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1 Introduction
Let the real function ¢ be defined on some nonempty interval I of the real line R. The
function ¢ is said to be convex on I if the inequality

P(Ou+(1-0)v) <0¢) +(1-0)p(v) 1)

holds for all #,v € I and 6 € [0, 1].

The following inequality is well known in the literature as Hermite—Hadamard’s inequal-
ity.

Theorem 1.1 Let ¢ : I € R — R be a convex function defined on the interval I of real
numbers and u,v € I with u < v. The following double inequality holds:

¢<u+v> - ﬁfuvqﬁ(x)dxf ¢(M)-2F—¢(V). )

2

Definition 1.1 ([6, 7]) A function ¢ : I € (0,00) — R is said to be GA-convex (geometric-
arithmetically convex) if

(V') <0¢(u) + (1-0)p(v) 3)

forall u,veland 6 € [0,1].
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Since condition (3) can be written as
(@o exp)(@ Inu+(1-06)In v) < 0(¢p oexp)(Inu) + (1 —0)(¢p o exp)(Inv),

we observe that ¢ : I C (0,00) — R is GA-convex on [ if and only if ¢ o exp is convex on
Inl:={lnx:xel}.IfI = [u,v], thenInI = [Iny, Inv]. By using the useful property, we easily
say thatif ¢ : I C (0,00) — R is GA-convex on I and u,v € I with u < v, then

Inv

1 ¢>x)
d)(\/—) ~ Inv—1Inu Lu (9 0 exp)(w) da = M/

_ P+ 4
- 2

Theorem 1.2 A real-valued function ¢ defined on an interval I is convex if and only if, for
all uy,us,...,u, in I and all scalars 1; € [0,1] (i = 1,n) with Y " A; = 1, we have

¢ (Z li”i) < Z Nitp(ua;). (4)
i=1 i=1
This inequality is the well-known Jensen inequality in literature [8].

Remark 1.1 Let ¢ : I € (0,00) — R be a GA-convex function on 7, then ¢ o exp is convex

onlInl:= {lnx:x € I}, and by (4) we get

(¢ o exp) (2": Ailn Mi) =¢ (ﬁ ”lkl>
i=1

< Z Ai(¢ o exp)(In;)

i-1
= Z i (u;).
i-1

Thus, we get Jensen’s inequality for GA-convex functions as follows:

¢>(1‘[ u*> <> ho(w,). ()
i=1 i=1

In [5], Mercer proved the following variant of Jensen’s inequality known as the Jensen—

Mercer inequality.

Theorem 1.3 Let ¢ : [u,v] € R — R be a convex function on [a, D), then

¢ (u rv- inxi) < ¢) + ) = ) hi(xi) ©)

i=1 i=1

for each x; € [u,v] and »; € [0,1] (i =1, n) with Y | A; = 1.
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We will now give definitions of the right-sided and left-sided Hadamard fractional inte-
grals which are used throughout this paper.

Definition 1.2 Let ¢ € L[u,v]. The left-sided and right-sided Hadamard fractional inte-
grals J% ¢ and J% ¢ of order « > 0 with v > u > 0 are defined by

x a—1
fﬁ+¢(9€)=ﬁ/l; <ln§> ¢(t)?, U<X<Y,

and

v a-1
/3¢(x)=ﬁ/x<lny—i) ¢(t)%, U<X<Y,

respectively, where I" () is the gamma function defined by I' («) = fooo e 't 1 dt (see [2]).

In this paper, firstly, the Jensen—Mercer inequality is proved for GA-convex functions.
After that we prove weighted Hermite—Hadamard’s inequalities for GA-convex functions
using the new Jensen—Mercer inequality, and we establish some new fractional inequalities
connected with the right sides of Hermite—Hadamard type inequalities for differentiable
mappings whose derivatives in absolute value are GA-convex.

2 Weighted Hermite-Hadamard-Mercer inequalities for GA-convex functions
Lemma 2.1 Let ¢ : [a,b] C (0,00) — R be a GA-convex function on [a, b], then

b
cp(“;) <¢(a) + p(b) - p(x) )

for each x € [a, b].

Proof Let x € [a, D] be an arbitrary point. Then there exists p € [0,1] such that we can

kbl—k I—Abk

write x = a and ab/x=a . By using the GA-convexity of ¢, we obtain

b
¢(%) < (1-2)p(a) + rp(b)

= ¢(@) + ¢(b) - [19(a) + (1 - 1) ()]
< ¢(a) + ¢(b) - p(a"b'™")
= ¢(a) + ¢(b) - (x). O

Hermite—Hadamard-Fejer inequalities can be represented for GA-convex functions us-
ing a Jensen—Mercer type inequality as follows.

Theorem 2.1 Let ¢ : [a,b]  (0,00) = R be a GA-convex function on [a, b], then

¢<Hf”xh> < 9@+ pB) = Y i) ®)

i=1"i i=1

for each x; € [a,b] and ; € [0,1] (i =1,n) with Y 1 A; = 1.
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Proof First method: By using inequality (5) and Lemma 2.1, we can write

ab " ab\ ™
"’(n:;x?") ¢<H(_) )
- ab
sgxl-qb(x—i)
<¢a)+¢b) - Zkirb(xi)-

i=1

Second method: Since ¢ is a GA-convex function on [a, b], ¢ oexp is convex on [Ina, In b].

From Theorem 1.3, we get
n
(¢ o exp) (lna +Inb - Zkilnxi)
i=1

< (¢ oexp)(Ina) + (¢ oexp)(Inb) - Y _ 1i(¢ o exp)(Inx;)

i=1

for each x; € [a,b] and A; € [0,1] (i = 1,n) with )", A; = 1. This last inequality gives us the
desired result. O

Theorem 2.2 Let ¢ : I C (0,00) — R be a function such that ¢ € L|a, b], where a, b € I with
a<b.If ¢ isa GA-convex function on [a, b] and g : [a, b]— R is nonnegative and integrable,

then the following inequalities hold:

ab \ (% g(u)

¢(¢—x_y>/@_b u
1 ab)*\ du
5{/ ¢<u)g(u>—+/ plu)g (W> }
1 ab ab ?g(u)
a[qb(—)”(?)]/@b u

o) +o0)] [F gu)
f} f s ©)

= [¢(ﬂ) +¢(b) -

forall x,y € [a, D).
Proof Since ¢ is a GA-convex function on [a, b], we have
CORCCICNIONC]
JE) x) \y x y

P((LY (L)1) + 9((£)(2))
<
- 2

(10)

forallx,y € [a,b] and £ € [0, 1].

Page 4 of 16
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Multiplying both sides of (10) by g(( “x—b )t(“y—b)l‘t), then integrating the resulting inequality
with respect to ¢ over [0, 1], we obtain

() [ s =3[ oy [ o) %]

and the first inequality is proved.

For the proof of the second inequality in (9), by the GA-convexity of ¢, we have

() () )=(2) ()
o(2) () () n(2),

By adding these inequalities, we have

() (F) ) o) (9))=el%)ol5)

Then multiplying both sides of (11) by % g((”;—b)t (%b)l‘t) and integrating the resulting in-

and

equality with respect to t over [0, 1], we obtain

S s oo 7)) =3[0(5) o ()]

For the proof of the third inequality in (9), by inequality (7), we have

[ [ab ab\1 (% o) +o0)] (% | du
5[4)(7) +¢>< y )]/“y g(u )— < [¢(ﬂ)+¢(b) 5 }/Tb g(u)j-

The proof is completed. O

If we take x = @ and y = b in Theorem 2.2, then we can derive the following weighted
Hermite—Hadamard inequalities for GA-convex functions.

Corollary 2.1 Let ¢ : I C (0,00) — R be a function such that ¢ € L{a,b], where a,b € I
with a < b. If ¢ is a GA-convex function on [a,b) and g : [a,b]— R is nonnegative and
integrable, then the following inequalities hold:

b
(~/ab) f g()

d
<3 [ o+ [ s %) %]

<¢(a)+¢(b>/ P
2 U

(12)
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Remark2.1 Specially, if we choose that g is geometrically symmetric to v/ ab (i.e., g(ab/u) =
g(u) for all u € [a, b]) in (12), then we get the following inequality:

b b b
s/ab) [ ) < / pgn 2 < 290 [ OF

a

which coincides with the inequality in [4, Theorem 2.2].

If we choose g(u) = 1‘%0[) In*"(2) or g(u) = r%a) In*~'(%) in Theorem 2.2, then we ob-
tain the following Hermite—Hadamard—Mercer inequalities for GA-convex functions via
Hadamard fractional integrals.

Corollary 2.2 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a,b], then the following inequalities for
Hadamard fractional integrals hold:

()= mwomso(5) (5]
=[(5) (5]

< o) + 9(b) - 200

5 (13)

forall x,y € [a,b] and « > 0. Specially, we take o = 1 in the above inequalities, then we get

o 75) < om | <ab>du <3[o()(5)]

o) + ()
2

<¢(a) +¢(b) -
forall x,y € [a,b] with x < y.

Remark 2.2 Specially, if we choose x = a and y = b in (13), then we get the following in-
equalities:

P(a) + ¢(b)

D (e o
¢(vab) < >_21‘“ Vo) 4 s@) = =

“(bla

which coincide with the inequality in [1, Theorem 2.1].

Let w: [a,b]—> R be a nonnegative and integrable function. If we choose g(u) =
ﬁ ln""l(%)w(u) and g(u) = ﬁ ln"’l(;'—'g)w(u) in Theorem 2.2, then we obtain the fol-
lowing weighted Hermite—Hadamard—Mercer inequalities for GA-convex functions via
Hadamard fractional integrals.

Corollary 2.3 Let ¢ : I C (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1

with a < b. If ¢ is a GA-convex function on [a,b] and w : [a,b]— R is nonnegative and
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integrable, then the following inequalities for Hadamard fractional integrals hold:
p < ab ) a <ab)
), wl =
Vi) 5y
1., ab N ab
<-Vu 0w — | +]u oWl —
2 y T X x y
1 ab ab\1., ab
S-lol— ) +o| — ]@_W —
2 X y x y

< [qs(a) +(b) M} bw<“y_”)

1., ab N ab
]@ ow| — +]@7¢W -
y T X x y
ab o ab
— ) Ve wl —

y AN

< [qs(u) +o(b) - M}]§+W(a—b)

2 y X

forall x,y € [a,b] with x < y. Also, we obtain the following inequalities from both inequali-
ties above:

ab o ab Ja ab
o( 5 el(5) (%)
N (ab) N (ah)
S]ab ¢W — +]ab ¢W —
o X E y
Lo(2) o)) ()]
§_¢_+¢_ abw_+]ahw_
2 X y x y E X
< [¢(a) +o(b) - M}[ ‘;b_w(@> +1‘;,,+w(@)} (19)
x y y X

forall x,y € [a,b] with x < y.

Remark 2.3 Specially, if we choose x = a and y = b in (14), then we get the following in-
equalities:

P(Vab)[Jewla) + I, wb)] < [Jo_¢w(a) + ]2, ¢w(b)]

_ @+ o)

Vs wla) + 72, wib)],

which coincide with the inequality in [3, Theorem 2.1].

If we choose g(u#) = 1in Theorem 2.2, then we obtain the following Hermite—Hadamard -
Mercer inequalities for GA-convex functions.



iscan Journal of Inequalities and Applications (2020) 2020:212

Page 8 of 16

Corollary 2.4 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a, b, then the following inequalities hold:

ab 1 Y ¢(ablu)
¢(\/—x—y) = lny/x/ Tdu

- 1 ab ab
<3o() ()]

< [¢(a) ob) - M}

(15)
forall x,y € [a,b] with x < y.

Theorem 2.3 Let ¢ : I C (0,00) — R bea function such that ¢ € Lla, b], wherea, b € I with

a<b.If ¢ isa GA-convex function on [a, b] and g : [a, b]— R is nonnegative and integrable,
then the following inequalities for fractional integrals hold:

() [} e
sl oo [ () %)

y

d b\ du bu\ d
< [¢(@) + 9(b)] ( )7” %[ )g<au)u /¢()(a u> u]

xy
<[¢(@) +p(b / yg(%)%” (16)

forall x,y € [a,b].

Proof The first inequality of (16) was proved in Theorem 2.2. For the proof of the second
inequality in (16), since ¢ is a GA-convex function on [a, b], by Lemma 2.1, we have

ab\' [ ab\ " ab
o((5)(5) )=o)
X y Xy
< ¢(a) + p(b) — p(x'y""),

and similarly

b 1-t b t
¢(<“—) (“—))<¢(a)+¢<b) #(x'1y")
x ¥

for all x,y € [a,b] and ¢ € [0, 1]. By adding these inequalities, we have

A (5) ) () ()
<2¢(a) +2¢(b) - [p(x'y" ) + ¢ (x'")]. (17)
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Multiplying both sides of (17) by % g(xt;f_t ), then integrating the resulting inequality with
respect to ¢ over [0, 1], we obtain

ab

3 / o+ [, otung( ‘) 2}
o[22 o5 [

for all x, y € [, b]. Thus the second inequality is proved. For the proof of the last inequality
in (16), by the GA-convexity of ¢, we have

qb(x‘yl"t) + qb(xl‘tyt)
2

D(Vay) = p(y/ (xy11) (x1191)) <

for all x,y € [a, b]. So, we get

8la@) + $(0) S [$(7) + 6 ()] = 6(@) + $(6) () (18)

for all x,y € [a, b]. Multiplying both sides of (18) by g(xt;%), then integrating the resulting
inequality with respect to ¢ over [0, 1], we obtain

Y (ab\du 1 du Y abu\ du
s [ 2% o) ()]
< [¢(a) + p(b) — p(/xy)] /g(@)@

u)u
for all x,y € [a, b]. 0

If we take x = @ and y = b in Theorem 2.3, then we can derive the following weighted
Hermite—Hadamard inequalities for GA-convex functions.

Corollary 2.5 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a,b] and g : [a,b]— R is nonnegative and
integrable, then the following inequalities hold.:

b
(v ab) / ‘Mdu

. d
5{ / ¢(u)g(u)—+ / ¢>(u)g< )uu}
SM/ &) 4, _l[/ $(u)g (—)—+/ ¢M>g<u>—]

b rab\d
< [9(a) + 6) - 9(Vab)] [ (“M )7” (19)
If we choose g(u) = ln (“b) org(u) = F(a n*" l(y ) in Theorem 2.3, then we obtain

other Hermite— Hadamard Mercer inequalities for GA-convex functions via Hadamard
fractional integrals as follows.

Page9of 16
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Corollary 2.6 Let ¢ : I C (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a, b], then the following inequalities hold:

(J5) =i 2(5) 2 o(5)]

I'a+1)

<pl@)+9(b) - - ol )[Jw(x) +J2.00)]
< [¢(a) + p(®)] - (/) (20)

for all x,y € [a,b] with x < y and o > 0. Specially, we take o = 1 in the above inequalities,
then we get

ab ab du
¢(¢__>‘ln(y/x) < ) (“)+¢(b_1(y/>/¢(

< [¢(a) + ¢(0)] - (/)

forall x,y € [a,b] with x < y. Let w: [a, b]— R be a nonnegative and integrable function.

If we choose g(u) = r(a In*~ 1("b)w(u) or g(u) = == In*" 1( 5 )w(u) in Theorem 2.3, then
we obtain weighted Hermite—Hadamard— Mercer 1nequaht1es for GA-convex functions
via Hadamard fractional integrals as follows.

Corollary 2.7 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € I
with a < b. If ¢ is a GA-convex function on [a,b] and w : [a,b]— R is nonnegative and
integrable, then the following inequalities for Hadamard fractional integrals hold.:

(B (5)=atponlS) e o(S))
)G ) =G ) e oGy

< [¢(a) + p(b) ]Iy wix) - %[]§_¢W(x) +]2,ow(y)]
< [¢(@) + ¢(b) - p(Jay) |} wix)

ab \ , ab <1 e ab Je ab
(%) 2523l en(T) vz on( )]
< [6(@) + SOV w0) — 5 [, 6w0) + 5 pwi)]

< [w) +o(b) - w}mww

forall x,y € [a, b] with x < y. Also, we obtain the following inequalities from both inequali-
ties above:

ab 7 ab e ab
o )ar(5) ()]
ab ab
5/‘;‘;,+¢W(—> + /o W<—>
¥ X B Yy
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< [¢(@) + pB) V2. w() + Ty wx)] - [J5_pw(x) + T, ow(y)]
< [¢(@) + o) - o (Jay) |3, W) + T} w(x)] (21)

forall x,y € [a,b] with x < y.
Specially, if we choose x = @ and y = b in (21), then we get the following inequalities.

Corollary 2.8 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a,b] and w : [a,b]— R is nonnegative and
integrable, then the following inequalities for Hadamard fractional integrals hold:
$(\/ab)[J¢ wia) + ]2, w(b)]
<[V owl(a) +JS,¢w(b)]
< [0(@) + ¢B)][J2,w(b) + Ji_w(a)] - [Ji_dw(a) + ], ¢w(b)]
< [6(@) + ¢(b) - p(~ab) | [J2, w(b) + i w(a)].

If we choose g(u) = 1 in Theorem 2.3, then we obtain the following Hermite—Hadamard-
Mercer inequalities for GA-convex functions.

Corollary 2.9 Let ¢ : I € (0,00) — R be a function such that ¢ € Lla,b], where a,b € 1
with a < b. If ¢ is a GA-convex function on [a, b], then the following inequalities hold:

¢,<“_b)§ 1 fyas(ab/u) »
JEY Iny/x J, u

Y d
< [¢(a)+¢(b)]—@ / o)

< [¢(@) + ¢(b) - (V)]

forall x,y € [a,b] with x < y.

3 Some Hermite-Hadamard type inequalities via Jensen-Mercer inequality for
GA-convex functions

We will use the following notations throughout this section:

’

1 —Dlnu-2u+4Ju-2
Cl(u)=/ 20 - 1|t de = Lo DIN# i Vi
0 In“u
1
Cz(bl)=/ t2t — 1| dt
0

Culn’u+ (“Bu+ 2w+ 1) Inu + du - 8/u+4

Inu

1
Cs(u) = / (1-0)2t - 1 dt = uCy(u™)
0

~ “In?u+u+2J/u-3)Inu—4u+8Ju—4
- In3u

’

Page 11 0of 16
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1

-1

C4(u)=/ Wdr=" ,
0

ulnu—-u+1

In?u

/ (1 - t)ut dt—lniu

In®u

1
Cs(u)—/ tu' dt =

In order to prove our main results, we need the following identity which is related to the

second inequality in (15).

Lemma3.1 Let¢:I C R, =(0,00)— R bea differentiable mappingonI°,and a,b € Iwith
a<b. If¢' € Lla,b), then

¢(ablx) + ¢p(ably) 1 /‘y ¢(ablu) J
2 - Iny/x J, u

bl 1 t b
:ﬂ_ny/x/(zt_l) AP >dt
2y 0 x xtyl=t

forall x,y € [a,b]with x < y.

Proof Integrating by parts and changing variables of integration yields

ablny/x (! y\ ., [ ab
2 /o (Zt_1)<9_6) ¢ (xfyl‘f>dt
1! ab
= 5/0 (2t - 1)d¢<x—fy“>
1 ab \|' ! ab
3(eemme(ig) ) o)«

~ ¢(ablx) + p(ably) B 1 /y ¢(ablu)
- 2 Iny/x ), u

du.

This completes the proof. O

Theorem 3.1 Let ¢ : I C R, — R be differentiable on I°, and a,b € I° with a < b and ¢’ €
Lla,b). If |¢'|7 is GA-convex on [a, b] for ¢ > 1, then

d(ablx) + Pp(ably) B 1 /3’ ¢(ablu) du‘

2 Iny/x u
bl
5%[ ( )(|¢<b)|q )
2y(q+1) 4
q q %
—cg(y—q)|¢/(x)|‘f—cg(y—q)lcb’(y)lq] (22)
X X

forall x,y € [a,b]with x < y.

Page 12 of 16
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Proof Since |¢’|? is GA-convex on [a, b], from Lemma 3.1 and the power mean inequality,

we have

’(l)(ab/x) + ¢lably) ~ 1 /3’ ¢(ablu) s

2 Iny/x J, u

ablny/x ! N ., [ ab
sy /o lzt_l'(E) ¢<xy1 f)‘dt
ablny/x ( ! -7 at
= % (/ |2t—1|dt) </ |2t — 1|<>
L _ablnylx ablny/x (/ |2t—1|< >qt
2y(q+1
Al @) +[¢'@|" - tl¢'0|" - —t)\qb’(y)\q}dt)q
bl
:Ly/xl[cl(g)(’(p,(b)}q""(ﬁ/(ﬂ)’q)

2(g+1)"

—C2< )|¢(x)|" CB( )|¢(y|} O

If we take ¢ = 1 in Theorem 3.1, we can derive the following corollary.

Y
dt)

,( ab
¢ (xty”)

Corollary 3.1 Let ¢ : I € R,— R be differentiable on I°, and a,b € I° with a < b and
¢’ € Lla,bl. If |¢’| is geometrically convex on |a, b], then

’d)(ab/x) + ¢lably) ~ 1 /y ¢(ablu) 4 ‘
2 Iny/x J, u "

s“blz“yy/x[cl<§)(|¢/<b)|+|¢/(a)|)—c( )! (x)l—Ca( )|¢ (y)l}

forall x,y € [a,b] with x < y.

If we take x = a and y = b in Theorem 3.1, we can derive the following corollary.

Corollary 3.2 Let ¢ : I € R,— R be differentiable on I°, and a,b € I° with a < b and
¢’ € Lla,b]. If |¢'|1 is GA-convex on [a, b] for g > 1, then

p@)+ob) 1 (Lo
‘ - 1nh/a/a d”‘
alnbla b1
- oot [(a(5) (%) Jowr
2(g+1) 74 a
b b i
“(efa)-ala)wor]
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Theorem 3.2 Let ¢ : I CR,— R be differentiable on I°, and a,b € I° with a <b and ¢’ €
Lla,b). If |¢'|? is GA-convex on [a, b] for q > 1, then

’ ¢lablx) + Pp(ably) 1 /y ¢(ablu)

- d
2 Iny/x u u‘

ablny/x Y ) /
= a5 ) IOl s lo@r]

a q 7
- Cs(i}—q)|¢/(x)|q— cé(fc—q)|¢’(y)|"}
forall x,y € [a,b] with x <.

Proof Since |¢'|? is GA-convex on [a, b], from Lemma 3.1 and Holder’s inequality, we have

¢(ablx) + ¢p(ably) 1 /y ¢(ablu) 4 ‘
2 Inylx J, u "

b1 : P\ b\|" )\
 dblnyl / e—1pae)’ / AP IAY
2y 0 0 \¥ xlyl=t

b1 Hr\" %
< gt ([ () (0o 0+ @l -l -0 - ol )

ablny/x Y ) /
eI IO

q q %
~ai(Z ) wr-c(L)leor] 0
X X

If we take x = a and y = b in Theorem 3.2, we can derive the following corollary.

Corollary 3.3 Let ¢ : I € R,— R be differentiable on I°, and a,b € I° with a < b and
¢’ € Lla,b]. If |¢'|7 is GA-convex on [a, b] for q > 1, then

‘¢(a) o1 [ ’ #) du‘
O
(e(8)-e(5)wor]
(Inb/a)'? [(L(a%, 67) — a%) ¢/ @)|" + (b7 — L(a% b)) ' ()|"] 7,

= qu/q(p + l)llp

where L(u,v) = (u—v)/(Inu —Inv), u # v, is logarithmic mean.
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Theorem 3.3 Let ¢ : I CR,— R be differentiable on I°, and a,b € I° with a <b and ¢’ €
Lla,b). If |¢'|7 is GA-convex on [a, b] for q > 1, then

plablx) + Pp(ably) ~ 1 /3’ ¢(ablu) du‘

2 Iny/x u

Q=

- ablny/xci/p<y_1’)(|:|¢’(b)|q + |¢/(a)|q} ~ 1[|¢’(x)|q + |¢>’(y)|q] dt)
2y x¥ q+1 2 g+1

forall x,y € [a,b] with x < y.

Proof Using Lemma 3.1, Holder’s inequality, and the GA-convexity of |¢'|7, it is easily seen
that

u

¢(abl/x) + p(ably) 1 /y ¢(ab/u)
2 - Iny/x J,

1 RN
< ablny/x (/ (Z) dt)p
2_)1 0 X

1 q
y ( [ 2t~ 11|/ B + |6/ @|"] - e]¢' )| - (1 - t>|¢/<y>|q}dt)

du‘

byl g (1) ([ £ON W10 00N,

2y  \ qg+1 2 q+1

If we take x = a and y = b in Theorem 3.3, we can derive the following corollary.

Corollary 3.4 Let ¢ : I € R,— R be differentiable on I°, and a,b € I° with a < b and
¢’ € Lla,b]. If |¢'|1 is GA-convex on [a, D] for q > 1, then

pl@)+pb) 1 [P¢w)
2 _lnb/a/,, u du‘

_b-aL'P(a,b) [W(b)w . |¢/(a)|q]31
- 4 L(a,b) qg+1 ’

where L(u,v) = (u—v)/(Inu —Inv), u # v, is logarithmic mean.

4 Conclusion

This article aims to investigate certain weighted Hermite—Hadamard—Mercer type in-
equalities for a GA-convex function, which are related to the Hermite—Hadamard—Fejér
inequality and fractional Hermite—Hadamard type inequalities. It is worth mentioning
that certain results proved in this article generalize parts of the results provided by Is-
can [1], Kunt and Iscan [3], and Latif et al. [4]. Certain estimates related to the second
Hermite—Hadamard—Mercer inequality for GA-convex functions given in (15) are ob-
tained. For this purpose, an identity for differentiable mappings is established.
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