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1 Introduction

In the past, it was believed that scientific disciplines are completely separate; but now, after
the tremendous development and modern theories in basic science techniques, they have
become completely connected. For example, mathematics in which the level of develop-
ment in different disciplines has varied dramatically in contemporary time. As an inter-
esting example, fixed-point technologies offer a focal concept with many diverse usages.
It has been and still is an important theoretical tool in many fields and various disciplines
such as topology, game theory, optimal control, artificial intelligence, logic programming,
dynamical systems (and chaos), functional analysis, differential equations, and economics.
More clearly, for example, the technique of fixed point is applied for finding the solution of
the equilibrium troubles in economics and game theory. In nonlinear integral equations,
it is used to find analytical and numerical solutions to Fredholm integral equations [1-5],
etc.

The ideas of mixed-monotone functions and coupled fixed point were initiated in the pa-
per [6]. Under these ideas, some main results in partially ordered metric spaces have been
driven by the authors [6]. For enjoyable specifics on coupled fixed point consequences and
related topics in abstract spaces, the reader can refer to [7-27].
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Pivotal results related to a triple fixed point (established in 2011 by Berinde and Borcut
[28]) were presented in partially ordered metric spaces. For more topics of this notion, we
cite papers [29-35].

Definition 1.1 ([28]) It is said that a trio (g, /,3) € x3 is a tripled fixed point of a self-
mapping R : x3 — x if p = R(p, 1, 0), A= R(A, o, 1), and d = R(D, h, p).

Definition 1.2 ([29]) A trio (¢, 5,0) € x> on a nonempty set x is called a tripled coin-
cidence point of the two self-mappings % : x> — x and @ : x — x if Jp = R(p, h,0),
Ih=N(h, o, h), and I0 = N(T, 7, o).

Definition 1.3 ([29]) Consider that x # @ is a set, a trio (p,5,0) € x2 is said to be
a tripled common fixed point of R : x — x and O : x — x if p = Jp = R(p,h,0),
h=3h=NR(h,g,h),and 0 = 3I0 = RO, h, ©).

Definition 1.4 ([31]) Suppose that x # @ isa set, the mappingsN: x> — xand ® : x — x
are commutative I(N (g, i, 0)) = R(Jp, I, Ip) for all p, k1,0 € .

Definition 1.5 ([28]) A mapping % : x> — x ona partially ordered set (x, <) has a mixed-
monotone property if, for any ¢, k,0 € x,

©1,62 € X, 1 S g implies  N(g1, A, 0) =X NR(goo, A, 0),
hl; hZ € X hl ,_5 h2 1mPheS Eﬁ(LS/')r hl) 6) ;>\: m(pr th 6);

01,05 € x,01 20, implies  N(g, 7, 01) 3 N(p, ki, 0y).

Recently, Aydi et al. extended the property of mixed-monotone to J-mixed-monotone
as follows.

Definition 1.6 ([36]) A mapping % : x — x on a partially ordered set (), <) has a mixed
J-monotone property where J: x —  if, for any g, 7,0 € x,

©1, 92 € X, 31 3 I implies  N(p1, 7, 0) T N(g2, A, 0),
hl, FLQ € X, 3774 j \'\Shz 1mphes 9{(50, hl, 6) z g{(@, hg, 8),

01,07 € x,301 3 30, implies N (g, h,01) 2 R(g, h, 02).

The first theorem concerned with a tripled fixed point of the mapping which has a

mixed-monotone property in a partially ordered set was introduced as follows.

Theorem 1.7 ([28]) Let (x,=,&) be a POCM space. Consider the mapping R : x> — x
such that:
(i) | has a mixed-monotone property;
(ii) Either M is continuous or x has the following properties:
(@) I, 21 ifa nondecreasing sequence l,, — [ for all n,

(b) ju 7= j if a nonincreasing sequence j, — j for all n;

Page 2 of 27
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(iil) Therearea,B,y >0 witha + B +y < 1 such that

£(N(p, 1, 0), R(x,y,2)) < ab(p,x) + BE(M,Y) + y£(c,2)

forany p,h,c,x,y,z € x, for which © 3%,y 2 h,and 0 3 z. If there exist ., ho, 0, € x such
that ©, = R0, fio, 00), Fo 22 N(Fio, 20, Fio), and 0o X R0, Fo, ). Then N has a tripled

~

fixed point.

2 Metric-like spaces and C-class functions
In 1994, the notion of spaces with the same nonzero distance from the points was shown
by Matthews [37]. The authors [38] improved it in dislocated and dislocated quasi-metric
spaces. In [39] the concept of a metric-like space was discussed, which is an important
extension of the spaces defined in [38, 39].

Very recently, many fixed point results on metric-like spaces have been provided. For
more specifics, see [40—49].

Now, we state some basic significance of metric-like spaces.

Definition 2.1 ([39]) A mapping & : x x x — [0,+00) on a nonempty set x is called
metric-like if, for all g, i, 0 € x, the following assumptions hold:

(61) &(p, M) =0 implies p = 7;

(&2) &(p,h) =§(hp);

(&) &(p,0) <&(p,N) +&(h,0).

Thus, the parenthesis (x, &) is called a metric-like space.

For p € x, £(¢, ) may be positive except that a metric-like mapping satisfies all the
assumptions of ordinary metric.

Definition 2.2 ([39]) Let a sequence of points {g,} be on x in a metric-like space (x,&).
A point p € x is called the limit of the sequence {,} if lim,_,» &(, $,) = (9, ), and
we say that the point g is a limit point of the sequence {g,}.

Definition 2.3 ([39]) Assume that (x,&) is a metric-like space.
(i) A sequence {g,} is called a &-Cauchy sequence if limy;; ;— 100 & (62> $1) €xists and is
finite;
(ii) If every &£-Cauchy sequence {,} in x converges to g € x, with

1imy,, s 400 & (80m> $1) = (0, ) = lim,,, 00 & (2, ), then the space (x, &) is called
complete.

Lemma 2.4 ([40]) Consider (x,&) to be a metric-like space and {,} be a sequence of x
such that a, — a as n — +00 and £(p,9) = 0. Then limy,_, ;00 & (n, ) = E(p, h) for all
hex.

Lemma 2.5 ([40]) Suppose that (x,€) is a metric-like space. Then

(i) if&(p,h) =0, then &(p, ) =&(h, h) = 0;
(il) if {on} is a sequence such that limy,_, .00 & (94, 9n+1) = 0, then

ngrpoog(@n’ @n) = nEng(@nﬂx 6OVH-1) =0;
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(i) if g # h, then &(p, h) > 0;
(iv) (g, ) < % Y &, 1) holds for all o, p; € x, where 1 < i <n.

Here, we assume that [T = {7 : [0,+00) — [0, +00) is a nondecreasing function and
lower semi-continuous such that 7 (v) =0 < v = 0}.
In 2014, the idea of C-type functions which cover a large class of contractive conditions

was presented by Ansari [50] as follows.

Definition 2.6 ([50]) A mapping A : [0, +00)? — R is called C-type function if it is con-
tinuous and fulfills the following hypotheses:

(1) A, p) =4

(2) A(A, u) = A implies that either A =0 or u = 0 for all A, u € [0, 00).

We symbolize the C-type functions as C.

Example 2.7 For all A, i1 € [0,00), the following functions % : [0,00)2 — R are elements
of C:

o A )= A -

e A, ) =¢),0<c<1;

o A, ) = 1+Mmee(0+oo)
.A(A,M)=“"f§+§ c>1;

e AQL1) = ) s g

o A(A, ) = Q(M), where 6 : [0, +00) — [0, +00) is an upper semi-continuous function
such that 6(0) =0, and 6(u) < u for > 0;

o A(A, 1) =282(0), £2:[0,1) — [0,1);

o AA, 1) =2 -0(L);

o Aop)=r-155

o A(A, 1) = Ag(A, u), where g : [0,1) x [0,1) — [0, 1) is a continuous function such that
forall A, >0, g(A, ) < 1.

In this article, some new tripled coincidence point consequences for mixed-monotone
mappings via the notion of C-type functions in POCbML spaces are introduced. Some
examples to back our work are showed. Also, some theoretical results under various con-
tractive conditions are discussed as corollaries. Eventually, some important results in in-
tegral types and the existence of solutions of a system of nonlinear integral equations are

presented here as applications.

3 Main theorems
Theorem 3.1 Assume that % : x> — x and O : x — x are two mappings on a POCML
space (x, 3, &) such that:
) RO < Ix);
(ii) 9N is continuous;
(i) J is continuous and commutes with N;
)

(iv) N has a mixed I-monotone property;
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(v) therearem € IT, ¢ >0, and A € C such that

£(N(p, h,0), R(x,,2))

< 4 [ max{E (), 3()), £ (X(h), 3()), & ,S(Z))}), 1)
B ¢ max{& (I(), 3(x)), £ (I(R), I(7)), £ (3(9), 3(2))}
for any ©,h,0,x,9,z € x, for which J(g) ), S() 2 3(h), and I(0) 2 J(z). If there
exist o, o, 0o € x such that 3(p.) = m(po,hoﬁo), S(ho) 22 R(ho, §0,0,), and I(0,) 3

N(Oo, fio, §20), then N and I have a tripled coincidence point.

Proof Let ., ho,0, € x with J(g.) = R0, o, Do), I(Ho) 72 R(Hos §0,05), and I(Ty) I
N(Do, Mo, £ ). Since R(x3) € J(x), there exist g1, ~y,0;1 € x such that

3(91) = R(Po) flor 00), J(f1) = R(Pos §6,0,), and  I(01) = N(To, Ho, £20)- (2)
Continuing with the same scenario, there are {§,}, {i,}, and {0,} in x such that

S(@r&l) = m(ﬁon’ hn: 8;1)’ 3(hn+l) = ER(hn’ n» 571)! and

, 3)
S(5n+1) = ER(ES", hm (S/')n)'
By induction, we shall show that
\5(8971) S($ons1)s S(Rpa1) 5 S(hy), and @)

3(0,) 23(041) forallm e NU {0}

Since J(0) 3 R0, Noy Do), (o) 75 R(Fo, £, 05), and I(T,) 2 R(Do, ho, §20), and by (2), we
have

s(KJO) :5 3(6{)1)’ S(ho) f>\: 3(hl)r and 3(60) :5 5(61)

This leads to (4) fulfilled for # = 0. Consider (4) to be realized for some fixed n € N. Because
M has a mixed J-monotone property, we have

S(SOVHI) = 9‘t(ﬁom hn: 5n) :j m(@nﬂ; hn; ESn) :5 m(@nﬂ: hn; Esn+1)
/—j m(pnﬂ» hn+1» 6n+1) = S(sz),
s(hn+2) = m(h;ﬁl: n+1> hn+1) j S),t(hm—l’ 1 hn+1) ,_5 %(ﬁn; 1> hn+1)

i/ §R(hn: n» hn) = S(h;ﬁl),

and

3(6;'&1) = S)t(am hn’ KJn) ,_\<, m(6n+1r hm pn) ,_\<, m(ﬁwrlr hn+1, 6/9;4)

4%(6n+1) n+1¢50n+1) ( n+2)
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Thus, (4) is fulfilled. For each n € N, suppose that
3(t@n) = S(pnﬂ)» S(hn) = S(h;ﬁl); and 3(8;’1) = S(anﬂ)'

By (3), we deduce that a trio (g, fi,, 0,) is a coincidence point of it and J. Now, consider

at least for any n ¢ N
S(6n) 7 3(ns1), S(hn) #3(p1),  and - () # I(0ps1)-

Applying (1), and since 7 is nondecreasing, we can get

5(3\(6971)7 S(Son+l))
= S(m(é@n—b Rp1s 6n—l)’ m(éonr s 8;'1))

< 4 [T max{E (S(n-1), 3(9n), § (S (T-1), 3(hn)), § (3 (O-1), 3B,
B ¢ max{& (I(en-1), 3(n)), § (3(M-1), 3(n)), § (3(B-1), 3(0))}

=r (max{é (5(60;4—1): 5(5”’;1)): E (S(hn—l)’ 3(hn)); g (3(6}1—1)1 S(6}1)) })’ (5)
S(S(hn+1), \N?(hn))
= S(m(hm ns hn)v m(hn—l’ n-1, hn—l))

< 4 [T ax{E (-1, 3 (7)), § (S(9n-1), (24)), & (3 (Pn-1), ST},
B ¢ max{& (I(fn-1), I(hn)), & (3(9n-1), 3(2)), § (3(Mn-1), 3 (7)) }

_ 4 [ max{E (-1, 3(7n)), § (S9n-1), S(n))}),
¢ max{&(I(fin-1), 3(Mn)), & (3(2n-1), I3(6n))}

= n(max{%_(%(hn—l)» S(hn)),%_(%(pn—l)’ %(B/')n))}); (6)
and
5(3(8”: S(5n+1))
zg(H(nlhnldn l) (8 I 61,,))
— 4 [Fmax{g(3(0n1), 3(00)), & (S(Fa), 3(7)), § (S9-1), 3(92:))),
—\ ¢max{E(I(0n-1), 3(0n)), § (S(Fin-1), I3(Pn)), § (3(690-1), I(2m)) }
=r (max{g(s(an—l): S(6n)): g(g(hn—l)) :S(hn)), S (%(@n—l)r S(6071)) }) (7)

Take into account that 7z (v) < v for all v > 0, then by (5), (6), and (7), one can get

0< max{é(s(éon)’3(50n+1))¢S(S(hrﬁl))S(hn))ré(?‘(an)!%(6n+1))}
= 7T(max{§(3(6n—1))3(6}1))’%‘(3(774’1—1):;\‘(hn))¢é(%(pn—l))g(@n))})
< max{é(s(an—l))S(an)))f(?s(hn—l)v 3\(FL}'I))!E(S(pn—l)r\“’\3(50}'1))} (8)
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It follows by (8) that

Ay, = max{é (S(@n)r S(@nﬂ))rg (S(hnﬂ): S(hn)): § (5(8;1): S(énﬂ))}
< max{& (3(5;1—1): S(5;'1)): g (S(hn—l)’ S(hn))rg (S(@n—l); 3(69;4)) }

Thus, A, is a positive decreasing sequence. So there is ¥ > 0 such that

lim A, =«.

n—+00

Consider k¥ > 0 and n — +00 in (8), we can write

K=< lim 7T(maX{E(S(6n—1)18(6n)))€(S(hn—1)¢ 3(hrl))!E(S(@n—l):r‘\s(&)n))})

n—+00

< lim A, =«.

n—+00

This is an inconsistency, hence

lim A, =0. )

n—+00

Now, we shall demonstrate that {J(g,)}, {3(h,)}, and {J(0,)} are Cauchy sequences by an
inconsistency method. So, let one of them not be Cauchy, that is,

lim (30 3(pm) 70, or  lim_ E(3(h) () 70, or

,/—>+00

lim  £(3(3,),3(8m)) #0.

n,m—>+00

In other words, there are € > 0 and integers subsequences {m;} and {n;} with ny > my > k
such that

max{& ((m)s S(©n))s & (ST ) S )), & (30 ), 3(0)) | = €. (10)

If we adopt m1y the little integer with ny > my satisfying (10), then the following connection
holds:

max{& (3(©m ), 30n)) & (S ), S(hiy)), & (I@pmy) I(B)) } < €. (11)
Thus, by (9), stipulation (£3), and (11), we have
M E(3(m), Sow)) = Hm (& (3(0m), Son1)) + & (3(0n1), Som)))
< Jim &(3(pm ) 3(pn ) <e.
By the same logic, we can get

/<1—1>rPoo€: (S(hmk)’ S(hnk)) = kETms(S(hmk), S(hnk—l)) <e

lim &(3@n ), 3@)) < lim & (30,0, (1)) <.

k—+00 k—+00
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Once more, by (11), we can note

E(3(Pm), 3(m)) < E(S(0my)s 3(m-1))
+ & ((Pme-1), 3(0m-1)) + & (31> I(9))
< E(3(Pm)s S(om-1)) + & (I(0me-1) I(6omy))
+ & (3(m ) Sm1)) + & (S0-1) S(9,))
< E(3(@m)s S(m-1)) + E(S(@mp-1)» 3(9my))

+€+ é(g(pnk—l)r 3(Boi'lk))
If k — +00, and by (9), we can record
lim E(S(@mk)’s(@nk)) = lim E(S(ﬁomk—l): S(Sonk—l)) <e. (12)
k—+00 k—+00

Likewise, we have

M & (30, X)) = lim (3 0) 30 0) < € (13)
and
kgr-{loo E (%(57}1]()’ S(5}1]()) =< k1~1>I-POO %‘ (3(5mk—1); S(ank—l)) <e. (14')

Applying (10) and (12)—(14), we observe that

S(S(pmk—l)» S(@nrl));
kErPoo max S(S(hmk—l)’ S(hnk—l)), = €. (15)
£ (3(0my-1)5 3(0m-1))

Now, by stipulation (1), we can get

& (3(om ), (gome))
=& (m(é/f)mk—l» hmk—lx 8mk—l)r m(@nk—l; hnk—ly 6;1/(—1))

<A(ﬂ(maX{E(S(&Omk_l),S(pnk_l)),é(fﬁ(ﬁmk_ﬂ,S(ﬁnk_ﬂ),5(3(5mk_1),%(5nk_1))}),)
=\ e max{&(S(@mm-1)s 3m-1))5 € (3P -1)> I(Mg-1)), & (3(Omy-1), (O -1))}

< 7 (max{& (I(@m-1)s 3(On-1))> € (I(Pimg-1)»
S(Pye-1)), & (3@ 1), 3@y 1)) }), (16)
£ (I(hmy), 3(y))
= E (NP1 P11, Ry 1, 91, P 1))

<A n(max{s(?‘\(hmk—l): S(hnk—l))r 5(3(6@@—1): S(@}q—l))});
B e max{E (S(hmk—l)’ iNg(hnk—l))t ’S(S(@mk—l)¢ %(@nk—l))}

=7 (max{é (S(hmk—l)v ;N‘\(hnk—l))’g(?s(pmk—l)’ S(pnk—l)) }): (17)

Page 8 of 27
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and

E (30 ), 3(Dy))
=& (m(émk—lr hmk—l’ pmk—l)r m(énk—l: hnk—l» B/r)nk—l))

<A(ﬂ(max{g(s(émk—l)’S(énk—l)),S(S(hmk—l):S(hnk—l)),é(%(@mk—l)»S(@nk—l))})’)
- ¢ max{& (I(0m-1)> 3(0m-1))s & (S(Pmy-1)s 3P -1)), & (3(9my-1), 39, -1))}

=7 (max{é (S(émk—l)> 3(5}1](—1)): E (5(hmk—l): S(hnk—l)),

g(s(@mk—l)rs(@nk—l))})' (18)

The three inequalities (16)—(18) say that

max{€ ((m)s S(©n)) & (ST ) STy )), & (3O ), 3(0y) }

<7 | max §R@m-1), 3(Ony-1)), & STimgy—1), 3 (1)), ) (19)
€(S(p’”"k—l)’\‘NS(BOnk—l))

Letting k — +00 in (19) and having in mind (15), we get

E(S(@mk—l)fs(pnk—l));
O<e< klim max § &(I(Myyy-1), I(Myy-1)), ¢ < lim w(v) <e.

(3015 3(0mg-1))

Incompatibility. Hence {3J(g,)}, {3(%,)}, and {J(d,)} are Cauchy sequences in a POCML
space. By completeness, there are g, 5,0 € x such that

lim J(g,) = e, lim J(h,)=h, and lim J(0,)=0. (20)
n—>+00 n—+00 n—+00
Applying the thought of continuity of J on (20), we can get

lim 3(3p,) = 3, lim 3(3%,) =3k and  lim 3(33,) = 30. (21)

n—+00 n—+00 n—+00

Since I commutes with R, then by (3) we can write

S(39m1) = SO0, in, 1)) = RS9, Shin, 30,),
S‘(S‘hwrl) = 3(m(hm n> hn)) = ER(S‘hm Sﬁom Shn), (22)
S(Sam—l) = 3((){(6;1, hnx 60;1)) = gﬁ(Ssnr Shnx (\\%On)

Letting n — +00 in (22) and taking into account relations (20)—(21) and the continuity of
R, we have

Sp = lim () = lim (R hin 0,))

n—+00

=m( lim Jgp,, lim 3k, lim san) - R(p, h,0),

n—+00 n—+00 n—+00

Sh= lim QA1) = im IR (R, o hin))

n—+00 n—+00
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:Eﬂ( lim JA,, lim msg,),,, hm RY/ ) =N(h, g, h),

n—+00 n—+00

0= lim \s(\sfiml)— hm As(ﬂi(ﬁn,hn,pn))

n—+00

= (11111 30, hm \shn, hm \spn):m@,h,p).

n—+00 n—+

Thus, there is a tripled coincidence point of i and 3. This ends the demonstration. [

The question arises here. What happens when you omit the continuity stipulation of the

mapping N? To answer this query, we give the following theorem.

Theorem 3.2 Let (x,3,£) be a POCML space. Assume that R : x> — x and 3 : x — x
fulfill the following hypotheses:
(i) R(x>®) < 3(x)s
(i) N has a mixed I-monotone property;
(iti) (X(x),&) is a complete metric-like space and x is obligated by the following
assumptions:
(I) I, 2l ifa nondecreasing sequence l,, — I, n — +00,
(I1) j, 75 j if a nonincreasing sequence j, — j, n — +00;

(iv) S is continuous and commutes with i;
(v) Therearem €11, ¢ >0, and A €U such that

£(N(p, h,0), R(x,y,2))

< 4 (T Max{EQ(p), 3)), £ (1), 3()), §(3(0), 3D,
B ¢ max{£(3(p), 3()),§(3(R), 3()),§(3(0),3(2)} ]

3

If there exist o, ho,0, € x such that (o) 3 R0 Fio, 00), I(ho) 72 R(Fio, £, 0,), and
J(0o) 3 NR(Do, hio, ), then N and I have a tripled coincidence point.

Proof The same scenario of Theorem 3.1 implies that {J(p,)}, {S(h,)}, and {J(3,)} are
Cauchy sequences in a complete metric-like space (J(x),&). Then there are p,5,0 € x
such that (20) is achieved. By nondecreasing of {J(¢,)} and {J(3,)}, nonincreasing of
{J(h,)}, and properties (I) and (II) of x, we can write

S(gn) = (), J(hy) = I(R), and J(0,) 33J(0) foralln>0.

If S(pn) = (), () = I(R), and I(0,,) = I(0), then I(p) = I(pn) T pn1) 3 () =
Sy S(R) 2 S(Mne1) T () = I(A), and I(0) = I(0,) T (1) T S(0) = I(T,). This
leads to

S(69n) = S(n+1) = R(0n> Py Op), () = (1) = R(Poy Oy o),

and

3(8;’1) = S(6n+1) = 9*(5;4, n> hn)

Page 10 of 27
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Accordingly, the trio (¢,, h,, 0,,) is a tripled coincidence point of I and . So, we postulate,
for all n > 0, (I, Ih, I0,) # (I, Ih, J0); consequently, by (1) we can get

£ (3, R(p, h,0))
= E(:‘&O» S@nﬂ) + g(%&)mly E)t(ga, h; 5))
= S(SBO’ sﬁorﬁl) + E(m(@m Tony O, %(B’J; h, 8))

7 (max{& (I(pn), I()), § (3(hn), I(R)), £ (I(D), (D))},
¢ max{& (I(en), 3()), § (I(hn), I(1)), £ (3(9,), I(9))}

< &P, Spus1) + ﬂ(max{é(s(pn), \NY(K)))’S(\NY(hn)’ 3(ii)):g(s(%)n)r S(6))}) (23)

= 5(3&)) 360n+1) + A (

Letting # — +00 in (23) and using (20), we deduce that & (I, R(g, h, 0)) = 0, thus Jp =
R(g, i, 0). By the same manner, we can write J% = R(A, g, i) and IO = N(0, A, ). Then we
have reached the end of the proof. O

Mathematicians in this direction can stir up the following: What about the structure and
exclusivity of a tripled combined fixed point? To reduce this excitement, we recognize a
partial ordering (), <) as follows: For all (g, /, ) and (x, ¥, z) belonging to the product x3,

(9,7,0) <(x,9,2) ifandonlyif g <x, h>y, o<z
Let us say that the trios (g, /, 0) and (x,y, z) are comparable if
(9,1,0) < (x,9,2) or (x,,2) <(p,h,0);

also, (¢, h,0) is equal to (x,y,2) iff p =x, Ai=y,and 0 = z.
Now, the excitement is killed by the following important theorem.

Theorem 3.3 Besides the presumptions of Theorem 3.1, postulate for all (¢, h,0), (x,,z) €
x> there exists (a,B,y) € x® such that (R(a, B,y), R(B,a, B), N(y, B,a)) is comparable
to (N(g, h, 0),N(K, o, h), R(O, h, )) and (R(x, y,2), Ry, %, ), R(z,y,x)). Therefore, there is a
unique tripled combined fixed point (9, h,0) for the mappings R and 3, i.e.,

o =Sp =N(p, h0), h=h=NR,,h), and 0=30=NR0,h,e)).

Proof According to Theorem 3.1, the set of tripled coincidence points of i and 3 is
nonempty. Thence, we assume that (¢, /i, 0) and (, y, z) are two tripled coincidence points
of and 3, i.e,,

R(gp, h,0) = I, NR(x,y,2) = Jx,
R(h, g, k) = A, R(y,x,9) = 3y, (24)

m(6¢ h’ 50) = 361 m(z’y’x) =Jz.

First, we shall show that (Jg, Ik, J0) equals (Jx, Jy, Jz). Consider the hypothesis of com-
parable fulfilled and define sequences {J«,,}, {IB,}, and {Jy,,} such that

Oy = 0o, ,Bn = ,301 Yn = VYos
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and foralln > 1,

San = Sﬁ((xn—lx ,Bn—lx yn—l):
Sﬂn = Sn(lgn—l’ Up-1, /371—1);
3%« = m(yn—h ﬁn—h O5;'1—1)-
On the other hand, appoint g, = , h, = i, 0 = 0, %, = %, ¥, = ¥, and z = z,, and by the
same manner, define the sequences {Jg,}, {J%,}, {30,}, {3x,}, {Sy,}, and {Jz,}. Then it
is easy to conclude that
Sgon = N, h,0), Sy = N(x, Y, 2),
Shy = R(h, o, h), Sy = Ry, x,9),
J0, = N0, b, p), Sz, = N(z, ¥, %),
for all n = 1. Since (m(@; h: 8)) m(hr (2 h)’ m(ﬁ» h’ B/'))) = (SB/')I’ s‘hlr 361) = (369; Sh: S6)

is comparable to (N(e, B,y), N(B,, B), R(y, B, @) = (Ja1,IP1,3Iy1), therefore (IJgp, A,
J0) > (Jar1, IB1,301), by repeating for all n, we get

(36,30, 30) Z (S, 3By, Syn)- (25)
Applying (1), (25), and (24), we can write

s(sanﬂ’ 560) = S(m(am Bns yn)’ m(@» h, 8))

. (n(max{&(fs((an),:s(so»,s<s<m,sm)),sw(yn),ma))}),)
g C

e
P
)
=
o
—

2%
Py
=
=
N

2%
=

>t
<
=

- ¢ max{& (I((an), R
< w(max{& (3((en), 3(©)), & (3(B), (W), & (3(v), (D)) }), (26)
E(3h,3Pus1) =& (%(hx 5 1), R(Bu, i, ﬂn))

< 4 [T max{g(3(h), 3(Bn)),E (S (), Slen))}),
B ¢ max{&(3I(h), 3(Bn)), & (3(), I(atn))}

< 7t (max{& (3(h), 3(Bn)), & (3(), S(an)) })

< 7 | max é(%(h)) S(ﬂn)): S(%(K)), S‘(Oln)), ’ (27)
£(©(9), O(yu))

and

£(30,3yu41) = %-(m(a h, ), RV ﬁn:an))

< 4 (7 max{ER@),3(y)),§ (S0, 3(Bn), & (), 3 (@n))}),
B ¢ max{&(3(9), I(yu)), & (3(), I(Bn)), & (3(0), S(en))}

< 7 (max{& (3©), 3(m), & (3(0), 3(Bn). £ (3(), 3(en)) })- (28)

Page 12 of 27
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Inequalities (26)—(28) indicate that

max{&(fsaml, S0), (S, IPus1), € (I0, %y}’l*’l)}

< 7 (max{£ (3@), 3(r), & (3(0), 3(8.)), & (3, 3(e)) })-

Subsequently, for all n > 1, we can get

max{& (3(3), (), £ (3(), 3(B), £ (3(p), 3(en))
< 7" (max{£ (3@), 3()), & (3, 3(8)), & (3(9), 3(@.)) })- (29)

Since 7 (1) < ¢ and lim,,_,,+ w(p) < ¢, then for all ¢ > 0, lim,,_, ,oc 7"(t) = 0. Thus, assign this

on (29), after letting n — +00, we have

lim_max{&(3(0), 3(v)), & (3(0), 3(8), & (3(), 3(et)) } = 0

n—+00

yields

lim (30),30) = lim (3(1),3(8,)) = lim_&(3(p), () =0. (30)
In a similar way, we can write

Jdim §(32,3y,) = lim §(3y,3p,) = lim _§(Say, 3x) = 0. (31)

Combining (30) and (31), we deduce that (I, I%, I0) and (Jx, Jy, Jz) are equal. As Jp =
N(p, h,0), Ih=NR(h, o, h), Ic=N(0, h, ) and I, N are commutes, then we have
I =3(3p) = I(R(p, h,0)) = R(Ip, Ih, I9),

I =33 =3

(R(R, g, 1)) = R(IA, S, Ih),
J0* = J(I0) = I(NR(O, b, 0)) = R(IT,Ih,Ip),

where a* = Jgp, h* = Jh, and 0* = J0. Therefore the trio (*, h*,0*) is a tripled coincidence
point of I and N. Hence, (Ip*, IA*, I0*) and (IJg, Ik, I0) are equal, so, one can write

Jp* =Jp =¥ Sh*=Jh=h", and 30" =30=0"

Thus, (p*, i*,0%) is a tripled common fixed of J and fi. The uniqueness follows immedi-
ately by (1). O

It is known that the numerical examples clarify and strengthen the theoretical results,

so we shall present some examples in what follows.

Example 3.4 Let A(L, ) =0X, 0<p<1,and x =R be equipped with

Eh)=p+h

Page 13 of 27
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for all g, /i € x. Define the order relation < by

(p<yh<=gp=h) or

(9,he[0,1] and p < h).

It is clear that (I(x), &) is a complete metric-like space. Define 3: y — x and i : x® — x

by
3 .
30 ifp <0,
J@)=1p¢ ifpelo1],
%gg ifp>1,
h+0
M., ) = T

It is obvious that R(x3) C JI(x), N has a mixed J-monotone property. Now we will go

to investigate the contractive condition of Theorem 3.2 for all g, /,0,x,y,z € x such that

S <y Jx, Jy <, Jh, and IO <y Jz. Take 7 (v) = %v forall v € [0,+00), ¢ >0,and ¢ = %.

Now, we check the following statuses:

» Statusi.If p,h,0,x,y,z € [0,1], we have

&(R(p, 1, 0), R(x,9,2))

IA
Blw Bl w ol w

» Status ii. If p,x,h,y € [0,
comparable, J(z) = J0 and z =

& (N, h,0),9(x,9,2)) =

IA

IA
®| W

P+h+0 x+y+z
+
8 8
e+x h+y c+z

+ +—
8 8 8

max{g +x,h+x,0 + z}

X
N =

max{g +x, i +y,0 +z}

7 (max & (3(9), 3(x)), & (3(0), 30)), £ (3(0), 3(2) })

» <n(max{5(%(p),s(x»,s(sm),S(y)>,s(s<6),3(z>)}),) .

¢ max{& (3(), 3(%)), £ (I(R), I(#)), § (3(9), 3(2))}

1], 6,z ¢ [0,1], here J0,3z ¢ [0,1] and since they must be
0,

@+h+f§+x+y+z

8 8
e+x h+y 2z
+ +—

8 8 8

3
3 max{gp +x, h + x, 2z}

max{p +x,h+x,3z} ifp <O,

max{50+x,h+x,§z} ifp>1

max {& (3(), 3(®)), & (3(0), (1), & (3(0),3(2) }

W
N =

Page 14 of 27
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» Status iii. If (p,x,0,z €

(2020) 2020:211

- Zn(max{s(smmx)),s(sm),S(y)),s(mm,mz))})

h),\s(y £(3(9), I(2)})s
), 3()),E(3(9),3(2)} |

[0,1] and A,y ¢ [0,1]), or (A, y,0,z € [0,1] and g,x ¢ [0,1]), we

have the same results of Status ii.
» Status iv. If p,x € [0,1] and £, y,0,z ¢ [0, 1], here Ik, Iy, I0, Iz ¢ [0, 1] and since they

must be comparable, 3% = Jy and IO =Jz,so h=yand 0 =z,

£(N(p, h,0),N(x,3,2)) =

E+h+0 x+y+z
g8 ' 8
_ptx . 2y . 2z
8 8 8
3
< 3 max{a + x, 2y, 2z}
3 max{g +«,3y,3z} ifa<0,
8 max{gp +x, gy, gz} ifa>1
3 1
= 2 x S max{s (), 360).6 (3B) ). £ (3@, 3(2)
3
= S (max{E (3(9), 3(). £ (3(1).30)),6 (3@, 3(2)})

3(2))}

_ [rmaxtE((0), 36,
¢ max{€ (), ), EQ(D),30)), (D).

(1), 30)),E(3(B),3(2))} ))

» Status v. If (h,y € [0,1] and g, x,0,z ¢ [0,1]) or (0,z € [0,1] and g, x, h, y ¢ [0,1]), we

treat it analogously to Status iv.

» Statusvi. If p,x,h,7y,

0,z ¢ [0, 1], then the only possibility for Jx, Jg as well as Jy, Ik

and Jz, J0 to be comparable is that x = g, y = i, and z = 0,

£(N(p, h,0), R (x,7,2))

_P+th+d x+y+z
8 8
2x 2y 2z
= — 4+ =+ —
8 8 8
3 2x,2y,2
§ max{2x, 2y, 2z}
- E max{3x,3y,3z} ifa<0,
~ 8 max{%x, %y, %z} ifa>1
3 1
= 2 x 5 max{E(3(0),3(). £ (30, 30)),6 (3, 3(@) }
3

N

7 (max{§ (3(p), I(x)),§ (I(R), 3()), § (3(0), 3(2)}),
¢ max{£(3(p), 3()),§(3(1), 3()),§(30),3(2))} |

Page 15 of 27
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The six statuses complete postulates of Theorem 3.2 and (0,0, 0) is a tripled coincidence
common fixed point of ¥ and N.

Example 3.5 Let AL, ) =X — n and x = [0, +00) be equipped with
§(p, 1) = max{p, h}
for all p, i € x. Define the order relation by
P.heY, (p<,hcp=h=0) or (p,he(0,+00)andp <h).

It is obvious that (J(x), &) is a complete metric-like space. Let us define J: x — x and

R:x2— x by
1 L ifphd #£0,
() = ——p, and N(p,ho)- | P07
128 0 ifphd=0

for all p,h, 0 € x. It is evident that %(x3) C J(x), & has a mixed ®-monotone property.
Now, for all o, 7,0,x,y,z € x, if 9hd = 0 or xyz = 0, then the contractive condition of The-
orem 3.2 is verified directly, so we discuss it when /0 # 0 or xyz # 0. Take into account

15 Thus, we have

m(v)=gvforallv e [0,+00) and { = 7.

1

£ (R, 1,0),M(w9,2) = -

< Lmax{max{p x}, max{h, y}, max{0,z}}

128
= (5~ 135 ) ol 30, £(300,30)).£ (301, 32)

Thus, all the suppositions of Theorem 3.2 are contented and (0,0, 0) is a tripled coinci-
dence common fixed point of J and ).

Example 3.6 Assume that all data of Example 3.1 are validated except the mappings as
follows: 3 : x — x and 5 : x® — x defined by

1 p—-h+0
J(p) = —p, R(p, h,0) = ——.
5(¢) 0% (2,1, 0) 20

Then

p—h+6+x—y+z
80 80

p+x h+y O+z
80 80 ' 80

(M(p, h,9), R(x9,2))
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I
Sp+x+ +y+5+z
80 80 80

; { (plgx) " <h1+oy> ’ (81+0Z)}

{5@+x h+y 5+z}

=i
o
=1

IA

’ ’

10 10 10

A

BIwW Bl W w0l w ol
—

[\

7 (max (£ (3(p), 3(x)), £ (3(0), 30)), £ (3(0), 3()) })

_ [ max{E (), 3()), S(J(ﬁm(y)) £(3(9),3(2))s
J()),§(3(R), 3()), (3@, 3(2)) )

Thus, all the suppositions of Theorem 3.2 are contented and (0,0,0) is a tripled coinci-
dence common fixed point of J and .

4 Consequences of the main results
This section is devoted to discussing some immediate consequences of the above theo-
rems as follows:

If we devote A(X, ) = A—p forall A, u € x in Theorems 3.1 and 3.2, we get the following.

Corollary 4.1 Assume that 5 : x> — x and © : x — x are two mappings on a POCML
space (x, =, &) such that:
(i) R(x®) <3
(ii) R is continuous;
(i) I is continuous and commutes with N;
(iv) M has a mixed I-monotone property;
(v) therearew € I, ¢ > 0, and A € C such that

£ (R, 7, 0), M(x,9,2)) < 7 (max{& (3(9), 3@), £ (3(), 30)), £ (3(0), 3())})
— ¢ max{£ (3(p), 3(0)), & (3(1), 30)), £ (3(0), 3(2))

for any ©,h,0,x,9,z € x, for which JI(p) ), IO 2 J(h), and I(0) 3 J(z). If there
exist ., ho, 0, € X such that J(p,) 3 f)t(po,ho,a)), J(ho) 7= N(ho, 0, 0o), and I(0,) 3

N (0o, ho, §0). Then N and I have a tripled coincidence point.

Corollary 4.2 Let (x,3,&) be a POCML space. Assume that £ : 7 XV X T — T and
O : Y — 7T fulfill the following hypotheses:
(i) ROA) S (x);
(i) N has a mixed I-monotone property;
(ili) (X(x),&) is a complete metric-like space and x is obligated by the following
assumptions:
(I) I, 2l ifa nondecreasing sequence l,, — I, n — +00,
(I1) ju 7= j if a nonincreasing sequence j, — j, n — +00;

(iv) S is continuous and commutes with i;
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(v) therearem € IT, ¢ >0, and A € C such that

£(N(p, h,0), R (x,9,2)) < 7 (max{&(I(p), 3@)), £(3(0), 3()), £(3(3),3(2))})
— ¢ max{§ (3(p), 3(%)), £ (I(N), 3()), & (3(0),3(2)) }.

If there exist ., h,,0, € x such that I(9o) 3 R0 Fio, o), I(ho) 72 R(Fios $0,0o), and
J(0o) 2 N(0o) o, ), then N and I have a tripled coincidence point.

Corollary 4.3 Assume that 5 : x> — x and © : x — x are two mappings on a POCML
space (x,3,&) such that:

) R0 < I(x);
(if) N is continuous;
(iii) 3 is continuous and commutes with R;
(iv) N has a mixed I-monotone property;
(v) therearem € IT, ¢ >0, and A € C such that

3

<E(3(5O),5(x)) +&(3(h),3(y)) + 5(3(5),5(2))>
3

£ (N, 1), (31 2)) < n(é(%‘(@),%(x)) +&(3(R),3()) + 5(5(5),‘3(2))>

-¢

for any ©,h,0,%,9,z € x, for which J(p) 3 J(x), I() 2 I(h), and I0) 2 I(z). If there
exist (o, ho, 0o € X such that J(.) 3 R(§or Nor o)y I(ho) 7= R(Nos §0,00), and I(T,) =
N(0o, fio, §20), then N and I have a tripled coincidence point.

Proof 1t is sufficient to note that

£R(p), 3)),
(), 3(), S 3(9),
§R3(p) s(x))+E(s(3) (7)) + £(3(0) s(z))Emax ), 00,

£(3(9),3(2)

Since 7 is nondecreasing, so we can apply Corollary 4.1. O

Corollary 4.4 Let (x,3,&) be a POCML space. Assume that E : 7 XV X T — T and
O : Y — T fulfill the following hypotheses:
(i) ROA) S (x);
(i) N has a mixed I-monotone property;
(iti) (X(x),&) is a complete metric-like space and x is obligated by the following
assumptions:
() I, 2 ifa nondecreasing sequence l,, — I, n — +00,
(I) ju 72 if a nonincreasing sequence j, — j, n — +00;
(iv) S is continuous and commutes with R;
(v) therearem € IT, ¢ >0, and A € C such that

3

¢ (5(3(50),?5(96)) +£(3(h),3(y)) + 5(3(5),5(2)))
3 .

£ (N, 1), 31 2)) < n(é(i‘ﬁ(@),??(x)) +&(3(R),3()) + 5(3(5),‘3(2))>

Page 18 of 27



Hammad and La Sen Journal of Inequalities and Applications (2020) 2020:211

If there exist o, ho,0, € x such that I(po) 2 N(§or Fio, 00), I(bo) 72 R, §0,0,), and
J(0o) ZN(0o) o, ), then N and I have a tripled coincidence point.

Proof It is enough to remark

£(3(p), 3()),
(), I J(h), J(0),3
S0 ) + SO0 + 800D e, Vo s,
£(3(9),3(2)
So we can use Corollary 4.2 to complete the required. d

Customizing A(x, ) = oA, 0 < 0 <1 in Theorems 3.1 and 3.2, we have the following.

Corollary 4.5 Assume that 5 : x> — x and © : x — x are two mappings on a POCML
space (x,3,&) such that:
(i) R(x®) <3
(ii) N is continuous;
(iii) Y is continuous and commutes with R;
(iv) N has a mixed I-monotone property;
(v) therearem € IT, ¢ >0, and A € C such that

£(N(p, h,0), R(x,3,2)) < o (max{&(I(a), 3(x)), & (3(b),3()), £ (3(c), 3(2)) })

for any ©,h,0,%,9,z € x, for which J(p) 3 I(x), I() 2 I(h), and IO) 2 I(2). If there
exist (o, ho, 0, € ¥ such that J(g.) 3 R(go, Nor 00)s I(ho) 7= R(Hos §0,0,), and I(0,) 3

~

N(Oo, fio, §2,), then N and I have a tripled coincidence point.

Corollary 4.6 Let (x,3,&) be a POCML space. Assume that E : 7 XV X T — T and
O : T — 7T fulfill the following hypotheses:
(i) R(x®) <3
(i) N has a mixed I-monotone property;
(iti) ((x),&) is a complete metric-like space and x is obligated by the following
assumptions:
(D) I, 2 ifa nondecreasing sequence l,, — I, n — +00,
(I1) j, 75 j if a nonincreasing sequence j, — j, n — +00;
(iv) S is continuous and commutes with i;
(v) therearem € IT, ¢ >0, and A €C such that

& (W(p, 1,0),R(x,3,2)) < o (max (£ (3(p), 3(), & (3(1), 3()), £ (3(@), 3(2)) })-

If there exist §o,h,0, € x such that 3(p.) = R(o) Mo, Do)y S(ho) 75 R(ho, £0,00), and
J(0o) 2 N(0o) o, ), then N and I have a tripled coincidence point.

Now, if we choose § = I, (where I, is the identity mapping) and replace a mixed-
monotone property with a monotone-increasing one in Theorem 3.1, we get the following
important result.
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Corollary 4.7 Let (R, 3,&) be a POCML space. Suppose that R : x> — x is a mapping
such that:
(i) N is continuous;
(i) N is nondecreasing with respect to =;
(ili) there exist three elements ., ho,Co € X such that g, 3 N(go, ho, Oo),
ho 72 N(Hios §05 ho), and co 3 N(co, Roy §0);
(iv) therearemw € IT, ¢ >0, and A € C such that

£(N(p, h,0),R(x,7,2))

< A(r (max{&(p,%),£(h,9),£(0,2)}), ¢ max{& (p,%),6(h,9),6(0,2)})  (32)

for any ©,h,0,x,v,z € x, and for which © 2 x,y X h, and 0 3 z. Then there is a tripled
coincidence point of .

5 Applications

This part is considered as the mainstay of this paper because it indicates the applications
that contribute to solving some nonlinear integral systems that attract many readers and
researchers and show the importance of the fixed point theory in many areas.

5.1 Some contributions of integral type
Let £2 be a class of functions @ : [0, +00) — [0, +00) fulfilling the following postulates:

(i) For each compact subset of [0, +00), @ is a positive Lebesgue integrable mapping;
(i) [y w(€)de>0foralle>0.

Corollary 5.1 Let A(X, ) = A — . Exchange stipulation (1) of Theorem 3.1 by the formula

/é(?ﬂ(p,hﬁ),m(x,y,z))

7 (p(9:x,1,9,0,2)) - p(,x,1,9,0,2)
wl)dt < /

w () de (33)

0 0

Jor all w € 82, where ¢(p,x,11,,0,2) = max{§(3(), I(x)), § (3(h), I3(¥)), £ (3(9), 3(2))}. If
other hypotheses of Theorem 3.1 are fulfilled, then there is a tripled coincidence point of the
mentioned mappings.

Proof Suppose the function 7' (p) = fO’p w (£) de, then (33) becomes
T (& (%R, 1,0), R(x,9,2))) < V7 (0(,% 71,9,0,2)) = T (C (9,4, 71,9, 0,2)).

Letting m; = 1 o 7w, we have m; € I1, since ¢ > 0, then the proof is quickly completed
from Theorem 3.1. O

Corollary 5.2 Let A(X, &) = A — . Exchange stipulation (1) of Theorem 3.1 by the formula

E(M(p,h,0),N(x,9,2))
f @ (0)de

0

e(p,x,h,9,0,2) ¢(px,h,9,0,2)
< n(f w (£) dﬁ) - {/ w(l)de (34)
0 0
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for each w € $2, If other hypotheses of Theorem 3.1 are fulfilled, then there is a tripled
coincidence point of the mentioned mappings.

Proof As in Corollary 5.1, define the function 7' (p) = fop w (£)de, then (34) is

T(E (S(KJ, h: 6)’ ER(x’y’z)))
<7 (T (p(g, % hy,0,2))) - T (p(g,, h,,9,2)).

Putting 7wy =m0 T, we get mp € I1, since {7 > 0, then the proofis quickly completed from
Theorem 3.1. O

In the same line of [51], let a fixed number V € N. Suppose that {z;},<j<v is a collection
of V functions which belong to £2. For each £ > 0, we define

4
Ji(6) = fo o1(p) dp,

J1(0) s @1(0)dp,
Jo(0) = / w3(p)dp - / @2(0) dp,
0 0

J4
. (p)dp,
Jom e o o)dp

J2.()
Jy(0) - /0 w(p) dp = fo o3(p) dp,

Jv-1)(0)
Jo(6) = / @y (o) dp.
0

We have the following consequence.

Corollary 5.3 Let A(X, t) = A — . Replace inequality (1) of Theorem 3.1 by the the follow-
ing assumption: There is w € §2 such that

Jv (‘i: (t)t(go, h, 9), m(x’y’ Z))) <n(v (@(@’x’ h’y’ g, Z)) - ¢Ivip(p,x, h’y’ 0,2). (35)

If the remaining conditions of Theorem 3.1 are true, then there is a tripled coincidence point
of Rand 3.

Proof Specify w3 =7 o Jy and 74 = ¢ o Jy, then inequality (35) takes the form

Jv (& (R(s, 7, 0), R(x,9,2))) < m3(p($2, %, 1,0, 2) — Yalp($0, %, 11, 9,0, 2).
Applying Theorem 3.1, we obtain the desired result because 7w, € [T and 4 = ¢Jy > 0. O
5.2 Solve a system of nonlinear integral equations

Let §2 be a class functions w : [0, +00) — [0, +00) such that w is increasing and there exist
well, ¢ >0,and A € such that w(u) = %A(n(u),;‘u) for all i € [0, +00).
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Consider the following problem:

q
£0) =90+ [ (1049)+ 200, +13(0,)
»
x [p1(0: 9(0)) + p2(p, 1(p)) + p3(0,0(p))] dp
for all v € [p,g]. We postulate that the following assumptions hold:
(i) ¢:[p,q] — Ris continuous;
(i) piri(i=1,2,3):[p,q] x R — R are continuous;
(iii) For all o, 0 € R, there are 5, t, o such that

0 < p1(p, ) — p1(p,0) < 2w(p - 0),

0 < p2(p, ) — p2(p,0) < Tw(gp - 0),

and

0 <p3(p, ) — p3(p,c) < ow(gp - 0);

(iv) We assume that

q
max{ s, r,o}( sup / [rl(v,,o) +1r9(v, p) + rg(v,p)] d,o) <1
telpql Jp

(v) There are continuous functions «, 8,y : [p,q] — R such that
q
a(v) < / ri(v, p)[p1(0a(0)) + p2(p, B(0)) + p3(p, v (0)) ] dp
p
q
+/ ra(v, 0)[p1(0,8(0)) + P2 (0, 1(p)) + p3(p,8(p)) ] dp
p
q
+/ r3(v, p)[p1 (0, v (0)) + P2 (0, B(p)) + p3 (0, x(p))] dp,
p
q
Bv) < f n(w,0)[p1(0,8(0)) + P20, 1(0)) + p3(0 B(9))] o
V4
q
+f (v, 0)[p1 (05 ¥ () + P2 (s B(0)) + p3(p,x(p)) ]| dp
p
q
+f r3(v, p)[p1(p,a(p)) + p2(0: B(P)) + p3(0: ¥ (0))],
p

and

q
y(v) < / r(v, p)[p1(p, v (0)) + p2(p, B(0)) + p3(p,(p))] dp
p

q
+/ ra(v, p)[p1(p,a(p)) + p2(0: B(0)) + p3(0: ¥ (0))] dp
p

q
+/ rs(v, p)[p1 (0, B(0)) + p2(p: a(p)) + p3(p, B(p))] dp.
p

(36)
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Let x = C([p,q],R) be the set of real continuous functions on [p, q] endowed with

E(p,h) = llo = hlloo = sup {|p() - A(v)|}

ve[pql

for all o, i € x. Then the pair (x, &) is a complete metric-like space. We endow y with the
partial order = as follows:

pIh < eO)=hb), Vvelpql
Subsequently, (x, <,&) isa POCML spaceif o S,y 3 i, and 0 = z whenever p(v) < x(v),

y(v) < h(v), and d(v) < z(v) for all ,h,0,x,y,z€ x and v € [p,q].
Now, we can state and prove our main theorem of this section.

Theorem 5.4 Under hypotheses (i)—(v), problem (36) has a solution in x3, where x =
C(lp.q),R).

Proof Define an operator % : x> — x by

N(g, b, 0)(v)

q
=¢(V)+/ n(, p)[p1(p,9(0)) + p2(p, 1p)) + p3(0,0(p)) | dp
p
q
+/ ra(v, )[p1(p, 1(p)) + P2 (0, 9(0)) + p3 (0, lp)) ] dp
p
q
. / rs(, )1 (9 0(0)) + 2 (0 1)) + s (02 9(0)) ] dp
p

forall v € [p,q] and g, /1,0 € . It is clear that if the mapping & has a tripled coincidence
point in 7 = C([p, q], R), then it is a solution of problem (36).

Now, we shall prove the increasing property of the mapping & with g, = g, s0 1(v) <
g2 (v) for all v € [p, q], we get

9{(5017 hr 8)(\)) - E(BOZ! ﬁ! 8)(\))

q
:/ r(v, p)[p1(p: 91(0)) + p2(p, B(p)) + p3(p, (p)) | dp
p
q
+/ (v, p)[p1(p, 1p)) + 2 (s 91(0)) + p3 (0, 1(p)) ] dp
p
q
+ / r3(v, p)[p1(0,0(0)) + p2(p0, B(p)) + p3(p, 91(0))] dp
p
q
- / r1(v, p)[p1(ps 92(0)) + p2(p, 1)) + p3(p, ()| dp
p
q
- / (v, p)[p1(p, 1(p)) + P2 (s 92(0)) + p3 (0, Pp)) ] dp
p

q
—/ r3(v, 0)[1(0,9(0)) + pa(p, 1)) + p3 (s 2(0)) | dp
p
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q
= / rn(v, p)[p1(p, 91(0)) - p1(0 2(0)) | dp
p
q
+/ (v, p)[p2(p, 91(0)) = P2 (0, 92(0)) | dp
p
q
+/ rs(v, 0)[p3(p, 91(0)) — p3(0 2(p)) | dp
P
<o0.
Hence, R(p1,h,0)(v) < NR(go, h,0)(v) for all v € [p,q]. Subsequently, R(p1,h,0) =

9{(6021 h: 6)
Again, if hy X hy, so Ay (v) < hy(v) for all v € [p, q], we can get

%(501 hl! 8)(V) - ‘)f(@, h2¢ 8)(V)

q
:/ r(v, 0)[p1 (0, 9(p)) + p2(ps Ba(0)) + p3(0,B(p)) | dp
P
q
+/ (v, 0)[p1(0: T (p)) + p2(p, (0)) + p3(0: 1 (p))] dp
p
q
+/ rs(v, p)[p1(0,3(0)) + p2 (05 T () + p3 (s ()] dp
p
q
—/ r1(v, 0)[p1(0: 9(0)) + p2(p, Ba(p)) + p3 (0, 0(p)) ] dp
p
q
—/ r2(v, p)[p1 (0, ha(0)) + P2 (05 9(0)) + 3 (05 Fa(p)) | dp
p
q
- / r3(v, p)[p1(p,3(0)) + P2 (s B2(p)) + p3 (s 9(p)) ] dpo
p
q
=f r(v, p)[p2(p, 11(p)) = p2(ps Ba(p)) ] dp
p

1 {p1(p, h1(p)) = p1(p; Ma(p))}
) d
+/p r2v:0) [+{p3(p, ha(p)) - ps(p, hz(ﬂ))}i| g

q
+/ rs(v, )[p2(p, () = pa(ps Ba(p)) ] dp
P

<o0.

So, N(g, i1, 0) < N(g, hy,0)(v) for all v € [p,q]. Hence R(p, i1, 0) = NR(gp, hp, 0). In the
same manner, we can write N(g, /,01) =3 N(go, b, T,) if 3; X 9. From the above inequal-
ities, we observe that the mapping N is increasing with respect to the variables g, 7,
and 0.

Finally, we shall verify contractive condition (32) of Corollary 4.7 for all p, », 0, %, y,z € x
such that p S,y 3 h,and 0 Xz,

£(N(p, h,0),R(x,7,2))

= sup { |Sﬁ(p, h,0)(v) = N(x, y, z)(v)} }
velp.q)
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| qu r1(v, p)[p1(p, (0)) + p2(p, Ai(p)) + p3(p,3(0))] dp
+ [, 12, 0)p1(p, 1)) + p2(0, () + p3(p: 1p))) dp
wp | S 130, p)p1(0,0(0)) + pa(p, 1p)) + p3(p, ()] dp
velpa | =[5 1(v, 0)[p1(0,%(0)) + P20, ¥(0)) + p3(p, 2(p)] dp
= [, 120, 0)[p1(0,5(0)) + 2, %(0)) + p3(0, 7(0))] dp
= [, 130, 2) P10, 2(p)) + P2(p: ¥(0)) + p3(p, 2(p))] dp]

[p1(0, £(p)) = p1(p, x(p))]
Sy, p) [ +lp2(0, 1)) - p2(p,5(0))] | dp

+[p3(p,0(p)) — p3(p,2(p))]

( [p1(0, 1)) - p1(p, ¥(p))] )

= sup 1 +[ra2(v,0) | +pa(p, 9(0)) — pa(0,x(P))] | dp

veteal +[p3(0, 7)) - p3(p, ()]
[p1(p,8(p)) = p1(p,2(p))]

+ [ 3w, 0) | +lp2(0, Blp)) = pa(p, 7(0))] | dp
+[p3(p, 9(0)) = p3(p, x(p))]

Applying hypothesis (iii), we get

£(N(p, h,0), R(x,,2))

| [ r1(v, p) [2eo(9(p) = x(p)) + T(h(p) = ¥(p)) + 0 w(B(p) — 2(p))] dp
+ [, 120, p) () — y(p)) + Tw(p(p) —x(p)) + cw(hl(p) ~ y(p))] dp
+f, 130, ) ew(@(p) — 2(p)) + Tw(h(p) - y(p)) + s w(g(p) — x(p))] dpl

< sup
ve(p.ql

<max{s, 1,0}
su S (v, 0) +12(v, p) + 73(v, p)) x . @)
velpal | [@(l9(p) = x(p)]) + w([R(p) = y(p)]) + w(|0(p) - z(p) ] dp

By the characterizations of the function w and the distance &, one can write, for all p €

[p.ql,

o(|p(p) —x(p)]) < 0t (0, ),
o(|A(p) = ¥(p)|) < @& (h,y), (38)
o([3(p) - 2(p)]) < w&(D,2).

It follows from (37), (38) and assumption (iv) that

& (m(@’ h,9), m(x,y, Z))

<max{sx,7,0} x (0&(p,%) + wE(h,y) + & (D,2))

q
X ( sup / (VI(V»P)"’Vz(VxP)+’"3(V»/0))d:0>
velpglJp

< w(p,x) + 0§ (I, y) + @& (0, 2)
< 3w(max{&(p,x),£(h,9),6(h,y)})
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<3x %A(T[ (max{g(@rx)»g(h»y)»E(h’y)})’ ¢ maX{g(@yx)»g(h»J’)»E(h»J’)})
= A(T[ (max{é(@,x),é(h,y),f(h,y)}): ¢ max{é(éﬁ:x);é(ﬁ;y),f(h’y)})»

Also, condition (v) tells us a(v) < R(w,B,y)(v), B(v) = R(B,a,B)(v), and y(v) <
N(y,B,a)(v) for all v € [p,q]. This yields o« 3 R, B,y), B = R(B,, B,y), and y 3
NR(y, B,«). Applying Corollary 4.7, we deduce the existence solution of problem (36). [
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