–4�u – 2(p – 1)
b′′

b′ |∇u|p–2

+ 2fq

)

(∇u · ∇G) + 2(p – 2)
|∇u|p–4

b′ u,i u,ij G,i

+
{

1
(b′)2

[(

2(p – 1)
(b′′)2

b′ – (p – 1)b′′′
)

|∇u|p – 2fqb′′|∇u|2
]

+
1
b′

[

αeu
(

p – 2 – 2(p – 1)
b′′

b′

)

+ fu + (p – 1)
fb′′

b′ – (p – 1)
b′′

b′ G
]}

G – Gt

= –α(p – 1)eu
[(

1
b′

)′′
+ 2

(
1
b′

)′
+

1
b′

]

|∇u|p – α2e2u
[

(p – 1)
(

1
b′

)′
+ (p – 2)

1
b′

]

– αeu
{

fu

b′ – (p – 1)f
[(

1
b′

)′
+

1
b′

]}

– 2αeufq

[(
1
b′

)′
+

1
b′

]

|∇u|2 – ft . (2.20)

From assumptions (2.7) and (2.8) we know that the right-hand side of equality (2.20) is
nonpositive. So now we have

|∇u|p–2

b′ �G + (p – 2)
|∇u|p–4

b′ u,i u,j G,ij

+
1
b′

(

(p – 2)(p – 4)|∇u|p–6u,i u,j u,ij +(p – 2)|∇u|p–4�u – 2(p – 1)
b′′

b′ |∇u|p–2

+ 2fq

)

(∇u · ∇G) + 2(p – 2)
|∇u|p–4

b′ u,i u,ij G,i

+
{

1
(b′)2

[(

2(p – 1)
(b′′)2

b′ – (p – 1)b′′′
)

|∇u|p – 2fqb′′|∇u|2
]

+
1
b′

[

αeu
(

p – 2 – 2(p – 1)
b′′

b′

)

+ fu + (p – 1)
fb′′

b′ – (p – 1)
b′′

b′ G
]}

G

– Gt ≤ 0 in Ω × (
0, t∗). (2.21)

Combining (2.21) and parabolic maximum principles ([24], Theorems 2.7–2.9, pp. 20–
21), it follows that G may take its nonpositive minimum value under the following three
possible cases:

(1) for t = 0; (2) at a point (x̂, t̂) ∈ Ω × (0, t∗) where |∇u(x̂, t̂)| = 0; (3) on the boundary
∂Ω × (0, t∗).

We first study the first case. By (2.1), we derive

min
x∈Ω

G(x, 0)

= min
x∈Ω

{∇ · (|∇u0|p–2∇u0
)

+ f
(
x, u0, |∇u0|2, 0

)
– αeu0

}

= min
x∈Ω

{

eu0

(∇ · (|∇u0|p–2∇u0) + f (x, u0, |∇u0|2, 0)
eu0

– α

)}

= 0. (2.22)
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Then, we study the second case. With (2.5), we have

G(x̂, t̂) =
[∇ · (|∇u|p–2∇u

)
+ f

(
x, u, |∇u|2, t

)
– αeu]

∣
∣
∣
∣
(x̂,t̂)

=
[|∇u|p–2�u + (p – 2)|∇u|p–4u,i u,j u,ij +f

(
x, u, |∇u|2, t

)
– αeu]

∣
∣
∣
∣
(x̂,t̂)

≥ [
–|∇u|p–2|�u| – (p – 2)|∇u|p–4|∇u||∇u||u,ij | + f

(
x, u, |∇u|2, t

)
– αeu]

∣
∣
∣
∣
(x̂,t̂)

=
[

–|∇u|p–2|�u| – (p – 2)|∇u|p–2|u,ij | + eu
(

f (x, u, |∇u|2, t)
eu – α

)]∣
∣
∣
∣
(x̂,t̂)

= eu(x̂,t̂)
(

f (x̂, u(x̂, t̂), 0, t̂)
eu(x̂,t̂)

– α

)

≥ eu(x̂,t̂)(β – α) ≥ 0. (2.23)

Finally, we study the third case. Using of the boundary condition of (1.1), we obtain

∂G
∂n

= b′′ ∂u
∂n

ut + b′ ∂ut

∂n
– αeu ∂u

∂n
= b′

(
∂u
∂n

)

t
= 0 on ∂Ω × (

0, t∗). (2.24)

It follows from parabolic maximum principles and (2.22)–(2.24) that the minimum value
of G in Ω × [0, t∗) is zero. In fact, if the minimum value of G in Ω × [0, t∗) is negative, then
this minimum value must be taken on ∂Ω × (0, t∗). So there is (x̃, t̃) ∈ ∂Ω × (0, t∗) such
that G(x̃, t̃) = min(x,t)∈Ω×[0,t∗) G(x, t) < 0. The parabolic maximum principle means

∂G
∂n

∣
∣
∣
∣
(x̃,t̃)

< 0,

which contradicts (2.24). Hence, the minimum value of G in Ω × [0, t∗) is zero. In other
words, we have

G(x, t) ≥ 0 in Ω × [0, t∗),

from which we get the following differential inequality:

b′(u)
αeu ut ≥ 1 in Ω × [0, t∗). (2.25)

At the point x̃ ∈ Ω where u0(x̃) = M0, we integrate (2.25) from 0 to t to get

1
α

∫ t

0

b′(u)
eu ut dt =

1
α

∫ u(x̃,t)

M0

b′(τ )
eτ

dτ ≥ t. (2.26)

It follows from (2.26) that u must blow up at some finite time t∗. In fact, assuming that the
solution u does not blow up, we have, for any t > 0,

1
α

∫ +∞

M0

b′(τ )
eτ

dτ >
1
α

∫ u(x̃,t)

M0

b′(τ )
eτ

dτ ≥ t. (2.27)
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Letting t → +∞ in (2.27), we derive

1
α

∫ +∞

M0

b′(τ )
eτ

dτ = +∞,

which contradicts (2.6). Hence, u must blow up at some finite time t∗. Furthermore, letting
t → t∗ in (2.26), we obtain

t∗ ≤ 1
α

∫ +∞

M0

b′(τ )
eτ

dτ .

At each fixed point x ∈ Ω , we integrate (2.25) from t to ť (0 < t < ť < t∗) and use (2.4) to
deduce

H
(
u(x, t)

) ≥ H
(
u(x, t)

)
– H

(
u(x, ť)

)
=

∫ u(x,ť)

u(x,t)

b′(τ )
eτ

dτ ≥ α(ť – t). (2.28)

Letting ť → t∗ in (2.28), we have

H
(
u(x, t)

) ≥ α
(
t∗ – t

)

and

u(x, t) ≤ H–1(α
(
t∗ – t

))
.

The proof is complete. �

In Theorem 2.1, we have the following conclusions when b(u) ≡ u:

Corollary 2.1 Let u be a nonnegative C3(Ω × (0, t∗)) ∩ C2(Ω × [0, t∗)) solution of the fol-
lowing problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (|∇u|p–2∇u) + f (x, u, |∇u|2, t) in Ω × (0, t∗),
∂u
∂n = 0 on ∂Ω × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in Ω ,

where p > 2, the spatial domain Ω ⊂ R
N (N ≥ 2) is bounded, and the boundary ∂Ω is

smooth. Assume the following two assumptions are true:
(i)

β ≥ α > 0.

(ii) For (x, s, r, t) ∈ Ω ×R+ ×R+ ×R+,

fr(x, s, r, t) ≥ 0, ft(x, s, r, t) ≥ 0, fs(x, s, r, t) – (p – 1)f (x, s, r, t) ≥ 0.
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Then u(x, t) must blow up at a finite time t∗ and

t∗ ≤ e–M0

α
, M0 = max

x∈Ω

u0(x),

as well as

u(x, t) ≤ ln
1

α(t∗ – t)
.

3 Application
In the following, we give an example to illustrate the application of Theorem 2.1

Example 3.1 Let u be a nonnegative C3(Ω × (0, t∗)) ∩ C2(Ω × [0, t∗)) solution of the fol-
lowing problem:

⎧
⎪⎪⎨

⎪⎪⎩

(e u
2 )t = ∇ · (|∇u|∇u) + (1 +

∑3
i=1 x2

i + |∇u|2t)eu in Ω × (0, t∗),
∂u
∂n = 0 on ∂Ω × (0, t∗),

u(x, 0) = 1 in Ω ,

where Ω = {x = (x1, x2, x3)|∑3
i=1 x2

i < 1}. We now have

p = 3, b(u) = e
u
2 , f

(
x, u, |∇u|2, t

)
=

(

1 +
3∑

i=1

x2
i + |∇u|2t

)

eu, u0(x) = 1.

It follows from (2.1) and (2.2) that

α = min
x∈Ω

∇ · (|∇u0|p–2∇u0) + f (x, u0, |∇u0|2, 0)
eu0

= min
x∈Ω

(

1 +
3∑

i=1

x2
i

)

= 1

and

β = inf
(x,s,t)∈Ω×R+×R+

f (x, s, 0, t)
es = inf

(x,s,t)∈Ω×R+×R+

(

1 +
3∑

i=1

x2
i

)

= 1,

from which we know that the assumption (2.5) holds. We also easily check that the as-
sumptions (2.6)–(2.8) hold true. Hence, Theorem 2.1 implies that u(x, t) must blow up at
a finite time t∗ and

t∗ ≤ 1
α

∫ +∞

M0

b′(τ )
eτ

dτ =
1
2

∫ +∞

1
e– τ

2 dτ = e– 1
2 ,

as well as

u(x, t) ≤ H–1(α
(
t∗ – t

))
= ln

1
(t∗ – t)2 , (x, t) ∈ Ω × [0, t∗).
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4 Conclusions
In this paper, we combine parabolic maximum principles with the differential inequality
techniques to study the blow-up solution of problem (1.1). The key to our research is
constructing two auxiliary functions (2.3) and (2.4). With their help, we obtain sufficient
conditions for the existence of the blow-up solution of problem (1.1). In addition, we also
give an upper bound on the blow-up time and an upper estimate of the blow-up rate.
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