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Abstract
Hypersingular integrals have appeared as effective tools for inversion of
multidimensional potential-type operators such as Riesz, Bessel, Flett, parabolic
potentials, etc. They represent (at least formally) fractional powers of suitable
differential operators. In this paper the family of the so-called “truncated
hypersingular integral operators” Dα

ε f is introduced, that is generated by the modified
Poisson semigroup and associated with the Flett potentials Fαϕ = (E +

√
–�)–αϕ

(0 < α <∞, ϕ ∈ Lp(Rn)). Then the relationship between the order of “Lp-smoothness”
of a function f and the “rate of Lp-convergence” of the families Dα

εFα f to the function
f as ε → 0+ is also obtained.
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1 Introduction
For a sufficiently “good function” f on R

n, the Riesz and Bessel potentials of order α are
defined by

(
Iαf

)
(x) =

1
γn(α)

∫

Rn
|y|α–nf (x – y) dy, 0 < α < n, (1)

where

γn(α) = π
n
2 2αΓ (α/2)/Γ

(
(n – α)/2

)
, Reα > 0,α �= n, n + 2, n + 4, . . . ,

and

(
Jαf

)
(x) =

1
βn(α)

∫

Rn
Gα(y)f (x – y) dy, Reα > 0, (2)

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02468-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02468-9&domain=pdf
http://orcid.org/0000-0003-2066-7833
mailto:sinemsezer@akdeniz.edu.tr
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with the kernel

Gα(y) =
∫ ∞

0
e–ξ– |y|2

4ξ ξ
α–n

2 –1 dξ , βn(α) = 2nπ
n
2 Γ (α/2),

respectively.
These operators can be regarded (in a certain sense) as negative “fractional powers” of

–� and (E – �), i.e.,

Iα = (–�)–α/2, Jα = (E – �)–α/2, � =
n∑

k=1

∂2

∂x2
k

, and

E is the identity operator.

If f ∈ Lp(Rn) then the integral (1) converges a.e. for 1 ≤ p < n
Reα

, and the integral (2) con-
verges for 1 ≤ p < ∞, and the conditions are sharp. The references [10, 12, 19, 20, 22, 28]
can be recommended for further reading on these potentials.

There are also “one-dimensional” integral representations of the Riesz and Bessel po-
tentials via Poisson integral (see [18], [19, pp. 224 and 262]).

(
Iαf

)
(x) =

1
Γ (α)

∫ ∞

0
tα–1(Ptf )(x) dt, (3)

(
Jαf

)
(x) =

√
π

Γ ( 1
2α)

∫ ∞

0

(
t
2

) 1
2 (α–1)

J 1
2 (α–1)(t)(Ptf )(x) dt (4)

(Jν is the Bessel function of the first kind of order ν).

As seen from (3) and (4), the Riesz potentials are better suited to Poisson integral than the
Bessel potentials. There is, however, another kind of fractional integral operators which
are compatible with Poisson integral and whose kernels behavior roughly takes place be-
tween the behaviors of the kernels of the Bessel and Riesz potentials. These potentials,
called the Flett potentials, were first introduced by T.M. Flett in [11] (see also [23, pp. 541–
542]).

The Flett potentials Fαf of a function f are defined in Fourier terms as follows:

(
Fαf

)
(̂x) =

(
1 + |x|)–α f̂ (x), x ∈R

n,α > 0. (5)

These potentials are considered as the negative fractional powers of the operator (E + Λ),
where Λ = (–�)1/2 and � is the Laplacian, and have the integral representation

(
Fαf

)
(x) =

(
φα(y) ∗ f

)
(x) =

∫

Rn
φα(y)f (x – y) dy. (6)

The kernel φα(y) is of the form

φα(y) =
1

λn(α)
|y|α–n

∫ ∞

0

sαe–s|y|

(1 + s2) n+1
2

ds (α > 0), (7)

where λn(α) = π (n+1)/2Γ (α)/Γ ((n + 1)/2).
The potential-type operators take important place in analysis and its applications,

see, for example, E. Stein [26, pp. 121–141], E. Stein and G. Weiss [27], E. Stein [25],
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S.G. Samko, A.A. Kilbas, and O.I. Marichev [23, pp. 538–554]. Many researchers from
different areas have studied characterizations, modifications, and several properties of
these potentials, see P. Lizorkin [13], R. Wheeden [28], M. Fisher [10], V. Balakrishnan
[8], S. Samko [21–23], B. Rubin [16–19], V.A. Nogin [14, 15]. The wavelet approach to
these potentials is given and developed by B. Rubin [19, 20], I.A. Aliev and B. Rubin [6]
and I.A. Aliev [2]; see also [4, 7, 24].

In [17] B. Rubin introduced “truncated hypersingular” integrals Dα
ε f and Dα

ε f (ε > 0)
generated by the Poisson semigroup and metaharmonic semigroup, respectively. It has
been also proved that under some conditions on function ϕ ∈ Lp(Rn) and parameter α > 0,
the expressions Dα

ε Iαϕ and Dα
ε Jαϕ converge to ϕ as ε → 0+, pointwise (a.e.) and in the Lp-

norm.
In this work, in a similar way to [17], we first define the families of the truncated hyper-

singular integral operators associated with Flett potentials and generated by finite differ-
ence and modified Poisson semigroup e–t(Ptf ),

(
Dα

ε f
)
(x) =

1
χl(α)

∫ ∞

ε

[ l∑

k=0

(
l
k

)
(–1)ke–kτ (Pkτ f )(x)

]
dτ

τ 1+α
, ε > 0, (8)

secondly, we find a relationship between the “order of Lp-smoothness” of function ϕ and
the “rate of Lp-convergence” of the families Dα

εFαϕ to ϕ as ε → 0+.
We note that an analogous problem for the Bessel and Riesz potentials has been inves-

tigated in [3, 5], and [9].

2 Notions and auxiliary lemmas
We denote by Lp ≡ Lp(Rn) the standard space of measurable functions on R

n with the
finite norm

‖f ‖p =
(∫

Rn

∣∣f (x)
∣∣p dx

) 1
p

, 1 ≤ p < ∞; ‖f ‖∞ = ess sup
x∈Rn

∣∣f (x)
∣∣.

The Fourier and inverse Fourier transforms of f ∈ L1(Rn) are defined by

f̂ (x) =
∫

Rn
e–ix·ξ f (ξ ) dξ , x · ξ = x1ξ1 + · · · + xnξn; f ∨(ξ ) = (2π )–n̂f (–ξ ).

The Flett potentials, defined in (6), have another (one-dimensional) integral represen-
tation via modified Poisson semigroup:

(
Fαf

)
(x) =

1
Γ (α)

∫ ∞

0
tα–1e–t(Ptf )(x) dt, f ∈ Lp (1 ≤ p ≤ ∞). (9)

Here the Poisson semigroup Ptf is defined as

(Ptf )(x) =
∫

Rn
p(y; t)f (x – y) dy (t > 0), (10)

where

p(y; t) =
(
e–t|·|)∨(y) =

ant
(t2 + |y|2) n+1

2
, an = π– (n+1)

2 Γ

(
n + 1

2

)
(11)

is the Poisson kernel.
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We would like to note that the expression in (9) has the same nature of classical Balakr-
ishnan’s formulas for fractional powers of operators (see Samko et al. [23, p. 121]).

For the sake of convenience of the reader, let us give some important properties of the
Poisson’s semigroup Ptϕ (t > 0) and its kernel p(y; t).

Lemma 2.1 (cf. B. Rubin [19, p. 217]) Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and Ptf be the Poisson
integral with the kernel p(y; t) defined as in (11). Then

(a)
∫

Rn
p(y; t) dy = 1,

(
p(·; t)

)
(̂y) = e–t|y|, for all t > 0; (12)

(b) ‖Ptf ‖p ≤ ‖f ‖p; (13)

(c) sup
x∈Rn

∣
∣(Ptf )(x)

∣
∣ ≤ ct– n

p ‖f ‖p, 1 ≤ p < ∞, c = c(n, p); (14)

(d) sup
t>0

∣
∣(Ptf )(x)

∣
∣ ≤ (Mf )(x), (15)

where (Mf ) is the Hardy–Littlewood maximal function;

(e) Pα

[
Pβ f (·)](x) = (Pα+β f )(x), for all α,β > 0; (16)

(f) lim
t→0

(Ptf )(x) = f (x), (17)

where the limit is understood in Lp-norm or pointwise a.e. Moreover, if f ∈ C0 then conver-
gence is uniform on R

n.

Definition 2.2 Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞ and Poisson integral Ptf be as in (10). The
modified Poisson semigroup is defined as

(Stf )(x) = e–t(Ptf )(x), 0 ≤ t < ∞. (18)

It is evident that the semigroup property

(
Sα(Sβ f )

)
(x) = (Sα+β f )(x)

holds, and, according to Lemma 2.1(f ), it is assumed that

(
e–tPtf

)
(x)

∣
∣
t=0 = f (x) = S0f .

Definition 2.3 The finite difference of order l ∈ N and step τ ∈ R
1 of the function g(t),

t ∈R
1 is defined by

�l
τ [g](t) =

l∑

k=0

(
l
k

)
(–1)kg(t + kτ ). (19)

In the special case, for t = 0,

�l
τ [g](0) =

l∑

k=0

(
l
k

)
(–1)kg(kτ ). (20)
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Using the modified Poisson semigroup Stf and finite difference of order l ∈N, we intro-
duce the following truncated integral operators (cf. [19, p. 261]).

Definition 2.4 Let f ∈ Lp(Rn), 1 ≤ p < ∞, α > 0 and l > α (l ∈N). The constructions

(
Dα

ε f
)
(x) =

1
χl(α)

∫ ∞

ε

�l
τ

[
(S·f )(x)

]
(0)

dτ

τ 1+α

=
1

χl(α)

∫ ∞

ε

[ l∑

k=0

(
l
k

)
(–1)ke–kτ (Pkτ f )(x)

]
dτ

τ 1+α
, ε > 0, (21)

will be called truncated hypersingular integrals or, briefly, truncated integrals with param-
eter ε > 0. Here the normalized coefficient χl(α) is defined by

χl(α) =
∫ ∞

0

(
1 – e–t)lt–1–α dt. (22)

By applying Minkowski integral inequality, it is easy to see that Dα
ε f ∈ Lp(Rn) for all ε > 0.

Lemma 2.5 (cf. Rubin [19, p. 224]) Let ϕ ∈ Lp(Rn) (1 ≤ p < ∞), 0 < α < ∞, and truncated
integral operators Dα

ε be defined as in (21). If Fαϕ are the Flett potentials of ϕ ∈ Lp(Rn),
and Ptϕ, (t > 0) is the Poisson integral of ϕ, then the following equation holds in pointwise
(a.e.) sense:

(
Dα

εFαϕ
)
(x) =

∫ ∞

0
K (l)

α (η)e–εη(Pεηϕ)(x) dη, ε > 0. (23)

Here the function K (l)
α (η) is defined as

K (l)
α (η) =

[
Γ (1 + α)χl(α)

]–1
η–1

l∑

k=0

(
l
k

)
(–1)k(η – k)α+, l > α,

with aα
+ =

{ aα , if a>0,
0, if a≤0. .

Proof For a function h(t) (0 < t < ∞), let

Iα
– h(t) =

(
Γ (α)

)–1
∫ ∞

t

h(r)
(r – t)1–α

dr =
(
Γ (α)

)–1
∫ ∞

0

h(r + t)
r1–α

dr, α > 0. (24)

Then by making use of Rubin’s method [19, p. 224], it can be shown that

St
[
Fαf

]
(x) = Iα

–
[
(S·f )(x)

]
(t) (25)

holds for all t > 0 and a.e. x ∈R
n.

Now, by using (25), we have

(
Dα

εFαϕ
)
(x) =

1
χl(α)

∫ ∞

ε

[ l∑

k=0

(
l
k

)
(–1)ke–kτ

(
SkτFαϕ

)
(x)

]
dτ

τ 1+α

(25)=
1

χl(α)

∫ ∞

ε

[ l∑

k=0

(
l
k

)
(–1)kIα

–
[
(S·ϕ)(x)

]
(kτ )

]
dτ

τ 1+α
. (26)



Eryiğit et al. Journal of Inequalities and Applications        (2020) 2020:201 Page 6 of 12

Further,

l∑

k=0

(
l
k

)
(–1)kIα

–
[
(S·ϕ)(x)

]
(kτ )

(24)=
l∑

k=0

(
l
k

)
(–1)k 1

Γ (α)

∫ ∞

kτ

(r – kτ )α–1(Srϕ)(x) dr

=
∫ ∞

0
hτ (r)(Srϕ)(x) dr, (27)

where

hτ (r) =
1

Γ (α)

l∑

k=0

(
l
k

)
(–1)k(r – kτ )α–1

+ (28)

with

(r – kτ )α–1
+ =

⎧
⎨

⎩
(r – kτ )α–1, if r > kτ ,

0, if r ≤ kτ .

Now, by taking into account (27) in (26), we get

(
Dα

εFαϕ
)
(x)

=
1

χl(α)

∫ ∞

ε

1
τ 1+α

(∫ ∞

0
hτ (r)(Srϕ)(x) dr

)
dτ

=
1

χl(α)

∫ ∞

0
(Srϕ)(x)

(∫ ∞

ε

1
τ 1+α

hτ (r) dτ

)
dr

(change of variables r = εη, 0 < η < ∞)

=
ε

χl(α)

∫ ∞

0
(Sεηϕ)(x)

(∫ ∞

ε

1
τ 1+α

hτ (εη) dτ

)
dη

(28)=
ε

Γ (α)χl(α)

∫ ∞

0
(Sεηϕ)(x)

( l∑

k=0

(
l
k

)
(–1)k

∫ ∞

ε

1
τ 1+α

(εη – kτ )α–1
+ dτ

)
dη. (29)

In (29), using the equality (see [5, p. 355])

∫ ∞

ε

τ–(1+α)(εη – kτ )α–1
+ dτ =

1
εηα

(η – k)α+, k = 0, 1, . . . , l, (30)

we obtain

(
Dα

εFαϕ
)
(x) =

∫ ∞

0
K (l)

α (η)e–εη(Pεηϕ)(x) dη,

as desired. �

The following lemma shows that the function K (l)
α (η) is an “averaging kernel”.
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Lemma 2.6 (see [23, p. 125], [19, p. 158]) The following is true:

(i) K (l)
α (η) ∈ L1(0,∞) and

∫ ∞

0
K (l)

α (η) dη = 1;

(ii) K (l)
α (η) =

⎧
⎨

⎩
O(ηα–1), if η → 0+,

O(ηα–l–1), if η → ∞.

Definition 2.7 (cf. [1]) Let ρ ∈ (0, 1) be a fixed parameter and a function μ(r) (0 ≤ r ≤ ρ)
be continuous on [0,ρ], positive on (0,ρ], and μ(0) = 0. We say that a function ϕ ∈ Lp(Rn)
(1 ≤ p < ∞) has “μ-smoothness property in Lp-sense” if

Mμ ≡ sup
0<r≤ρ

1
rnμ(r)

∫

|x|≤r

∥∥ϕ(t – x) – ϕ(t)
∥∥

p dx < ∞. (31)

Note that if μϕ(r) is the Lp-modulus of continuity of ϕ, i.e.,

μϕ(r) = sup
|x|≤r

∥∥ϕ(t – x) – ϕ(t)
∥∥

p

(
|x| =

√
x2

1 + · · · + x2
n

)
,

then condition (31) is satisfied for μ(r) = μϕ(r). Also, it is clear that if the Lp-modulus of
continuity of ϕ satisfies μϕ(r) ≤ μ(r) (0 ≤ r ≤ ρ) then the expression Mμ in (31) is finite.

Remark 2.8 From now on it will be assumed that μ(t) ≥ at (0 ≤ t ≤ ρ), for some a > 0 and
μ(t) = μ(ρ) for ρ ≤ t < ∞.

Lemma 2.9 (cf. [5]; see also [9]) Let a function ϕ ∈ Lp(Rn) (1 ≤ p < ∞) have μ-smoothness
property in Lp-sense, and the function ψ(r) (0 ≤ r ≤ ρ) be decreasing, nonnegative, and
continuously differentiable on [0,ρ]. Then

∫

|x|≤ρ

∥
∥ϕ(t – x) – ϕ(t)

∥
∥

pψ
(|x|)dx ≤Mμ

[
ρnμ(ρ)ψ(ρ)

+
∫ ρ

0
rnμ(r)

(
–ψ ′(r)

)
dr

]
. (32)

Proof Set g(x) = ‖ϕ(t – x) – ϕ(t)‖p and x = rθ ; r = |x|, θ ∈ Σn–1. Then

I ≡
∫

|x|≤ρ

∥∥ϕ(t – x) – ϕ(t)
∥∥

pψ
(|x|)dx =

∫

|x|≤ρ

g(x)ψ
(|x|)dx

=
∫ ρ

0
rn–1ψ(r)

(∫

|θ |=1
g(rθ ) dσ (θ )

)
dr.

Let us define the functions

λ(r) =
∫

|θ |=1
g(rθ ) dσ (θ ) and Ω(r) =

∫ r

0
λ(t)tn–1 dt.
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Then we have

I ≡
∫ ρ

0
ψ(r)λ(r)rn–1 dr =

∫ ρ

0
ψ(r) dΩ(r) = ψ(r)Ω(r)|ρ0 –

∫ ρ

0
Ω(r)ψ ′(r) dr

= ψ(ρ)Ω(ρ) +
∫ ρ

0
Ω(r)

(
–ψ ′(r)

)
dr.

Using condition (31), we have

Ω(r) =
∫ r

0
λ(t)tn–1 dt =

∫

|x|≤r
g(x) dx =

∫

|x|≤r

∥
∥ϕ(t – x) – ϕ(t)

∥
∥

p dx

≤ rnμ(r)Mμ,

hence,

I ≤Mμ

[
ρnμ(ρ)ψ(ρ) +

∫ ρ

0
rnμ(r)

(
–ψ ′(r)

)
dr

]
. �

Lemma 2.10 Let p(x; ε) be the Poisson kernel, defined as in (11), i.e.,

p(x; ε) =
anε

(ε2 + |x|2) n+1
2

, an = π– (n+1)
2 Γ

(
n + 1

2

)
.

Then there exists a constant c > 0 such that

∫

|x|≤ρ

∥∥ϕ(t – x) – ϕ(t)
∥∥

pp(x; ε) dx ≤ cMμ

[
ε +

∫ ∞

0
μ(εt)

dt
1 + t2

]
. (33)

Proof By setting ψ(|x|) = p(x; ε) ≡ anε(ε2 + |x|2)– n+1
2 in equality (32), we have

∫

|x|≤ρ

∥
∥ϕ(t – x) – ϕ(t)

∥
∥

pp(x; ε) dx

≤Mμ

[
ρnμ(ρ)

anε

(ε2 + ρ2) n+1
2

+
∫ ρ

0
rnμ(r)

(
–

anε

(ε2 + r2) n+1
2

)′
dr

]
. (34)

A simple calculation yields

ρnμ(ρ)
anε

(ε2 + ρ2) n+1
2

≤ c1ε

(
c1 = an

μ(ρ)
ρ

)
,

and

(
–

anε

(ε2 + r2) n+1
2

)′
= c2

εr
(ε2 + r2) n+3

2

(
c2 = an(n + 1)

)
.

Using of these calculations in (34) and denoting c = max{c1, c2}, we have

∫

|x|≤ρ

∥
∥ϕ(t – x) – ϕ(t)

∥
∥

pp(x; ε) dx ≤ cMμ

[
ε +

∫ ρ

0

εrn+1

(ε2 + r2) n+3
2

μ(r) dr
]
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= cMμ

[
ε +

∫ ρ
ε

0

tn+1

(1 + t2) n+3
2

μ(εt) dt
]

≤ cMμ

[
ε +

∫ ∞

0

μ(εt)
1 + t2 dt

]
. �

Corollary 2.11 Let the function μ(r) (0 ≤ r ≤ ρ < 1) be continuous on [0,ρ], positive on
(0,ρ], and μ(0) = 0. Let, further, μ(t) ≥ at, 0 ≤ t ≤ ρ for some a > 0 and μ(t) = μ(ρ) for
ρ ≤ t < ∞. If there exists a locally bounded function ω(t) > 0 such that

μ(εt) ≤ μ(ε)ω(t), ε ∈ (0,ρ), t ∈ (0,∞), and
∫ ∞

0

ω(t)
1 + t2 dt < ∞, (35)

then there exists A > 0, which does not depend on ε ∈ (0,ρ) and satisfies

∫

|x|≤ρ

∥∥ϕ(t – x) – ϕ(t)
∥∥

pp(x; ε) dx ≤ Aμ(ε), for all ε ∈ (0,ρ). (36)

Proof By taking into account (35) in (33) and using the condition μ(ε) ≥ aε (0 ≤ ε ≤ ρ),
we have

∫

|x|≤ρ

∥
∥ϕ(t – x) – ϕ(t)

∥
∥

pp(x; ε) dx ≤ cMμ

[
ε + μ(ε)

∫ ∞

0

ω(t)
1 + t2 dt

]

≤ Aμ(ε). �

Example For 0 < γ < 1, the function

μ(r) =

⎧
⎨

⎩
rγ , if 0 ≤ r ≤ ρ < 1,

ργ , if r ≥ ρ

satisfies all the conditions of Corollary 2.11 with ω(t) = tγ .

Example Let 0 < γ < 1 and 0 < β < ∞. Then the function

μ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if r = 0,

rγ | ln r|β , if 0 < r < ρ,

ργ | lnρ|β , if r ≥ ρ

satisfies all the conditions of Corollary 2.11 with ω(t) = tγ (1 + | ln t|
| lnρ| )

β (see [3]).

3 Formulation and proof of the main theorem
Theorem 3.1 Let the function μ(r), 0 < r < ∞ satisfy all the conditions of Corollary 2.11.
Further, suppose function ϕ ∈ Lp(Rn) (1 ≤ p < ∞) has the μ-smoothness property in the
Lp-sense, i.e., condition (31) is satisfied. Assume that the operator Dα

ε is defined as in (21)
and the parameter l ∈ N satisfies the condition l > α + 1. Then we have

∥
∥Dα

εFαϕ – ϕ
∥
∥

p = O
(
μ(ε)

)
as ε → 0+. (37)
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Proof By making use of formula (23), Lemma 2.6(i), and Minkowski inequality, we have

∥∥Dα
εFαϕ – ϕ

∥∥
p

(23)≤
∫ ∞

0

∣∣K (l)
α (η)

∣∣e–εη‖Pεηϕ – ϕ‖p dη

≤
∫ ∞

0

∣
∣K (l)

α (η)
∣
∣‖Pεηϕ – ϕ‖p dη. (38)

Further, by Lemma 2.1(a),

‖Pεηϕ – ϕ‖p =
∥∥
∥∥

∫

Rn
p(y; εη)

[
ϕ(t – y) – ϕ(t)

]
dy

∥∥
∥∥

p

≤
∫

Rn
p(y; εη)

∥
∥ϕ(t – y) – ϕ(t)

∥
∥

p dy

=
∫

|y|≤ρ

p(y; εη)
∥∥ϕ(t – y) – ϕ(t)

∥∥
p dy

+
∫

|y|>ρ

p(y; εη)
∥∥ϕ(t – y) – ϕ(t)

∥∥
p dy = I1(ε) + I2(ε).

Owing to (36), we have I1(ε) ≤ Aμ(εη), where A does not depend on ε and η.
Now, let us estimate the second integral I2(ε). We have

I2(ε) ≤ 2‖ϕ‖p

∫

|y|>ρ

p(y; εη) dy (11)= 2‖ϕ‖pan

∫

|y|>ρ

εη

((εη)2 + |y|2) n+1
2

dy

(
converting to spherical coordinates, i.e.,

y = rθ ;ρ < r < ∞, θ ∈ Σn–1, dy = rn–1 dr dσ (θ )
)

= c1εη

∫ ∞

ρ

rn–1

((εη)2 + r2) n+1
2

dr ≤ c1εη

∫ ∞

ρ

rn–1

rn+1 dr = c2εη,

where c2 ≡ c2(ρ; n) does not depend on ε and η.
Hence, we obtain that

‖Pεηϕ – ϕ‖p ≤ Aμ(εη) + c2εη.

Further,

∥∥Dα
εFαϕ – ϕ

∥∥
p

(38)≤
∫ ∞

0

∣∣K (l)
α (η)

∣∣(Aμ(εη) + c2εη
)

dη

(
using the condition μ(ε) ≥ aε, ε ∈ (0,ρ)

)

≤ c3μ(ε)
∫ ∞

0

∣∣K (l)
α (η)

∣∣(ω(η) + η
)

dη. (39)

The condition
∫ ∞

0
ω(η)
1+η2 dη < ∞ and Lemma 2.6(ii) yield

∫ ∞

0

∣∣K (l)
α (η)

∣∣ω(η) dη =
∫ 1

0

∣∣K (l)
α (η)

∣∣ω(η) dη +
∫ ∞

1

∣∣K (l)
α (η)

∣∣ω(η) dη

≤ c4 +
∫ ∞

1

ω(η)
1 + η2

(
1 + η2)∣∣K (l)

α (η)
∣∣dη
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(
we use the asymptotics K (l)

α (η) = O
(
ηα–l–1)

as η → ∞ and the condition l > α + 1
)

≤ c4 + c5

∫ ∞

1

ω(η)
1 + η2 dη = c6 < ∞.

On the other hand, because of K (l)
α (η) = O(ηα–l–1), η → ∞ and l > (α + 1), we have

∫ ∞

0

∣∣K (l)
α (η)

∣∣η dη =
∫ 1

0

∣∣K (l)
α (η)

∣∣η dη +
∫ ∞

1

∣∣K (l)
α (η)

∣∣η dη

≤ c7 +
∫ ∞

1

∣∣K (l)
α (η)

∣∣η dη ≤ c8.

Taking all of these estimates into account in (39), it follows that

∥∥Dα
εFαϕ – ϕ

∥∥
p ≤ cμ(ε) as ε → 0+,

where the constant c does not depend on ε. This completes the proof. �

Corollary 3.2
(i) Let μ(t) = tγ , 0 < γ < 1, t ∈ [0,ρ), and suppose a function ϕ ∈ Lp(Rn) has

μ-smoothness property in Lp-sense. Then

∥
∥Dα

εFαϕ – ϕ
∥
∥

p = O
(
εγ

)
as ε → 0+.

(ii) Let μ(t) = tγ | ln t|β , 0 < γ < 1, β ∈ (0,∞), t ∈ (0,ρ), and suppose a function
ϕ ∈ Lp(Rn) has μ-smoothness property in Lp-sense. Then

∥∥Dα
εFαϕ – ϕ

∥∥
p = O

(
εγ | ln ε|β)

as ε → 0+.
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