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1 Introduction
An extreme point plays a crucial role in functional analysis, convex analysis, and optimiza-
tion. In fact, any compact convex set is the convex hull of its extreme point set, the result
is called Krein–Milman theorem. The notion of a dentable subset of a Banach space was
introduced by Rieffel in conjunction with a Radon–Nikodym theorem for Banach space-
valued measures. Subsequent work by Maynard and Davis and Phelos has shown those
Banach spaces in which Rieffel’s Radon–Nikodym theorem is valid and every bounded
closed convex set is dentable. This has been a significant breakthrough in studying the na-
ture of Radon–Nikodym as a geometric property. In 1988, Bor-Luh Lin, Pei-Kee Lin, and
Troyanski described the characteristic of denting points (see [1, 2]) and obtained that there
is a close relationship between denting points and strongly extreme points. It is easy to see
that every denting point of Banach space X is a strongly extreme point (see [3]) of X, and it
is known that every strongly extreme point of X is a w∗ extreme point of X. Orlicz space is
an important class of Banach space, it was introduced by the famous Polish mathematician
Wladyslaw Orlicz in 1932. The theory of Orlicz space has been greatly developed because
of its important theoretical properties and application value. Up to now, the criterion that
an element in the unit sphere of Orlicz spaces equipped with the Orlicz norm, the Lux-
emburg norm, and the p-Amemiya norm is a strongly extreme point has been obtained
(see [4–6]). In this paper, we introduce a new norm, namely Φ-Amemiya norm, whose
calculation formula is given as follows: ‖x‖Φ ,Φ1 = infk>0{ 1

k (1 + Φ(IΦ1 (kx)))}. When we take
some special functions, the previous norms are special cases of this new norm. This new
norm also has wider applicability than before. We give the criterion that an element in the
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unit sphere of Orlicz spaces equipped with Φ-Amemiya norm is a strongly extreme point.
Incidentally, the sufficient and necessary conditions of midpoint local uniform rotundity
of Orlicz function spaces equipped with Φ-Amemiya norm are obtained.

2 Preliminaries
Let [X,‖ · ‖] be a Banach space. S(X) and B(X) denote the unit sphere and the unit ball of
X, respectively. X∗ is said to be the dual space of X.

Definition 2.1 A mapping Φ : R → [0,∞) is called an Orlicz function: if Φ is even, con-
tinuous, convex and Φ(u) = 0 if and only if u = 0. If Φ also satisfies limu→0

Φ(u)
u = 0 and

limu→∞ Φ(u)
u = ∞, then Φ is called an N-function.

Definition 2.2 The function Ψ defined by the formula Ψ (u) = sup{|u|v – Φ(v) : v ≥ 0} is
called complementary function of Φ in the sense of Young.

Definition 2.3 Let (G,Σ ,μ) be a nonatomic finite measure space. Let L0 denote the whole
of the measurable real function on G. We define the modular IΦ : L0 → R+ = [0, +∞] as
follows:

IΦ (x) =
∫

G
Φ

(
x(t)

)
dt,

it is called the modular (see [7]) of x.

Definition 2.4 The Orlicz function space (see [8]) LΦ generated by an Orlicz function is
defined by the formula LΦ = {x ∈ L0 : IΦ (kx) < +∞ for some k > 0}.

Those spaces that are equipped with the Orlicz norm (Amemiya norm) (see [9])

‖x‖0
Φ = inf

k>0

1
k
(
1 + IΦ (kx)

)
,

or equipped with the Luxemburg norm

‖x‖Φ = inf

{
k > 0 : IΦ

(
x
k

)
≤ 1

}
,

or equipped with the p-Amemiya norm (1 ≤ p < +∞) (see [10, 11])

‖x‖Φ ,p = inf
k>0

1
k
(
1 + Ip

Φ (kx)
) 1

p ,

are Banach spaces, abbreviated as

L0
Φ =

[
LΦ ,‖ · ‖0

Φ

]
; LΦ =

[
LΦ ,‖ · ‖Φ

]
; LΦ ,p =

[
LΦ ,‖ · ‖Φ ,p

]
.

Definition 2.5 We say that Orlicz function Φ satisfies the �2 condition if there exist k > 2
and u0 ≥ 0 such that the inequality

Φ(2u) ≤ kΦ(u)

holds for |u| ≥ u0.
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Definition 2.6 If, for every y, z ∈ R and y 	= z with y+z
2 = x, we have Φ(x) < Φ(y)+Φ(z)

2 , then
x is called a strictly convex point of Φ . The set of all strictly convex points of Φ will be
denoted by SΦ .

For any Orlicz functions Φ and Φ1, we put LΦ ,Φ1 = {x ∈ L0 : Φ(IΦ1 (kx)) < +∞ for some
k > 0}. The calculation formula

‖x‖Φ ,Φ1 = inf
k>0

1
k
(
1 + Φ

(
IΦ1 (kx)

))

is called Φ-Amemiya norm.

Remark
If we take Φ(u) = max{0, u – 1}, then ‖x‖Φ ,Φ1 is the Luxemburg norm ‖ · ‖Φ ;
If we take Φ(u) = u, then ‖x‖Φ ,Φ1 is the Orlicz norm ‖ · ‖0

Φ ;
If we take max{0, u – 1} ≤ Φ(u) ≤ u, then ‖x‖Φ ,Φ1 is the s-norm ‖ · ‖s

Φ ;
If we take Φ(u) ≥ |u|, then ‖x‖Φ ,Φ1 ≥ ‖ · ‖0

Φ .

An important question is the attainability of the “inf” in ‖x‖Φ ,Φ1 = infk>0
1
k (1 +

Φ(IΦ1 (kx))). For any x ∈ LΦ ,Φ1 , x 	= 0, we define

K(x) =
{

k > 0 : ‖x‖Φ ,Φ1 =
1
k
(
1 + Φ

(
IΦ1 (kx)

))}
.

We will prove that if limu→∞ Φ1(u)
u = +∞, then K(x) 	= φ.

Proof Put F(k) = 1
k (1 + Φ(

∫
G Φ1(kx(t)) dt)) and θ (x) = inf{k > 0, IΦ1 ( x

k ) < ∞}.
Then there exists d > 0 such that μ({t ∈ G : |x(t)| > d}) > 0 and F(k) is continuous on

(0, θ (x)). So limk→0+ F(k) = +∞.
Suppose that θ (x) = +∞. Then

lim
k→+∞

F(k) = lim
k→+∞

Φ(
∫

G Φ1(kx(t)) dt)
k

≥ lim
k→+∞

Φ

(∫
G Φ1(kx(t)) dt

k

)

≥ lim
k→+∞

Φ

(∫
{t∈G:|x(t)|>d} Φ1(kx(t)) dt

k

)

≥ d lim
k→+∞

Φ

(
Φ1(kd) · μ({t ∈ G : |x(t)| > d})

kd

)

= +∞.

Since F(k) is a continuous function, then there exists k0 ∈ (0, θ (x)) such that F(k) ≥ F(k0).
Suppose that θ (x) < +∞. If IΦ1 (θ (x)x(t)) = +∞, we have

lim
k→θ (x)–0

F(k = 1
θ (x)

(
1 + Φ

(∫
G Φ1

(
θ (x)x(t)

)
dt

))
= +∞.
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If IΦ1 (θ (x)x(t)) < +∞, we have

lim
k→θ (x)–0

F(k) =
1

θ (x)

(
1 + Φ

(∫
G

Φ1
(
θ (x)x(t)

)
dt

))
< +∞.

Since F(k) is a continuous function, there exists k0 ∈ (0, θ (x)] such that F(k) ≥ F(k0).
Thus K(x) 	= φ. �

Definition 2.7 A point x ∈ S(X) is said to be an extreme point (see [12]) of B(X) if, for
any y, z ∈ S(X) and x = y+z

2 , we have y = z. The set of all extreme points of the unit ball
B(X) will be denoted by ExtB(X). X is said to be strictly convex (see [13]) if and only if
ExtB(X) = S(X).

Definition 2.8 A point x ∈ S(X) is called a strongly extreme point (see [14–16]) of B(X)
if, for any {xn} ⊆ X, {yn} ⊆ X, limn→∞ ‖xn‖ = limn→∞ ‖yn‖ = 1, and xn+yn

2 = x, we have
limn→∞ ‖xn – yn‖ = 0.

Definition 2.9 Banach space X is called middle point local uniform convex (see [17, 18])
if and only if each point on S(X) is a strongly extreme point.

Lemma 2.10 (EropoB theorem) Let {fn}∞n=1 be a measurable function and |fn(x)| < ∞ a.e.
x ∈ E with m(E) < +∞. If fn(x) → f (x) a.e. x ∈ E, then for any δ > 0 there exists E0 ⊂ E such
that m(E0) < δ and fn(x) → f (x) uniformly in x ∈ E \ E0.

Lemma 2.11 Assume Φ ∈ �2 (see [19]). Then, for any L > 0 and ε > 0, there exists δ > 0
such that

∣∣IΦ (u + v) – IΦ (v)
∣∣ < ε,

whenever IΦ (u) ≤ L, IΦ (v) ≤ δ.

Lemma 2.12 Let Φ ∈ �2. If IΦ (xn) → IΦ (x), xn
μ−→ x, then ‖xn – x‖Φ → 0 (see [19]).

3 Main results
Theorem 3.1 Let Φ1 be an N-function. Then x0 ∈ S(LΦ ,Φ1 ) is a strongly extreme point of
B(LΦ ,Φ1 ) if and only if Φ1 ∈ �2 and k0x0(t) ∈ SΦ1 , where k0 ∈ K(x0).

Proof Necessity. Suppose that μ({t ∈ G : k0x0(t) /∈ SΦ1}) > 0 for some k0 ∈ K(x0). There
exists an interval (a, b) such that μ({t ∈ G : a

k0
+ ε < x0(t) < b

k0
– ε}) > 0 (ε > 0) and Φ1 is

affine on (a, b), i.e., Φ1(x) = px + q. Divide {t ∈ G : a
k0

+ ε < x0(t) < b
k0

– ε} into two sets E
and F with E ∩ F = ∅ and μ(E) = μ(F). Define

y(t) =

⎧⎪⎪⎨
⎪⎪⎩

x0(t), t ∈ G \ (E ∪ F),

x0(t) – ε, t ∈ E,

x0(t) + ε, t ∈ F ,

z(t) =

⎧⎪⎪⎨
⎪⎪⎩

x0(t), t ∈ G \ (E ∪ F),

x0(t) + ε, t ∈ E,

x0(t) – ε, t ∈ F .
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Then x0 = y+z
2 , y 	= z and

IΦ1 (k0y) =
∫

E∪F
Φ1

(
k0y(t)

)
dt +

∫
G\E∪F

Φ1
(
k0y(t)

)
dt

=
∫

E

(
p
(
k0

(
x0(t) – ε

))
+ q

)
dt +

∫
F

(
p
(
k0

(
x0(t) + ε

))
+ q

)
dt

+
∫

G\E∪F
Φ1

(
k0x0(t)

)
dt

=
∫

E∪F

(
pk0x0(t) + q

)
dt +

∫
G\E∪F

Φ1
(
k0x0(t)

)
dt

=
∫

E∪F
Φ1

(
k0x0(t)

)
dt +

∫
G\E∪F

Φ1
(
k0x0(t)

)
dt

= IΦ1 (k0x0).

Thus ‖y‖Φ ,Φ1 ≤ 1
k0

(1 + Φ(IΦ1 (k0y))) = 1
k0

(1 + Φ(IΦ1 (k0x0))) = ‖x0‖Φ ,Φ1 = 1. In the same way,
we can get ‖z‖Φ ,Φ1 ≤ 1. This contradicts the fact that x0 is an extreme point of S(LΦ ,Φ1 ).

In order to complete this proof, we need to prove that if Φ1 /∈ �2, there is not a strongly
extreme point on the unit sphere of LΦ ,Φ1 . If x0 ∈ S(LΦ ,Φ1 ), then there exists d > 0 such that
μ({t ∈ G : |x0(t)| ≤ d}) > 0. Suppose Φ1 /∈ �2, then there exists un > 0, un ↑ ∞ such that
Φ1(2un) > 2nΦ1(un) (n = 1, 2, . . .). Without loss of generality, we can assume that 1

Φ1(u1) <
μ({t ∈ G : |x(t)| ≤ d}). Take {Gn} ⊂ {t ∈ G : |x(t)| < d} with Gm ∩ Gn = ∅ for any m 	= n,
satisfying

μ(Gn) =
1

2nΦ1(un)
(n = 1, 2, . . .).

Define

xn(t) =

⎧⎨
⎩

x0(t), t ∈ G \ Gn,

x0(t) + un
k0

, t ∈ Gn,

yn(t) =

⎧⎨
⎩

x0(t), t ∈ G \ Gn,

x0(t) – un
k0

, t ∈ Gn.

Then x0 = xn+yn
2 for each n ∈ N .

Put

xn(t) = x′
n(t) + x′′

n(t),

where x′
n(t) = x0χG\Gn (t) + un

k0
χGn (t), x′′

n(t) = x0χGn (t).
Since ‖x′′

n‖Φ ,Φ1 = ‖x0χGn‖Φ ,Φ1 ≤ d‖χGn‖Φ ,Φ1 → 0 (n → ∞), we have the inequality
‖x′

n‖Φ ,Φ1 ≥ ‖x0χG\Gn‖Φ ,Φ1 ≥ ‖x0‖Φ ,Φ1 – ‖x0χGn‖Φ ,Φ1 holds. Therefore limn→∞ ‖x′
n‖Φ ,Φ1 ≥

‖x0‖Φ ,Φ1 = 1.
By the definition of Φ-Amemiya norm, we deduce that

∥∥x′
n
∥∥

Φ ,Φ1
= inf

k>0

1
k
(
1 + Φ

(
IΦ1

(
kx′

n
)))
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≤ 1
k0

(
1 + Φ

(
IΦ1

(
k0x′

n
)))

≤ 1
k0

+
1
k0

Φ

(∫
G

Φ1

(
k0

(
x0χG\Gn (t) +

un

k0
χGn (t)

))
dt

)

≤ 1
k0

+
1
k0

Φ

(∫
G\Gn

Φ1
(
k0x0χG\Gn (t)

)
dt +

∫
Gn

Φ1
(
unχGn (t)

)
dt

)

≤ 1
k0

+
1
k0

Φ
(
IΦ1 (k0x0) + Φ1(un)μ(Gn)

)

=
1
k0

(
1 + Φ

(
IΦ1 (k0x0) +

1
2n

))
.

Then

lim
n→∞

∥∥x′
n
∥∥

Φ ,Φ1
≤ ‖x0‖Φ ,Φ1 = 1.

Hence

lim
n→∞‖xn‖Φ ,Φ1 = 1.

In the same way, we have

lim
n→∞‖yn‖Φ ,Φ1 = 1.

But

IΦ1

(
k0(xn – yn)

)
=

∫
Gn

Φ1

(
k0

2un(t)
k0

)
dt

= Φ1(2un)μ(Gn) ≥ 1 (n = 1, 2, . . .).

Therefore

‖xn – yn‖Φ ,Φ1 =
1
k0

‖2unχGn‖Φ ,Φ1 ≥ 1
k0

‖2unχGn‖Φ1 ≥ 1
k0

,

a contradiction.
Sufficiency. Let Φ1 ∈ �2 and x0 ∈ S(LΦ ,Φ1 ) with k0x0(t) ∈ SΦ1 for k0 ∈ K(x0). For any

xn, yn ∈ LΦ ,Φ1 such that

lim
n→∞‖xn‖Φ ,Φ1 = 1,

lim
n→∞‖yn‖Φ ,Φ1 = 1,

xn + yn = 2x0

for each n ∈ N .
Take sequences of positive numbers {kn} and {hn} such that

‖xn‖Φ ,Φ1 ≥ 1
kn

(
1 + Φ

(
IΦ1 (knxn)

))
–

1
n

,

‖yn‖Φ ,Φ1 ≥ 1
hn

(
1 + Φ

(
IΦ1 (hnyn)

))
–

1
n

.
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Define

x̃n(t) =
xn + x0

2
,

ỹn(t) =
yn + x0

2
.

Then

x̃n + ỹn = 2x0

and

lim
n→∞‖x̃n‖Φ ,Φ1 ≤ 1,

lim
n→∞‖ỹn‖Φ ,Φ1 ≤ 1.

Now, we will prove that limn→∞ ‖x̃n‖Φ ,Φ1 = limn→∞ ‖ỹn‖Φ ,Φ1 = 1. Otherwise, we can as-
sume that limn→∞ ‖x̃n‖Φ ,Φ1 < 1 and there exist δ > 0, n0 ∈ N such that

‖x̃n‖Φ ,Φ1 ≤ 1 – δ,

‖ỹn‖Φ ,Φ1 ≤ 1 +
δ

2

for all n ≥ n0. Then

1 = ‖x0‖Φ ,Φ1 =
∥∥∥∥ x̃n + ỹn

2

∥∥∥∥
Φ ,Φ1

≤ 1
2

(
1 – δ + 1 +

δ

2

)
< 1,

a contradiction.
Thus

lim
n→∞‖x̃n‖Φ ,Φ1 = lim

n→∞‖ỹn‖Φ ,Φ1 = 1.

Since ‖x̃n – ỹn‖Φ ,Φ1 → 0 if and only if ‖xn –yn‖Φ ,Φ1 → 0 (n → ∞), we will use the sequences
{x̃n} and {ỹn} instead of {xn} and {yn}, respectively. Put k′

n = 2knk0
kn+k0

, h′
n = 2hnk0

hn+k0
. Then d =

sup{k′
n, h′

n} < +∞.
Taking advantage of the forced convergence theorem and

‖x̃n‖Φ ,Φ1 ≤ 1
k′

n

(
1 + Φ

(
IΦ1

(
k′

nx̃n
)))

≤ kn + k0

2knk0

(
1 + Φ

(
IΦ1

(
knk0

kn + k0
(xn + x0)

)))

≤ 1
2

(
1
k0

+
1
k0

Φ
(
IΦ1 (k0x0)

)
+

1
kn

+
1
kn

Φ
(
IΦ1 (knxn)

))

≤ 1
2

(
‖x0‖Φ ,Φ1 + ‖xn‖Φ ,Φ1 +

1
n

)

→ 1 (n → ∞),
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we have

lim
n→∞

1
k′

n

(
1 + Φ

(
IΦ1

(
k′

nx̃n
)))

= 1.

In the same way, we also have

lim
n→∞

1
h′

n

(
1 + Φ

(
IΦ1

(
h′

nỹn
)))

= 1.

Assume k′
n → k, h′

n → h (n → ∞). We will prove that k, h ≥ 1. Since limn→∞ 1
k′

n
(1 +

Φ(IΦ1 (k′
nx̃n))) = 1, then limn→∞ Φ(IΦ1 (k′

nx̃n)) = k – 1. If k < 1, then Φ(IΦ1 (k′
nx̃n)) < 0 as n →

∞, a contradiction. Therefore, k ≥ 1. Similarly, h ≥ 1.
Hence

k
k + h

,
h

k + h
∈

[
1

1 + d
,

d
1 + d

]
.

In order to finish the proof of the theorem, we divide the left proof of the theorem into
three steps.

Step 1: We will show that k0 = 2kh
k+h ∈ K(x0). In fact

‖x0‖Φ ,Φ1 ≤ k′
n + h′

n
2k′

nh′
n

(
1 + Φ

(
IΦ1

(
2k′

nh′
n

k′
n + h′

n
x0

)))

≤ k′
n + h′

n
2k′

nh′
n

(
1 + Φ

(
IΦ1

(
k′

nh′
n

k′
n + h′

n
(x̃n + ỹn)

)))

≤ k′
n + h′

n
2k′

nh′
n

(
1 + Φ

(
IΦ1

(
h′

n
k′

n + h′
n

k′
nx̃n +

k′
n

k′
n + h′

n
h′

nỹn

)))
)

≤ 1
2

(
1
k′

n

(
1 + Φ

(
IΦ1

(
k′

nx̃n
)))

+
1
h′

n

(
1 + Φ

(
IΦ1

(
h′

nỹn
))))

→ 1 (n → ∞).

Since ‖x0‖Φ ,Φ1 = 1, we get 2k′
nh′

n
k′

n+h′
n

→ 2kh
k+h = k0 ∈ K(x0).

Step 2: We will prove that k′
nx̃n – k0x0

μ−→ 0 (n → ∞).
Firstly, we will show that

kx̃n – hỹn
μ−→ 0 (n → ∞).

Otherwise, there exist σ0, ε0 > 0 such that

μ
({

t ∈ G :
∣∣kx̃n(t) – hỹn(t)

∣∣ ≥ σ0
}) ≥ ε0.

Let

D = Φ–1
1

(
3
ε0

)
,

D1 = 2kD.
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Put Gn = {t ∈ G : |kx̃n(t)| ≤ D1, |hỹn(t)| ≤ D1, |kx̃n(t) – hỹn(t)| ≥ σ0}. We will show that

μ(Gn) >
ε0

3
.

Indeed, since limn→∞ ‖x̃n‖Φ ,Φ1 = 1, we may assume ‖x̃n‖Φ ≤ ‖x̃n‖Φ ,Φ1 ≤ 2. Then

1 ≥ IΦ1

(
x̃n

2

)

≥
∫

{t∈G:| x̃n(t)
2 |>D}

Φ1

(
x̃n(t)

2

)
dt

> Φ1(D)μ
({

t ∈ G :
∣∣∣∣ x̃n(t)

2

∣∣∣∣ > D
})

=
3
ε0

μ

({
t ∈ G :

∣∣∣∣ x̃n(t)
2

∣∣∣∣ > D
})

.

Hence

μ

({
t ∈ G :

∣∣∣∣ x̃n(t)
2

∣∣∣∣ > D
})

<
ε0

3
.

Consequently,

μ
({

t ∈ G :
∣∣kx̃n(t)

∣∣ > D1
})

<
ε0

3
.

Therefore,

μ(Gn) = μ
({

t ∈ G :
∣∣kx̃n(t) – hỹn(t)

∣∣ ≥ σ0
})

– μ
({

t ∈ G :
∣∣kx̃n(t)

∣∣ > D1
})

– μ
({

t ∈ G :
∣∣hỹn(t)

∣∣ > D1
})

> ε0 –
ε0

3
–

ε0

3

=
ε0

3
.

Let

F =
{

(x, y) : |x| ≤ D1, |y| ≤ D1, |x – y| ≥ σ0,
h

k + h
x +

k
k + h

y ∈ SΦ

}
.

By virtue of the fact that SΦ1 is a closed set, we know that F is a bounded closed set and

f (x, y) =
Φ1( h

k+h x + k
k+h y)

h
k+hΦ1(x) + k

k+hΦ1(y)
< 1

for every (x, y) ∈ F .
By f (x, y) is continuous on F , there exists (x0, y0) ∈ F such that f (x, y) ≤ f (x0, y0). We

next will prove that f (x0, y0) < 1. If f (x0, y0) = 1, then Φ1( h
k+h x0+ k

k+h y0)
h

k+h Φ1(x0)+ k
k+h Φ1(y0)

= 1, this contradicts
h

k+h x0 + k
k+h y0 ∈ SΦ1 . Put f (x0, y0) = 1 – δ. For every (x, y) ∈ F , we have

Φ1

(
h

k + h
x +

k
k + h

y
)

≤ (1 – δ)
(

h
k + h

Φ1(x) +
k

k + h
Φ1(y)

)
.
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By the definition of k0 and x0, we derive that

h
k + h

kx̃n(t) +
k

k + h
hỹn(t) =

2kh
k + h

x0(t) = k0x0(t) ∈ SΦ1 .

Since k0x0(t) ∈ SΦ1 , then (kx̃n(t), hỹn(t)) ∈ F , i.e., for t ∈ Gn and

Φ1

(
h

k + h
kx̃n(t) +

k
k + h

hỹn(t)
)

≤ (1 – δ)
(

h
k + h

Φ1
(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

))
.

Hence

‖x̃n + ỹn‖Φ ,Φ1

≤ k + h
kh

(
1 + Φ

(
IΦ1

(
kh

k + h
(x̃n + ỹn)

)))

≤ k + h
kh

+
k + h

kh
Φ

(∫
G

Φ1

(
kh

k + h
(
x̃n(t) + ỹn(t)

))
dt

)

≤ k + h
kh

+
k + h

kh
Φ

(
(1 – δ)

∫
Gn

[
h

k + h
Φ1

(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

)]
dt

)

+
k + h

kh
Φ

(∫
G\Gn

[
h

k + h
Φ1

(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

)]
dt

)

≤ k + h
kh

+
k + h

kh
Φ

(∫
G

[
h

k + h
Φ1

(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

)]
dt

)

–
k + h

kh
Φ

(
δ

∫
Gn

[
h

k + h
Φ1

(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

)]
dt

)

≤ 1
k

(1 + Φ
(
IΦ1

(
kx̃n(t)

))
+

1
h

(1 + Φ
(
IΦ1

(
kỹn(t)

))

–
k + h

kh
Φ

(
δ

∫
Gn

[
h

k + h
Φ1

(
kx̃n(t)

)
+

k
k + h

Φ1
(
hỹn(t)

)]
dt

)
.

Notice that

IΦ1

((
k – k′

n
)
x̃n

) ≤ ∣∣k – k′
n
∣∣IΦ1 (x̃n) → 0 (n → ∞).

By Lemma 2.11, we get

IΦ1 (kx̃n) – IΦ1

(
k′

nx̃n
)

= IΦ1

(
k′

nx̃n +
(
k – k′

n
)
x̃n

)
– IΦ1

(
k′

nx̃n
) → 0 (n → ∞).

Thus

0 ≤ 1
k
(
1 + Φ

(
IΦ1 (kx̃n)

))
– ‖x̃n‖Φ ,Φ1

=
1
k
(
1 + Φ

(
IΦ1 (kx̃n)

))
–

1
k′

n

(
1 + Φ

(
IΦ1

(
k′

nx̃n
)))

+
1
n

→ 0 (n → ∞).

Similarly, 1
h (1 + Φ(IΦ1 (hỹn))) – ‖ỹn‖Φ ,Φ1 → 0 as n → ∞. Since u > 0, Φ(u) > 0, and

‖x̃n + ỹn‖Φ ,Φ1 ≤ 2 –
k + h

kh

(
Φ

(
2δ

1 + d
Φ1

(
δ0

2

)
ε0

3

))
(n → ∞),

we have limn→∞ ‖x̃n + ỹn‖Φ ,Φ1 < 2. A contradiction. Hence kx̃n – hỹn
μ−→ 0.
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Thanks to the Φ-Amemiya norm being equivalent with the Luxemburg norm, their
weak topology and weak star topology are all equivalent. So LΦ ,Φ1 is w∗ compact. Take
{x′′

n} ⊂ {x̃n}, {y′′
n} ⊂ {ỹn} such that x′′

n
w∗−→ x′ and y′′

n
w∗−→ y′. We get x′ + y′ = 2x0.

Since Φ1 ∈ �2, we have

‖x‖Φ ,Φ1 = sup

{∫
G

x(t)y(t) dt : y ∈ B
(
L∗

Φ ,Φ1

)}
,

where L∗
Φ ,Φ1

is the dual space of LΦ ,Φ1 .
So

‖x‖Φ ,Φ1 = sup

{∫
G

x(t)y(t) dt : y ∈ B
(
E∗

Φ ,Φ1

)}
.

Since ‖2x0‖Φ ,Φ1 = 2, then

‖2x0‖Φ ,Φ1 ≤ ∥∥x′∥∥
Φ ,Φ1

+
∥∥y′∥∥

Φ ,Φ1
≤ lim

n→∞
‖x̃n‖Φ ,Φ1 + lim

n→∞
‖ỹn‖Φ ,Φ1 = 2.

This shows

∥∥x′∥∥
Φ ,Φ1

=
∥∥y′∥∥

Φ ,Φ1
= 1.

Hence, there exist k, h > 1 such that

1 =
∥∥x′∥∥

Φ ,Φ1
=

1
k
(
1 + Φ

(
IΦ1

(
kx′))),

1 =
∥∥y′∥∥

Φ ,Φ1
=

1
h
(
1 + Φ

(
IΦ1

(
hy′))).

Since ‖x′‖Φ ,Φ1 + ‖y′‖Φ ,Φ1 = 2, then

∥∥x′∥∥
Φ ,Φ1

+
∥∥y′∥∥

Φ ,Φ1
=

1
k
(
1 + Φ

(
IΦ1

(
kx′))) +

1
h
(
1 + Φ

(
IΦ1

(
hy′)))

=
k + h

kh

[
1 +

h
k + h

Φ
(
IΦ1

(
kx′)) +

k
k + h

Φ
(
IΦ1

(
hy′))]

≥ k + h
kh

[
1 + Φ

(
h

k + h
(
IΦ1

(
kx′)) +

k
k + h

(
IΦ1

(
hy′)))]

≥ k + h
kh

[
1 + Φ

(
IΦ1

(
kh

k + h
x′ +

kh
k + h

y′
))]

= 2 · 1
k0

(
1 + Φ

(
IΦ1 (k0x0)

))

= 2,

and

‖x0‖Φ ,Φ1 = 1 =
1
k0

(
1 + Φ

(
IΦ1 (k0x0)

))
.

Hence x′ = y′ = x0. Combining this with kx′′
n – hy′′

n
μ−→ 0, we can prove that kx′′

n – hy′′
n

w∗−→ 0.
Since v(t) ∈ EΨ , then for any ε > 0 there exists δ > 0 such that ‖vχG0‖Φ < ε, whence μ(G0) <
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δ. Using the EropoB theorem, there exists G0 ⊂ G, μ(G0) < δ such that kx′′
n – hy′′

n
μ−→ 0 for

t ∈ G \ G0.
Put ‖x′′

n‖o
Φ = 1 and ‖y′′

n‖o
Φ = 1. We have

∫
G

(
kx′′

n – hy′′
n
)
v(t) dt =

∫
G\G0

(
kx′′

n – hy′′
n
)
v(t) dt +

∫
G0

(
kx′′

n – hy′′
n
)
v(t) dt

≤ M · μ(G \ G0) · ε + k
∥∥x′′

n
∥∥o

Φ

∥∥v(t)
∥∥

Φ
+ h

∥∥y′′
n
∥∥o

Φ

∥∥v(t)
∥∥

Φ

≤ M · μ(G \ G0) · ε + k · ε + h · ε.

By the arbitrariness of ε, we have
∫

G(kx′′
n – hy′′

n)v(t) dt < ε. Thus kx′′
n – hy′′

n
w∗−→ 0. Since

x′′
n – y′′

n
w∗−→ 0, then k = h. Thus x̃n – ỹn

μ−→ 0 as n → ∞. Therefore

k′
nx̃n – k0x0

μ−→ 0 (n → ∞).

Step 3: We will prove that IΦ1 (knxn) → IΦ1 (k0x0). In fact

Φ
(
IΦ1 (k0x0)

)
= k0 – 1,

Φ
(
IΦ1

(
k′

nx̃n
)) → k (n → ∞).

We deduce that Φ(IΦ1 (k′
nx̃n)) → Φ(IΦ1 (k0x0)) (n → ∞). Using u > 0, Φ(u) > 0 and Φ(u) is

strictly increasing, we get

IΦ1

(
k′

nx̃n
)
) → IΦ1 (k0x0) (n → ∞).

By Lemma 2.12, we have

∥∥k′
nx̃n – k0x0

∥∥
Φ ,Φ1

→ 0. �

Corollary 3.2 Let Φ be an Orlicz function. Then LΦ ,Φ1 is midpoint local uniform rotundity
if and only if Φ1 ∈ �2 and LΦ ,Φ1 is strictly convex.

Acknowledgements
The authors are extremely grateful to the reviewers for their valuable suggestions and their crucial role in leading to a
better presentation of this manuscript.

Funding
This research is funded by the National Nature Science Foundation of China, under Grant 11871181.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript. All authors contributed equally to writing of this paper.

Authors’ information
Department of Mathematics, Harbin University of Science and Technology, No.52 Xuefu Road, Nangang District, Harbin
City, Heilongjiang Province, China.



An and Cui Journal of Inequalities and Applications        (2020) 2020:199 Page 13 of 13

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 February 2020 Accepted: 29 July 2020

References
1. Phelps, R.: Dentability and extreme points in Banach spaces. J. Funct. Anal. 17(1), 78–90 (1974)
2. Rao, T.: Denting and strongly extreme points in the unit ball of spaces of operators. Proc. Indian Acad. Sci. Math. Sci.

109(1), 75–85 (1999)
3. Hudzik, H., Kurc, W., Wisła, M.: Strongly extreme points in Orlicz function spaces. J. Math. Anal. Appl. 189(3), 651–670

(1995)
4. Tang, X., Lin, Y.: A strong extreme point in Musielak–Orlicz spaces equipped with Orlicz norm. J. Guangdong Univ.

Petrochem. Technol. 23(01), 58–61 (2013)
5. Chen, L., Cui, Y., Hudzik, H.: Criteria for complex strongly extreme points of Musielak–Orlicz function spaces. Nonlinear

Anal., Theory Methods Appl. 70(6), 2270–2276 (2009)
6. Kunen, K., Rosenthal, H.: Martingale proofs of some geometrical results in Banach space theory. Pac. J. Math. 100(1),

153–175 (1982)
7. Musielak, J.: Orlicz spaces and modular spaces. Lect. Notes Math. 1034(4), 1–216 (1983)
8. Rao, M.M.: Linear functionals on Orlicz spaces: general theory. Pac. J. Math. 25(3), 553–585 (1968)
9. Shang, S., Cui, Y., Fu, Y.: Extreme points and rotundity in Musielak–Orlicz–Bochner function spaces endowed with

Orlicz norm. Abstr. Appl. Anal. 2010(10), 1 (2010)
10. Cui, Y., Hudzik, H., Li, J., et al.: Strongly extreme points in Orlicz spaces equipped with the p-Amemiya norm. Nonlinear

Anal. 71(12), 6343–6364 (2009)
11. Wisła, M.: Orlicz spaces equipped with s-norms. J. Math. Anal. Appl. 483(2), 1–30 (2019)
12. Cui, Y., Hudzik, H., Płuciennik, R.: Extreme points and strongly extreme points in Orlicz spaces equipped with the

Orlicz norm. Z. Anal. Anwend. 22(4), 789–817 (2003)
13. Turett, B.: Rotundity of Orlicz spaces. Indag. Math. 79(5), 462–469 (1976)
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