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Abstract
This paper presents an extragradient-like method for solving a pseudomonotone
equilibrium problem with a Lipschitz-type condition on Hadamard manifolds. The
algorithm only needs to know the existence of the Lipschitz-type constants of the
bifunction, and the stepsize of each iteration is determined by the adjacent iterations.
Convergence of the algorithm is analyzed, and its application to variational
inequalities is also provided. Finally, several experiments are made to verify the
effectiveness of the algorithms.
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1 Introduction
The equilibrium problem (EP) provides a general setting of many problems, such as opti-
mization problem and the complementarity problem. In the past few decades, it has been
studied extensively in linear space (e.g., Hadjisavvas et al. [1], Bianchi et al. [2, 3], Blum et
al. [4]).

It is necessary to extend the concept and method from linear space to Riemannian man-
ifolds. By choosing a suitable Riemannian metric, the nonconvex optimization problem
can be transformed into convex optimization problem, and the constrained optimization
problem can be transformed into an unconstrained one. Some classical algorithms have
been extended from linear space to Riemannian manifolds, such as by Ferreira et al. [5, 6],
Li et al. [7], and Tang et al. [8]. The related work on Hadamard manifolds can be found in
Kristály [9], Li et al. [10, 11], Ceng et al. [12], Zhou et al. [13] and so on.

In 2012, Colao et al. [14] studied the equilibrium problem on Hadamard manifolds. Let
E be a nonempty closed convex subset on Hadamard manifolds M, and S : E × E −→R be
a bifunction that satisfies S(x, x) = 0, ∀x ∈ E, then the form of equilibrium problem is to
find x ∈ E, such that

S(x, y) ≥ 0, ∀y ∈ E. (EP)
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We define the solution set of equilibrium problem (EP) as EP(S; E), and we always assume
that EP(S; E) �= ∅. In the special case, if S(x, y) = 〈V (x), exp–1

x y〉, where V : E → TM is a
vector field satisfies V (x) ∈ TxM, ∀x ∈ E, and exp–1 is the inverse of exponential, then (EP)
becomes the variational inequality problem. The form is: find x ∈ E, such that

〈
V (x), exp–1

x y
〉 ≥ 0, ∀y ∈ E. (VI)

The solution set of variational inequality problem (VI) is denoted by VI(V , E).
It is known that the KKM lemma is an important tool for studying the existence of solu-

tions for equilibrium problems. Colao et al. [14] developed and proved Fan’s KKM lemma
[15] and obtained the existence of solutions to equilibrium problem (EP) on Hadamard
manifolds. For relevant conclusions, see, for instance, Yang and Pu [16], Tang et al. [17],
Chen et al. [18], Batista et al. [19], Zhou et al. [20–22].

Furthermore, the existence of solutions for equilibrium problems or variational inequal-
ity problems on Riemannian manifolds has been presented by several references. In par-
ticular, Li et al. [23] established the existence and uniqueness results for variational in-
equality problems on Riemannian manifolds. Meanwhile Li and Yao [24] provided the
existence theorems of solutions for variational inequalities for set-valued mappings on
Riemannian manifolds. Very recently, Wang et al. [25] obtained the existence of solutions
and the convexity properties of the solution set for the equilibrium problem on Rieman-
nian manifolds.

Many authors have studied ideas and methods for solving equilibrium problems or vari-
ational inequality problems in linear space, for example, Korpelevich [26] first designed
an extragradient method for a solution of variational inequality problem, while Censor et
al. [27] proposed the subgradient extragradient method inspired by extragradient method
in [26]. In 2019, Thong and Hieu [28] introduced an inertial subgradient extragradient
algorithm based on the subgradient extragradient method in [27]. Then Ceng et al. [29]
and Yao et al. [30] obtained the inertial algorithms for finding a common solution of the
variational inequality problem and the fixed-point problem by using a subgradient ap-
proach. As for equilibrium problems, Quoc et al. [31] obtained an extragradient method
for a solution of a pseudomonotone equilibrium problem, while Nguyen et al. [32] pro-
vided an iterative method for finding a common solution to an equilibrium problem and
a fixed point problem based on extragradient method in [31]. Then in 2020, Yao et al. [33]
improved and extended the main result in [32] to a general case.

In recent years, algorithms for solving equilibrium problem (EP) on Hadamard mani-
folds have received a lot of attention by some authors, such as Colao et al. [14], Salahud-
din [34], and Li et al. [35]. Recently, Cruz Neto et al. [36] extended the result of Nguyen
et al. [32] and obtained an extragradient method for solving the equilibrium problem on
Hadamard manifolds, which is described as follows: choose λk > 0, compute

⎧
⎨

⎩
yk = arg minz∈E{S(xk , z) + 1

2λk
d2(xk , z)},

xk+1 = arg minz∈E{S(yk , z) + 1
2λk

d2(xk , z)},
(1)

where 0 < λk < β < min{α–1
1 ,α–1

2 }, α1, α2 are constants related to Lipschitz-type constants.
It should be noted that Lipschitz-type constants are unknown in general, and it is difficult
to approximate them even in complex non-linear problems.
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Recently, Hieu et al. [37, 38] and Yang et al. [39, 40] introduced some proximal-like algo-
rithms in the linear setting. The stepsize of the algorithms is given by the adjacent iteration
information in each iteration, so it is unnecessary to know the Lipschitz constants.

Inspired by the work above, we present a new extragradient-like method for (EP) on
Hadamard manifolds. Compared with [36], our algorithm is performed without the prior
knowledge of the Lipschitz-type constants. Moreover, values of the adjacent iteration
points have great influence on the stepsize of the further iteration, which can effectively
improve the efficiency of the iteration. We note that, if M = R, then our algorithm is an
improvement of the algorithm presented in Hieu et al. [38].

The organization of the paper is as follows. In Sect. 2, we present some basic knowledge
on Riemannian manifolds which will be used in this paper; for more details, see [41, 42]. In
Sect. 3, we introduce the extragradient-like algorithm and analyze its convergence. Finally,
in Sect. 4, we present two experiments to verify the algorithms.

2 Preliminaries
Suppose M is simply connected n-dimensional Riemannian manifold, ∇ is the Levi-Civita
connection, and γ is a smooth curve on M. V is the unique vector field satisfies ∇γ ′(t)V = 0
(∀t ∈ [a, b]), and V (γ (a)) = v. Then the parallel transport Pγ ,γ (b),γ (a) : Tγ (a)M → Tγ (b)M

on the tangent bundle TM along γ is defined by

Pγ ,γ (b),γ (a)(v) = V
(
γ (b)

)
, ∀a, b ∈ R and v ∈ Tγ (a)M.

If γ is a minimal geodesic joining p to q, then we use Pq,p instead of Pγ ,q,p.
A Riemannian manifold M is complete if for any p ∈M, all the geodesic γ (t) emanating

from p are defined for all t ∈ R.
Suppose M is complete, and γ (·) = γv(·, p) is the geodesic, the exponential map expp :

TpM →M at p is defined by expp v = γv(1, p), ∀v ∈ TpM, then expp tv = γv(t, p), ∀t ∈R. We
note here that ∀p ∈M, expp is differentiable on TpM, and expp : TpM→M is a diffeomor-
phism.

A complete, simply connected Riemannian manifold of nonpositive sectional curvature
is named a Hadamard manifold. In this paper, we assume that M is an n dimensional
Hanamard manifold.

Proposition 2.1 ([43]) Let p ∈M, then expp : TpM→M is a diffeomorphism, and for any
p, q ∈M, there exists a unique normalized geodesic γq,p joining p to q.

A geodesic triangle �(p1, p2, p3) of a Riemannian manifold is a set consisting of three
points p1, p2, p3, and three minimal geodesic joining these points.

Proposition 2.2 ([42]) Let �(p1, p2, p3) be a geodesic triangle on Hadamard manifolds M.
Then

d2(p1, p2) + d2(p2, p3) – 2
〈
exp–1

p2 p1, exp–1
p2 p3

〉 ≤ d2(p3, p1), (2)

where exp–1
p2 is the inverse of expp2 .
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Proposition 2.3 ([44]) Let �(p1, p2, p3) be a geodesic triangle on M, Then there exist three
points (i.e. p′

1, p′
2, and p′

3) in R
2, such that

d(p1, p2) =
∥∥p′

1 – p′
2
∥∥, d(p2, p3) =

∥∥p′
2 – p′

3
∥∥, d(p3, p1) =

∥∥p′
1 – p′

3
∥∥.

Lemma 2.4 ([7]) Let �(p1, p2, p3) be a geodesic triangle on M and the comparison triangle
be �(p′

1, p′
2, p′

3).
(1) Let α, β , γ be the angles of �(p1, p2, p3) at the vertices p1, p2, p3, and α′, β ′, γ ′ be the

angles of �(p′
1, p′

2, p′
3) at the vertices p′

1, p′
2, p′

3. Then

α′ ≥ α, β ′ ≥ β , γ ′ ≥ γ .

(2) Let z be a point in the geodesic joining p1 to p2, and z′ ∈ [p′
1, p′

2] is the comparison
point, if d(z, p1) = ‖z′ – p′

1‖, d(z, p2) = ‖z′ – p′
2‖, then

d(z, p3) ≤ ∥∥z′ – p′
3
∥∥.

Lemma 2.5 ([45]) Let x0 ∈M, {xn} ⊂M, and xn → x0. Then, for ∀y ∈M,

exp–1
xn y → exp–1

x0 y, exp–1
y xn → exp–1

y x0.

Definition 2.6 ([46]) A subset E ⊂M is said to be convex if for any p, q ∈ E, the geodesic
connecting p and q is still in E.

Definition 2.7 ([41]) Let ω be a real-valued function on M, ω is said to be convex if for
any geodesic γ on M, the composition function ω ◦ γ : [a, b] →R is convex.

Definition 2.8 ([34]) Let ω : M→R be a convex and z ∈ M. A vector u ∈ TzM is called a
subgradient of ω at z, iff

ω(y) ≥ ω(z) +
〈
u, exp–1

z y
〉
, ∀y ∈M.

The set of all subgradients of ω is named the subdifferential of ω at z, which is represented
by ∂ω(z), and the domain of ∂ω is D(∂ω) = {z ∈ M|∂ω(z) �= ∅}, and ∂ω(z) is a closed and
convex set.

Proposition 2.9 ([6]) Let ω : [a, b] → R be a convex, for any point p in Hadamard mani-
folds M, we have D(∂ω) = M.

Definition 2.10 ([45]) Let M be a Hadamard manifolds, ω be a lower semicontinuous,
proper and convex function, ω ⊂ M and D(ω) = M, then the proximal mapping proxλω :
M→M is defined as

proxλω(z) := argmin
y∈M

{
ω(y) +

1
2λ

d2(z, y)
}

, ∀z ∈M,λ > 0.
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From [6, Lemma 4.2], proxλω(·) is a single-valued andD(proxλω) = M, and for each z ∈M,
there exists a unique point p = proxλω(z), which is characterized by

exp–1
p z ∈ λ∂ω(p).

Combining this and Definition 2.8, we have the following.

Lemma 2.11 Let ω be a lower semicontinuous, proper and convex function on Hadamard
manifold M, and z, p ∈M, λ > 0. If p = proxλω(z), ∀y ∈M, Then

〈
exp–1

p y, exp–1
p z

〉 ≤ λ
(
ω(y) – ω(p)

)
.

Remark 1 From Lemma 2.11, if z = proxλω(z), then

z ∈ Argmin
{
ω(y) : y ∈ E

}
:=

{
z ∈ E : ω(z) = min

y∈E
ω(y)

}
.

For a closed and convex E ⊆M, the projection PE : M→ E is defined for all z ∈M, such
that PE(z) = argmin{d(z, y),∀y ∈ E}.

Definition 2.12 ([47]) For a bifunction S : E × E →R, ∀(z, y) ∈ E × E:
(1) If S(z, y) + S(y, z) ≤ 0, then S is called monotone.
(2) If S(z, y) ≥ 0 ⇒ S(y, z) ≤ 0, then S is called pseudomonotone.

Definition 2.13 ([48]) Let M be a Hadamard manifolds, E ⊂ M, and S : E × E → R. S
satisfies a Lipschitz-type condition, if there exist k1, k2 > 0 such that

S(x, y) + S(y, z) ≥ S(x, z) – k1d2(x, y) – k2d2(y, z), ∀x, y, z ∈ E.

Lemma 2.14 ([49]) Let {an}n∈N (an > 0), {bn}n∈N (bn > 0) be two real sequences and there
exists N > 0, for all n > N . such that an+1 ≤ an – bn. Then {an}n∈N is convergent and
limn→∞ bn = 0.

In addition, compared with Definitions 2.12 and 2.13, for the variational inequality (VI),
we have the following definitions. Let V is a single-valued vector field, and D(V ) be the
domain of V .

Definition 2.15 ([50]) If there exists a constant L > 0 such that

∥∥Py,xV (x) – V (y)
∥∥ ≤ Ld(x, y), ∀x, y ∈ M,

then V is called Lipschitz continuous.

Definition 2.16 ([43]) For all x, y ∈D(V ),

〈
V (x), exp–1

x y
〉 ≥ 0 ⇒ 〈

V (y), exp–1
y x

〉 ≤ 0,

V is called pseudomonotone.
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3 Main result
In this section, inspired by the algorithms in Hieu et al. [37, 38] and Yang et al. [39, 40],
we introduce an extragradient-like algorithm for solving equilibrium problems (EP), and
analyze the convergence of sequences generated by the algorithm. Finally, we apply the
algorithm to solving the variational inequality problem (VI) as a particular case.

Unless explicitly stated otherwise, the subset E is a nonempty closed convex subset on
M, and the bifunction S satisfies the following conditions:

(A1) For each z ∈ E, S is pseudomonotone on E, i.e., S(z, y) ≥ 0 ⇒ S(y, z) ≤ 0;
(A2) S satisfies the Lipschitz-type condition on E, i.e., S(x, y) + S(y, z) ≥ S(x, z) – k1d2(x,

y) – k2d2(y, z);
(A3) S(x, ·) is convex and subdifferentiable on E, ∀ fixed x ∈ E;
(A4) S(·, y) is upper semicontinuous, ∀y ∈ E.

In order to describe the new algorithm more conveniently, we note that [a]+ = max{0, a}
and adopt the convention 0

0 = +∞, and 1
0 = +∞.

Algorithm 3.1 (Extragradient-like algorithm for solving (EP))
Initialization: Choose x0, x0, x1 ∈ E, λ1 > 0, δ ∈ (0, 1), θ ∈ (0, 1], α ∈ (0, 1), ϕ ∈ (1 –

1–θ
2–θ

α, 1).
Iterative Steps: Suppose xn–1, xn–1, xn are obtained.

Step 1 Calculate
⎧
⎨

⎩
xn = γxn–1,xn (ϕ),

xn+1 = proxλnS(xn ,·)(xn).

If xn+1 = xn = xn, then stop: xn is a solution. Otherwise,
Step 2 Compute

λn+1 = min

{
λn,

αδθ

4ϕΛ

(
d2(xn, xn–1) + d2(xn+1, xn)

)}
,

where Λ = [S(xn–1, xn+1) – S(xn–1, xn) – S(xn, xn+1)]+. Set n := n + 1 and return.

Remark 2 Under the conditions (A1)–(A4) and xn+1 = xn = xn, then by Lemma 2.11 we
obtain

S(xn, y) ≥ S(xn, xn+1) +
1
λn

〈
exp–1

xn+1 xn, exp–1
xn+1 y

〉 ≥ 0, ∀y ∈ E.

So xn+1 ∈ EP(S; E).

Remark 3 By Definition 2.13, if the hypothesis (A2) holds, then there exist k1 > 0, k2 > 0
such that

S(xn–1, xn+1) – S(xn–1, xn) – S(xn, xn+1) ≤ k1d2(xn, xn–1) + k2d2(xn+1, xn)

≤ max{k1, k2}
(
d2(xn, xn–1) + d2(xn+1, xn)

)
,

then {λn} is bounded from below by {λ1, αδθ
4ϕ max{c1,c2} }. Moreover, {λn} is a monotonically

decreasing sequence. Thus, limn→∞ λn exists (i.e. limn→∞ λn = λ > 0). It should be noted
that, if S(xn–1, xn+1) – S(xn–1, xn) – S(xn, xn+1) ≤ 0, then λn+1 := λn.
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Remark 4 From xn = γxn–1,xn (ϕ), we have xn = expxn ϕ exp–1
xn

xn–1, it implies that xn–1, xn, xn

lies in the same geodesic. From [51], we have

exp–1
xn–1 xn =

1
1 – ϕ

exp–1
xn–1 xn, (3)

exp–1
xn xn = exp–1

xn

(
expxn ϕ exp–1

xn xn–1
)

= ϕ exp–1
xn xn–1, (4)

exp–1
xn xn =

–ϕ

1 – ϕ
exp–1

xn xn–1. (5)

By the definition of xn+1 and Remark 2, we know that, if Algorithm 3.1 terminates after
finite iterations, then xn+1 ∈ EP(S; E). Otherwise, we have Lemma 3.1 and Theorem 3.2.

Lemma 3.1 Suppose (A1)–(A4) hold, and EP(S; E) �= ∅, let {xn} be sequences generated by
Algorithm 3.1. Then {xn} is bounded.

Proof Since xn+1 = proxλnS(xn ,·)(xn), by Lemma 2.11, ∀z ∈ E, we obtain

〈
exp–1

xn+1 xn, exp–1
xn+1 z

〉 ≤ λn
(
S(xn, z) – S(xn, xn+1)

)
, (6)

〈
exp–1

xn xn–1, exp–1
xn z

〉 ≤ λn–1
(
S(xn–1, z) – S(xn–1, xn)

)
. (7)

Let s ∈ EP(S; E), substituting z := s into (6) and z := xn+1 into (7), we have

〈
exp–1

xn+1 xn, exp–1
xn+1 s

〉 ≤ λn
(
S(xn, s) – S(xn, xn+1)

)
, (8)

〈
exp–1

xn xn–1, exp–1
xn xn+1

〉 ≤ λn–1
(
S(xn–1, xn+1) – S(xn–1, xn)

)
. (9)

Since S is pseudomonotone, and s ∈ EP(S; E), we obtain S(s, xn) ≥ 0, so S(xn, s) ≤ 0. From
(8) and λn > 0, it follows that

〈
exp–1

xn+1 xn, exp–1
xn+1 s

〉 ≤ –λnS(xn, xn+1). (10)

Combining (9) and (4), we obtain for λn > 0 that

λn

λn–1

1
ϕ

〈
exp–1

xn xn, exp–1
xn xn+1

〉 ≤ λn
(
S(xn–1, xn+1) – S(xn–1, xn)

)
. (11)

On the other hand, applying inequality (2) in Proposition 2.2, gives

2
〈
exp–1

xn xn, exp–1
xn xn+1

〉 ≥ d2(xn, xn) + d2(xn, xn+1) – d2(xn, xn+1), (12)

2
〈
exp–1

xn+1 xn, exp–1
xn+1 s

〉 ≥ d2(xn+1, xn) + d2(xn+1, s) – d2(xn, s). (13)

By multiplying the both sides of inequality (12) by λn
λn–1

1
ϕ

> 0, and then adding the both
sides of the resulting equation to inequality (13), we get

2
〈
exp–1

xn+1 xn, exp–1
xn+1 s

〉
+ 2

λn

λn–1

1
ϕ

〈
exp–1

xn xn, exp–1
xn xn+1

〉

≥ d2(xn, xn+1) + d2(xn+1, s) – d2(xn, s)
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+
λn

λn–1

1
ϕ

(
d2(xn, xn) + d2(xn+1, xn) – d2(xn, xn+1)

)

=
(

1 –
λn

λn–1

1
ϕ

)
d2(xn, xn+1) – d2(xn, s)

+
λn

λn–1

1
ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)
+ d2(xn+1, s). (14)

Combining Eqs. (14), (10) and (11), we get for λn > 0

d2(xn+1, s) ≤
(

λn

λn–1

1
ϕ

– 1
)

d2(xn, xn+1) + d2(xn, s)

+ 2λn+1
λn

λn+1

(
S(xn–1, xn+1) – S(xn–1, xn) – S(xn, xn+1)

)

–
λn

λn–1

1
ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)
. (15)

By the definition of λn and (15), we obtain

d2(xn+1, s) ≤
(

λn

λn–1

1
ϕ

– 1
)

d2(xn, xn+1) + d2(xn, s)

+
1
2
δ

λn

λn+1

1
ϕ

αθ
(
d2(xn, xn–1) + d2(xn, xn+1)

)

–
λn

λn–1

1
ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)
. (16)

From Remark 3 λn → λ > 0, and 0 < δ < 1. Hence, there exists N ≥ 0, such that, for all
n ≥ N , 0 < λn

δ
λn+1

< 1, and λn
λn–1

1
ϕ

– 1 ≤ λn–1
λn–1

1
ϕ

– 1 = 1
ϕ

– 1. Thus, from (16), we have

d2(xn+1, s) ≤
(

1
ϕ

– 1
)

d2(xn, xn+1) + d2(xn, s) –
α

ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)

+
1
2
δ

1
ϕ

αθ
(
d2(xn, xn–1) + d2(xn, xn+1)

)
, ∀n ≥ N . (17)

Now, we estimate the term d2(xn+1, s) in (17). Fix n ≥ 0, set p = xn+1, q = xn in geodesic
triangle �(s, p, q). Then using Lemma 2.3 in the comparison triangle �(s′, p′, q′), we have

d(s, xn+1) = d(s, p) =
∥∥p′ – s′∥∥, d(s, xn) = d(s, q) =

∥∥q′ – s′∥∥.

Recall from Algorithm 3.1 that xn+1 = expxn+1 ϕ exp–1
xn+1

xn. The comparison point of xn+1

is x′
n+1 = (1 – ϕ)p′ + ϕq′. Let β and β ′ denote the angles at s and s′, respectively. From

Lemma 2.4(1), we have β ≤ β ′, thus cosβ ′ ≤ cosβ . Then, from Lemma 2.4(2) we have

d2(xn+1, s) ≤ ∥∥(1 – ϕ)p′ + ϕq′ – s′∥∥2

=
∥∥(1 – ϕ)

(
p′ – s′) + ϕ

(
q′ – s′)∥∥2

= (1 – ϕ)2(p′ – s′)2 + ϕ2(q′ – s′)2 + 2ϕ(1 – ϕ)
∥∥p′ – s′∥∥∥∥q′ – s′∥∥ cosβ ′

≤ (1 – ϕ)2d2(p, s) + ϕ2d2(q, u) + 2ϕ(1 – ϕ)d(p, s)d(q, s) cosβ

= (1 – ϕ)2d2(xn+1, s) + ϕ2d2(xn, s) + 2ϕ(1 – ϕ)
〈
exp–1

s xn+1, exp–1
s xn

〉
. (18)
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Using the Cauchy–Schwarz inequality, we obtain

2
〈
exp–1

s xn, exp–1
s xn+1

〉 ≤ 2
∥∥exp–1

s xn
∥∥∥∥exp–1

s xn+1
∥∥

≤ d2(s, xn) + d2(s, xn+1). (19)

By substituting (19) into (18), we get

d2(xn+1, s) ≥ –
ϕ

1 – ϕ
d2(xn, s) +

1
1 – ϕ

d2(xn+1, s). (20)

Consequently, combining (17) and (20), we have for all n ≥ N

1
1 – ϕ

d2(xn+1, s) –
ϕ

1 – ϕ
d2(xn, s)

≤ d2(xn, s) +
(

1
ϕ

– 1
)

d2(xn, xn+1) –
α

ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)

+
α

2ϕ
θ
(
d2(xn, xn–1) + d2(xn, xn+1)

)
. (21)

Next, we need Lemma 2.14 to complete the proof. From (21) and (2), we get

1
1 – ϕ

d2(xn+1, s) +
αθ

2ϕ
(d2(xn+1, xn)

≤ ϕ

1 – ϕ
d2(xn, s) +

αθ

2ϕ
(d2(xn+1, xn) + d2(xn, s) +

(
1
ϕ

– 1
)

d2(xn, xn+1)

–
α

ϕ

(
d2(xn, xn) + d2(xn+1, xn)

)
+

αθ

2ϕ

(
d2(xn, xn–1) + d2(xn, xn+1)

)

=
1

1 – ϕ
d2(xn, s) +

αθ

2ϕ
d2(xn, xn–1) +

(θ – 1)α
ϕ

d2(xn+1, xn)

+
(

1
ϕ

– 1
)

d2(xn+1, xn) –
α

ϕ
d2(xn, xn)

≤ 1
1 – ϕ

d2(xn, s) +
αθ

2ϕ
d2(xn, xn–1) +

(θ – 1)α
ϕ

d2(xn+1, xn) +
(

1
ϕ

– 1
)

d2(xn+1, xn)

–
α

ϕ

(
d2(xn, xn+1) + d2(xn, xn+1) – 2

〈
exp–1

xn+1 xn, exp–1
xn+1 xn

〉)
. (22)

Moreover, note that θ ∈ (0, 1], then 2 – θ > 0, and it follows from the Cauchy–Schwarz
inequality that

2
〈
exp–1

xn+1 xn, exp–1
xn+1 xn

〉 ≤ 2
∥∥exp–1

xn+1 xn
∥∥∥∥exp–1

xn+1 xn
∥∥

≤ 1
2 – θ

∥∥exp–1
xn+1 xn

∥∥2 + (2 – θ )
∥∥exp–1

xn+1 xn
∥∥2

=
1

2 – θ
d2(xn+1, xn) + (2 – θ )d2(xn+1, xn). (23)
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Equations (23) and (22) imply

1
1 – ϕ

d2(xn+1, s) +
αθ

2ϕ
d2(xn+1, xn)

≤ 1
1 – ϕ

d2(xn, s) +
αθ

2ϕ
d2(xn, xn–1) +

(
1
ϕ

– 1 –
α

ϕ
+

α

ϕ(2 – θ )

)
d2(xn+1, xn). (24)

Now we set

an =
1

1 – ϕ
d2(xn, s) +

αθ

2ϕ
d2(xn, xn–1),

bn = –
(

1
ϕ

– 1 –
α

ϕ
+

α

ϕ(2 – θ )

)
d2(xn+1xn).

It follows from ϕ ∈ (1 – 1–θ
2–θ

α, 1) that bn > 0, then from (24), we have, for all n ≥ N , an+1 ≤
an – bn. Then we get the conclusion from Lemma 2.14 that {an} is bounded, limn→∞ an

exists, limn→∞ bn = 0, and limn→∞ d(xn+1, xn) = 0.
Moreover, by using the triangle inequality, it follows that

d(xn, xn) + d(xn, xn–1) ≥ d(xn, xn–1),

d(xn, xn–1) + d(xn–1, xn–1) ≥ d(xn, xn–1).

Combining this and Eqs. (4) and (5), we can obtain

lim
n→∞ d(xn, xn) = lim

n→∞ d(xn, xn–1) = 0,

lim
n→∞ d(xn, xn–1) = lim

n→∞ d(xn+1, xn) = 0,

lim
n→∞ an = lim

n→∞

(
1

1 – ϕ
d2(xn, s) +

αθ

2ϕ
d2(xn, xn–1)

)
> 0.

(25)

Thus, we see that {xn} and {xn} are bounded. �

Theorem 3.2 Assume that (A1)–(A4) hold, and EP(S; E) �= ∅, then the sequences {xn} gen-
erated by Algorithm 3.1 converge to a solution of the equilibrium problem (EP).

Proof By Lemma 3.1, we know that {xn} and {xn} are bounded, and there exists a subse-
quence {xl} of {xn} that converges to x∗ ∈ E. It follows from (25) that

lim
k→∞

d(xl, xl) = lim
k→∞

d(xl, xl+1) = lim
k→∞

d(xl, xl–1) = 0. (26)

It follows from inequality (6) that

λlS(xl, z) ≥ λlS(xl, xl+1) +
〈
exp–1

xl+1
xl, exp–1

xl+1
x
〉
, ∀x ∈ E. (27)

On the other hand, since S satisfies the Lipschitz-type condition, we have

λlS(xl, xl+1) ≥ λl
(
S(xl–1, xl+1) – f (xl–1, xl)

)

– λlc1d2(xl, xl–1) – λlc2d2(xl, xl+1). (28)



Chen and Liu Journal of Inequalities and Applications        (2020) 2020:205 Page 11 of 15

From Eqs. (11) and (28), it follows that

λlS(xl, xl+1) ≥ λl

λl–1

1
ϕ

〈
exp–1

xl
xl, exp–1

xl
xl+1

〉

– λlc1d2(xl, xl–1) – λlc2d2(xl, xl+1). (29)

Now, combining (27) and (29), we get, for ∀x ∈ E,

S(xl, z) ≥ 1
λl–1

1
ϕ

〈
exp–1

xl
xl, exp–1

xl
xl+1

〉
+

1
λl

〈
exp–1

xl+1
xl, exp–1

xl+1
x
〉

– c1d2(xl, xl–1) – c2d2(xl, xl+1). (30)

From Lemma 2.5, (26), (30), the boundedness of {xn}, and limn→∞ λn = λ > 0, we obtain

S
(
x∗, z

) ≥ 0, ∀y ∈ E. (31)

So we obtain x∗ ∈ EP(S; E).
Next, we will prove that {xn}n∈N has a unique cluster point. Suppose that {xn}n∈N has

at least two cluster points x1, x2 ∈ EP(S; E). Let {xni} be a sequence such that xni → x1,
xnj → x2, as i → ∞. By Lemma 2.2, we have

lim
n→∞ d2(xn, x2) = lim

i→∞ d2(xni , x2)

≥ lim
i→∞

(
d2(xni , x1) + d2(x1, x2) – 2

〈
exp–1

x1 xni , exp–1
x1 x2

〉)

= lim
n→∞ d2(xn, x1) + d2(x1, x2) (32)

and

lim
n→∞ d2(xn, x1) = lim

j→∞ d2(xnj , x1)

≥ lim
j→∞

(
d2(xnj , x2) + d2(x2, x1) – 2

〈
exp–1

x2 xnj , exp–1
x2 x1

〉)

= lim
n→∞ d2(xn, x2) + d2(x2, x1). (33)

By summing (32) and (33), we have x1 = x2. So {xn}n∈N has a unique cluster point. �

Remark 5 From Algorithm 3.1, we can obtain a new method for solving the pseudomono-
tone variational inequality (VI). If a vector field V is Lipschitz-continuous and pseu-
domonotone, then the conditions (A1)–(A4) hold for S with k1 = k2 = L

2 . So, we can get
the following algorithm for solving (VI).

Algorithm 3.2 (Extragradient-like algorithm for solving (VI))
Initialization: Choose x0, x0, x1 ∈ E, λ1 > 0, δ ∈ (0, 1), θ ∈ (0, 1], α ∈ (0, 1), ϕ ∈ (1 –

1–θ
2–θ

α, 1).
Iterative Steps: Suppose xn–1, xn–1, xn are obtained.
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Step 1 Calculate

⎧
⎨

⎩
xn = γxn–1,xn (ϕ),

xn+1 = PE(expxn –λnV (xn)).

If xn+1 = xn = xn, then stop: xn is a solution. Otherwise,
Step 2 Compute

λn+1 = min

{
λn,

αδθ

4ϕΛ

(
d2(xn, xn–1) + d2(xn+1, xn)

)}
,

where Λ = [〈Pxn ,xn–1 V (xn–1) – V (xn), exp–1
xn

xn+1〉]+. Set n := n + 1 and return.

As for the convergence of Algorithm 3.2, if Algorithm 3.2 terminates after finite itera-
tions, we have xn+1 = xn = xn, it follows that xn = PE(xn –λV (xn)), thus xn ∈ VI(V , E) follows
directly from [43]; otherwise, we can find a sequence {xn} generated by Algorithm 3.2 con-
verging to some x∗ ∈ VI(V , E), as n → ∞. The analysis process is completely similar to that
of Theorem 3.2, which we omit here.

4 Numerical experiments
In this section, we perform two experiments to show the numerical behaviors of proposed
algorithms in this paper. We take M = R

m
++ = {x ∈ R : x > 0}, and involve two experiments

named Test 1 and Test 2 to verify the effectiveness of Algorithms 3.1 and 3.2, respectively.
We choose α = 0.95, δ = 0.90, θ = 0.5, 0.75, 0.90, and ϕ ∈ (1 – 1–θ

2–θ
α, 1) is a random num-

ber, and x1, x0, x0 by Matlab code 10*rand(m,1). The termination criterion is

ε ≥ d2(xn+1, xn) + d2(xn, xn).

Example 4.1 Let R++ = {x ∈ R : x > 0} and M1 = (R++, 〈·, ·〉) be the Riemannian manifold
with 〈x, y〉 := xy, ∀x, y ∈ R++. It can be seen from Ref. [52] that the section curvature of
M1 is zero, thus M1 is a Hadamard manifold. Suppose that x, y ∈ M1 and u ∈ TxM1 with
‖v‖2 = 1, then

⎧
⎪⎪⎨

⎪⎪⎩

d(x, y) := | ln( x
y )|,

expx tv = xe(v/x)t , t ∈ (0, +∞),

exp–1
x y = x ln( y

x ).

(34)

Let R
m
++ be the product space of R++, that is, Rm

++ = {(x1, x2, . . . , xm)T : xi ∈ R++, i =
1, 2, . . . , m}. Let M = (Rm

++, 〈·, ·〉) be the m-dimensional Hadamard manifolds with metric
〈u, v〉 := uT v, and d(x, y) := | ln(x/y)| = | ln(

∑m
i=1(xi/yi))|, where x, y ∈ M, x = (xi), y = (yi),

i = 1, 2, . . . , m.

Test 1 In this test, we verify the effectiveness of Algorithm 3.1 in M = (Rm
++, 〈·, ·〉). We con-

sider an extension of Nash equilibrium model, which was introduced in [53, 54]. The form
is as follows:

S(x, y) = 〈P1x + P2y + p, y – x〉,



Chen and Liu Journal of Inequalities and Applications        (2020) 2020:205 Page 13 of 15

Table 1 Performance of algorithm 3.1 for the number of iterations (Iter.) and the computing time
(Time) measured in seconds withm = 20, 300, 500.

m θ = 0.50 θ = 0.75 θ = 0.90

Iter. Time Iter. Time Iter. Time

20 42 0.2156 84 0.4119 315 1.4444
50 0.2327 102 0.4924 323 1.5290

300 92 1.9221 91 1.8240 336 6.0876
113 2.1877 117 2.3066 407 7.6408

500 127 6.8464 107 4.9920 394 17.7671
154 7.5554 172 8.2371 447 20.6179

the feasible set E ⊂M given by

E :=
{

x = (x1, x2, . . . , xm)T : 1 ≤ xi ≤ 100, i = 1, . . . , m
}

,

x, y ∈ E, p = (p1, p2, . . . , pm)T ∈ R
m is chosen randomly with its elements in [1, m], and the

matrices P1 and P2 are two square matrices of order m such that P2 is symmetric positive
semidefinite and P2 – P1 is negative semidefinite.

From [54], we know that S is pseudomonotone. Moreover, from [31, Lemma 6.2], we
obtain a bifunction S that satisfies (A2) with the Lipschitz-type constants k1 = k2 = ‖P2–P1‖

2 .
Assumptions (A3), (A4) are automatically fulfilled and so Algorithm 3.1 can be applied in
this case.

For numerical experiment, we take λ1 = 1
‖P2–P1‖ , and m = 20, 300, 500. For each m, we

have generated two random samples with different choice of P1, P2 and p. The number
of iterations (Iter.) and the computing time (Time) measured in seconds are described in
Table 1.

Test 2 We consider the performance of Algorithm 3.2 in M = (Rm
++, 〈·, ·〉). Let the feasible

set E := {x = (x1, x2, . . . , xm)T : 1 ≤ xi ≤ 10, i = 1, . . . , m} be a closed convex subset of Rm
++ and

V : E →R be a single-valued vector field defined by

V (x) :=
m∑

i=1

(xi ln xi), ∀x ∈ E.

According to [55, Example 1], V is monotone and Lipschitz continuous. Therefore, the
conditions (A1) and (A2) are valid, assuming that (A3) and (A4) are automatically verified,
then Algorithm 3.2 can be applied in this case.

For the numerical experiment, we take λ1 = 0.4, m = 200, 300, 500, and generate three
random samples with different choice of initial points. The number of iterations (Iter.) and
the computing time (Time) measured in seconds are described in Table 2.

5 Conclusions
In this paper, a new algorithm for solving the equilibrium problem on Hadamard man-
ifolds is presented, in which the bifunctions satisfy the Lipschitz type extension and are
pseudomonotone. Compared with the existing algorithm, the advantage of this algorithm
is that the Lipschitz constants can be unknown.
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Table 2 Performance of algorithm 3.2 for the number of iterations (Iter.) and the computing time
(Time) measured in seconds withm = 20, 300, 500

m θ = 0.50 θ = 0.75 θ = 0.90

Iter. Time Iter. Time Iter. Time

20 1464 0.0808 2026 0.0372 3129 0.0726
1652 0.0346 3780 0.0861 4400 0.0810
2270 0.0656 4071 0.0885 5386 0.0912

300 3074 0.3259 3067 0.3437 5087 0.4620
3661 0.4124 3229 0.3325 5645 0.4973
3821 0.3667 4071 0.3831 5676 0.5060

500 2775 0.4022 2544 0.3629 5966 0.7700
3286 0.5029 3803 0.4874 6663 0.8707
3892 0.5162 4461 0.5949 7199 0.8826
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