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Abstract
Kayal (Probab. Eng. Inf. Sci. 30(4):640–662, 2016) first proposed generalized cumulative
entropy based on lower record values. Motivated by Kayal (Probab. Eng. Inf. Sci.
30(4):640–662, 2016), recently, Tahmasebi and Eskandarzadeh (Stat. Probab. Lett.
126:164–172, 2017) proposed an extended cumulative entropy (ECE) based on kth
lower record values. In this paper, we obtain some properties of ECE. We study this
measure of information for the coherent systems lifetime with identically distributed
components. We define the conditional ECE for the system lifetime and discuss some
properties of it. We also use this idea to propose a measure of extended cumulative
past inaccuracy. Finally, we propose the estimators of these measures using empirical
approach. In addition, we study large sample properties of these estimators.
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1 Introduction
Information measures have a fundamental role in various areas of science such as proba-
bility and statistics, financial analysis, engineering, and information theory; see, e.g., Cover
and Thomas [7]. One of the most important measures of uncertainty in probability and
statistics is the entropy of a random phenomenon. Let X denote the random lifetime of a
system or a component with probability density function (pdf) f and a survival function
F̄ = 1 – F , respectively. Shannon [29] introduced a measure of uncertainty associated with
X as follows:

H(X) = –E
[
log f (X)

]
= –

∫ +∞

0
f (x) log f (x) dx, (1.1)

where “log” stands for the natural logarithm, with the convention 0 log 0 = 0 and E(·) de-
notes the expectation. H(X) can be used to measure how far the distribution of X is from a
uniform distribution. Some alternative information measures have been proposed in the
literature. Rao et al. [26] defined another measure of information called the cumulative
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residual entropy (CRE) given by

E(X) =
∫ +∞

0
F̄(x)Λ(x) dx,

where Λ(x) = – log F̄(x). An information measure similar to E(X) is the cumulative entropy
(CE) defined as follows (see Di Crescenzo and Longobardi [8]):

CE(X) =
∫ +∞

0
F(x)Λ̃(x) dx, (1.2)

where Λ̃(x) = – log F(x). Note that CE(X) ≥ 0 and that CE(X) = 0 if and only if X = c. The
CE can be seen as a dispersion measure (see Toomaj et al. [37]). More properties on CE
in past lifetime are available in Di Crescenzo and Longobardi [8] and Navarro et al. [20].

Recently Di Crescenzo and Toomaj [10] discussed some properties of a new weighted
distribution based on stochastic orders and introduced the reversed relevation transform
in connection with CE function. Some new connections of the CRE and the residual life-
time are given by Kapodistria and Psarrakos [14] using the relevation transform. Psarrakos
and Navarro [23] generalized the concept of CRE relating this concept with the mean time
between record values and with the concept of relevation transform, and they also con-
sidered a dynamic version of this new measure. Sordo and Psarrakos [30] provided com-
parison results for the cumulative residual entropy of systems and their dynamic versions.
Toomaj et al. [37] used the CRE for coherent and mixed systems when the component
lifetimes are identically distributed. Kayal [15] proposed generalized cumulative entropy
based on lower record values and obtained various results of it. Cali et al. [6] studied the
generalized cumulative past information in coherent systems.

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random vari-
ables with cumulative distribution function (cdf ) F and pdf f . An observation Xj will be
called a lower record value if its value is less than the values of all previous observations.
Thus, Xj is a lower record value if Xj < Xi for every i < j. For a fixed positive integer k,
Dziubdziela and Kopocinski [12] defined the sequence {Ln(k), n ≥ 1} of kth lower record
times for the sequence {Xn, n ≥ 1} as follows:

L1(k) = 1, Ln+1(k) = min{j > Ln(k) : Xk:Ln(k)+k–1 > Xk:k+j–1},

where Xj:m denotes the jth order statistic in a sample of size m. Then {Xn(k) := Xk:Ln(k)+k–1}
is called a sequence of kth lower record values of {Xn, n ≥ 1}. The pdf of Xn(k) is given by
Dziubdziela and Kopocinski [12] as follows:

fn(k)(x) =
kn

(n – 1)!
[
F(x)

]k–1[
Λ̃(x)

]n–1f (x). (1.3)

The cdf of Equation (1.3) can be obtained as

Fn(k)(x) =
[
F(x)

]k
n–1∑

i=0

[kΛ̃(x)]i

i!
. (1.4)
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Now, let X be a nonnegative absolutely continuous random variable with cdf F . Then,
Tahmasebi and Eskandarzadeh [31] defined further extension of CE of X as follows:

CEn,k(X) =
∫ +∞

0
k
[
Fn+1(k)(x) – Fn(k)(x)

]
dx

=
kn+1

n!

∫ ∞

0
ϕn,k

(
FX(x)

)
dx

=
kn+1

n!

∫ 1

0

ϕn,k(u)
fX(F–1

X (u))
du, for n = 1, 2, . . . , k ≥ 1, (1.5)

where ϕn,k(u) = uk(– log u)n ≥ 0, 0 < u < 1. Note that ϕn,k(0) = ϕn,k(1) = 0. For k = 1, Equa-
tion (1.5) reduces to the generalized cumulative entropy due to Kayal [15].

Equation (1.5) is a new CE which is presented on the idea of GCRE introduced by Psar-
rakos and Navarro [23] and is obtained relating the concept of CE with the mean time be-
tween lower k-record values and with the concept of relevation transform (see Krakowski
[18] and Baxter [3]). They called it extended cumulative entropy (ECE). In reliability the-
ory, the performance characteristics of the coherent systems are of great importance. Ac-
cordingly, this paper is organized as follows. In Sect. 2, we present general properties of
ECE including stochastic ordering, linear transformations, and bounds. In Sect. 3, we
study CEn,k(T) when T is the lifetime of a coherent system with identically distributed
components. In Sect. 4, we also obtain some results on the conditional ECE of a system life-
time. In Sect. 5, we propose an extended cumulative past inaccuracy (ECPI) measure and
study a measure of distance symmetric in coherent and mixed systems. Finally, in Sect. 6,
the estimators of ECE and ECPI using empirical approach are presented. Throughout this
paper, the terms ‘increasing’ and ‘decreasing’ are used in a nonstrict sense.

2 General properties on the ECE
In this section, we study some general results of ECE. For that we first present the following
example.

Example 2.1 Let X denote the lifetime of a system or a unit.
i. If X has the Fréchet distribution with F(x) = e –θ

x , x > 0, θ > 0, then for n > 1 we have
CEn,k(X) = k2θ

n(n–1) = k2CEn,1(X).
ii. If X has a uniform distribution in (0, b), then we have

CEn,k(X) =
k

k + 1
CEn–1,k(X) =

(
k

k + 1

)2

CEn–2,k(X) = b
(

k
k + 1

)n+1

.

iii. If X has an inverse Weibull distribution with the cdf F(x) = exp(–( α
x )β ), x > 0,

α,β > 0. Then it holds that

CEn,k(X) =
αk

β+1
β

βn!
Γ

(
nβ – 1

β

)
= k

β+1
β CEn,1(X),

where Γ (·) is the complete gamma function.

In the following, we state various results of ECE. It includes basic properties such as
stochastic orderings, bounds, the effect of linear transformations, and a two-dimensional
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representation of ECE. The proofs follow the same line of Kayal [15] and Di Crescenzo and
Toomaj [11]. Let us recall some stochastic orders; see for details Shaked and Shantikumar
[28].

Definition 2.1 Assume that X and Y are nonnegative random variables with cdfs F and
G, respectively, then

1. X is smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if
P(X ≥ x) ≤ P(Y ≥ x) for all x.

2. X is smaller than Y in the hazard rate order, denoted by X ≤hr Y , if λX(x) ≥ λY (x)
for all x, where λX(x) and λY (x) are the failure rate functions X and Y , respectively.

3. X is smaller than Y in the dispersive order, denoted by X ≤disp Y , if
f (F–1(u)) ≥ g(G–1(u)) for all u ∈ (0, 1), where F–1 and G–1 are right-continuous
inverses of F and G, respectively.

4. X is said to have decreasing failure rate (DFR) if λX(x) = f (x)
F̄(x) is decreasing in x.

5. X is smaller than Y in the convex transform order, denoted by X ≤c Y , if G–1F(x) is
a convex function on the support of X .

6. X is smaller than Y in the decreasing convex order, denoted by X ≤dcx Y , if
E(φ(X)) ≤ E(φ(Y )) for all decreasing convex functions φ such that the expectations
exist.

7. X is smaller than Y in the star order, denoted by X ≤∗ Y , if G–1F(x)
x is increasing in

x ≥ 0.
8. X is smaller than Y in the supper additive order, denoted by X ≤su Y , if

G–1F(t + u) ≥ G–1F(t) + G–1F(u) for t ≥ 0, u ≥ 0.

Theorem 2.1 Let X and Y be absolutely continuous nonnegative random variables with
cdfs F and G, respectively. If X ≤disp Y , then for any k ≥ 1 and n = 1, 2, . . . we have

CEn,k(X) ≤ CEn,k(Y ).

Proof The proof is similar to the proof of Lemma 3 in Klein et al. [17] and hence it is
omitted. �

Proposition 2.1 If X ≤hr Y and X or Y is DFR, then

CEn,k(X) ≤ CEn,k(Y ).

Proof If X ≤hr Y and X or Y is DFR, then X ≤disp Y . Therefore, from Theorem 2.1 the
desired result follows. �

Proposition 2.2 Let X and Y be two nonnegative random variables with pdfs f and g ,
respectively. If X ≤su Y (X ≤∗ Y or X ≤c Y ), then CEn,k(X) ≤ CEn,k(Y ).

Proof If X ≤su Y (X ≤∗ Y or X ≤c Y ), then X ≤disp Y due to Ahmed et al. [1]. Therefore,
from Theorem (2.1) the desired result follows. �
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Proposition 2.3 Let X be a nonnegative random variable with decreasing pdf f such that
f (0) ≤ 1, then

CEn,k(X) ≤ CEn,k(U),

where CEn,k(U) = ( k
k+1 )n+1.

Proof The nonnegative random variable X has a decreasing pdf if and only if U ≤c X,
where U ∼ Uniform(0, 1) (see Shaked and Shanthikumar [28]). Hence, from Proposi-
tion 2.2 the desired result follows. �

Proposition 2.4 Suppose that X and Y are two independent nonnegative random vari-
ables. If X and Y have log-concave densities, then

CEn,k(X + Y ) ≥ max
{
CEn,k(X),CEn,k(Y )

}
.

Proof The proof is similar to that of Theorem 3.2 of Di Crescenzo and Toomaj [11]. �

Proposition 2.5 Let X be a random variable with cdf F . Further, let Y = aX + b, where
a > 0 and b ≥ 0. Then

i. CEn,k(Y ) = aCEn,k(X),
ii. CEn,k(X) = 0 if and only if X is degenerate.

Proposition 2.6 Let X be a nonnegative random variable with cdf F and the reversed
hazard rate r(z), z > 0. Then, for any k ≥ 1 and n = 1, 2, . . . , we have

CEn,k(X) =
kn+1

n!

∫ +∞

0
r(z)

{∫ F(z)

0
ϕn–1,k(u) du

}
dz.

Remark 2.1 Let X be a nonnegative random variable with cdf F , then we have

CEn,k(X) ≤ kn+1CEn,1(X),

where CEn,1(X) is the generalized cumulative entropy (see Kayal [15]).

Remark 2.2 Let X be a nonnegative absolutely continuous random variable. Then

CEn,k(X) ≥
n∑

i=0

(–1)ikn+1

i!(n – i)!

∫ +∞

0

[
F(x)

]i+k dx.

Let X and Y denote the lifetimes of two components of a system with joint distribution
function F(x, y), respectively. Then the bivariate ECE is defined as follows:

CEn,k(X, Y ) =
kn+1

n!

∫ +∞

0

∫ +∞

0

[
F(x, y)

]k[
Λ̃(x, y)

]n dx dy, (2.1)

where Λ̃(x, y) = – log F(x, y). Using the binomial expansion in (2.1), we obtain the following
proposition.
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Proposition 2.7 Suppose that the nonnegative random variables X and Y are independent
with joint distribution function F(x, y), then

CEn,k(X, Y ) =
1
k

n∑

i=0

CEn–i,k(X)CE i,k(Y ). (2.2)

Proposition 2.8 Let X be a symmetric random variable with respect to the finite mean
μ = E(X), i.e., F(x + μ) = 1 – F(μ – x) for all x ∈ R. Then

CEn,k(X) = En,k(X),

where En,k(X) =
∫ +∞

0
kn+1

n! [F̄X(x)]k[Λ(x)]n dx is the generalized cumulative residual entropy
(see Tahmasebi et al. [32]).

The concept of elasticity in life expectancy is an important feature in life tables. It should
be noted that V1(X) = E1,1(X)

E(X) is the elasticity in life expectancy with respect to proportional
hazards models with survival function F̄k(x) = [F̄(x)]k (see Leser [19] and Rao [25]). Re-
cently, by using En–1,k(X), Psarrakos and Toomaj [24] obtained the following approxima-
tion:

En–1,k(X) – En–1,1(X)
En–1,1(X)

≈ –Vn(X)k,

where Vn(X) = n En,1(X)
En–1,1(X) – n + 1 is the elasticity of expected interepoch intervals in a non-

homogeneous Poisson process (NHPP) with respect to a proportional hazards models.

Let us now investigate the ECE within the proportional reversed hazards model
(PRHM). We recall that two random variables X and X∗

θ satisfy the PRHM if their dis-
tribution functions are related by the following identity, for θ > 0:

F∗
θ (x) =

[
F(x)

]θ , x ∈R. (2.3)

For instance, for some properties of such a model associated with aging notions and the
reversed relevation transform, see Gupta and Gupta [13] and Di Crescenzo and Toomaj
[10], respectively. In this case, we assume that X and X∗

θ are nonnegative absolutely con-
tinuous random variables. Due to Equation (2.1) and noting that Λ∗

θ (x) = θΛ̃(x), we obtain
the ECE measure for X∗

θ as follows, for θ > 0:

CEn,k
(
X∗

θ

)
=

θnkn+1

n!

∫ +∞

0

[
F(x)

]kθ [
Λ̃(x)

]n dx.

Proposition 2.9 Let X and X∗
θ be nonnegative absolutely continuous random variables

satisfying the PRHM as specified in (2.3), with θ > 0. If θ ≥ (≤)1, then we have

CEn,k
(
X∗

θ

) ≤ (≥)θnCEn,k(X).

Proof Clearly, for θ ≥ (≤)1, it is [F(x)]kθ ≤ (≥)[F(x)]k for all x ≥ 0, and then the thesis
immediately follows from (1.5). �
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3 ECE of coherent systems
A system is said to be coherent if it does not have any irrelevant components and its struc-
ture function is monotone. Now, let the component lifetimes have the common distribu-
tion FX . Suppose that T is the lifetime of a coherent system with m identically distributed
(id) components, then its distribution function FT can be written as

FT (t) = q
(
FX(t)

)
,

where q : [0, 1] → [0, 1] is a distortion function that depends on the structure of a system
and the copula of the component lifetime. Note that the function q is a continuous in-
creasing function such that q(0) = 0 and q(1) = 1 (for more details on coherent systems,
see Burkschat and Navarro [5] and Navarro et al. [21]). A special case of coherent systems
is the k-out-of-n system, where the system fails when the kth component failure occurs.
For example, for a 2-out-of-3 system with i.i.d. components, we have q(u) = 3u2 – 2u3.
Also, for a parallel system with lifetime T = max(X1, X2, X3, . . . , Xm), we have q(u) = um.
Hence, the ECE of the random lifetime T can be obtained as follows:

CEn,k(T) =
∫ +∞

0

kn+1

n!
[
FT (x)

]k[– log FT (x)
]n dx

=
kn+1

n!

∫ +∞

0
ϕn,k

(
FT (x)

)
dx

=
kn+1

n!

∫ +∞

0
ϕn,k

(
q
(
FX(x)

))
dx

=
kn+1

n!

∫ 1

0

ϕn,k(q(u))
fX(F–1

X (u))
du. (3.1)

For example, for a parallel system with i.i.d components of U(0, 1), we have

CEn,k(T) = mn
(

k
1 + km

)n+1

≤ CEn,k(X) =
(

k
k + 1

)n+1

.

As an application of Equation (3.1), we have the following example.

Example 3.1 We consider a coherent system with lifetime T = max{X1, min{X2, X3, X4}}
and i.d. components having the common exponential with mean θ . From (3.1) we obtain

CE3,2(T) = (0.3157)θ , CE3,3(T) = (0.5692)θ .

Note that CE3,2(T) < CE3,3(T). Now, if the system has dependent identical exponential
components with an exchangeable copula C, then we have

CE3,2(T) = (2.66)θ
∫ 1

0

ϕ3,2(q1(u))
1 – u

du, CE3,3(T) = (13.5)θ
∫ 1

0

ϕ3,3(q1(u))
1 – u

du,

where q1(u) = 3C(u, u, 1, 1) – 3C(u, u, u, 1) + C(u, u, u, u). Assume that the component life-
times are dependent with the Farlie–Gumbel–Morgenstern (FGM) copula as follows:

C(u1, u2, u3, u4) = u1u2u3u4
[
1 + α(1 – u1)(1 – u2)(1 – u3)(1 – u4)

]
, –1 ≤ α ≤ 1.
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Then, for α = 1
3 , we obtain q1(u) = 3u2 – 3u3 + u4[1 + (1–u)4

3 ] and

CE3,2(T) = (0.3152)θ , CE3,3(T) = (0.5684)θ .

Finally, we see that CE3,2(T) and CE3,3(T) decrease when the dependence parameter α

increases.

Proposition 3.1 Let T be the lifetime of a coherent system with i.d components and with
a distortion function q. If ϕn,k(q(u)) ≥ (≤)ϕn,k(u), then we have

CEn,k(T) ≥ (≤)CEn,k(X).

Proposition 3.2 Assume that the components have cdf FX and pdf fX and support S. Let T
be the lifetime of a coherent system with i.d components and with a distortion function q.

(i) If f (x) ≤ M for all x ∈ S, then

CEn,k(T) ≥ kn+1

Mn!

∫ 1

0
ϕn,k

(
q(u)

)
du.

(ii) If f (x) ≥ L > 0 for all x ∈ S, then

CEn,k(T) ≤ kn+1

Ln!

∫ 1

0
ϕn,k

(
q(u)

)
du.

Example 3.2
(i) Let T be the lifetime of a coherent system with i.d components having an

exponential distribution with mean θ , then L = 1
θ

and

CEn,k(T) ≤ θkn+1

n!

∫ 1

0
ϕn,k

(
q(u)

)
du.

(ii) Let T be the lifetime of a coherent system with i.d components having a Pareto type
II distribution with cdf F(x) = 1 – ( β

β+x )α , x > 0, then M = αβα and

CEn,k(T) ≥ kn+1

αβαn!

∫ 1

0
ϕn,k

(
q(u)

)
du.

Proposition 3.3 Suppose that T is the lifetime of a coherent system with i.d components
and with distortion function q. Let ϕn,k(u) = uk[– log(u)]n. Then

B1,nCEn,k(X1) ≤ CEn,k(T) ≤ B2,nCEn,k(X1),

where B1,n = infu∈(0,1)(
ϕn,k (q(u))
ϕn,k (u) ) and B2,n = supu∈(0,1)(

ϕn,k (q(u))
ϕn,k (u) ).

Proof The proof is similar to the proof of Proposition 3 of Calì et al. [6] and hence it is
omitted. �
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Table 1 Distortion function q for a coherent system with 1–4 i.i.d. components

N T q(u)

1 X1 u
2 X1:2 = min(X1,X2) 2u – u2

3 X2:2 = max(X1,X2) u2

4 X1:3 = min(X1,X2,X3) 3u – 3u2 + u3

5 min(X1,max(X2,X3)) u + u2 – u3

6 X2:3 3u2 – 2u3

7 max(X1,min(X2,X3)) 2u2 – u3

8 X3:3 = max(X1,X2,X3) u3

9 X1:4 = min(X1,X2,X3,X4) 4u – 6u2 + 4u3 – u4

10 max(min(X1,X2,X3),min(X2,X3,X4)) 2u – 2u3 + u4

11 min(X2:3,X4) u + 3u2 – 5u3 + 2u4

12 min(X1,max(X2,X3),max(X2,X4)) u + 2u2 – 3u3 + u4

13 min(X1,max(X2,X3,X4)) u + u3 – u4

14 X2:4 6u2 – 8u3 + 3u4

15 max(min(X1,X2),min(X1,X3,X4),min(X2,X3,X4)) 5u2 – 6u3 + 2u4

16 max(min(X1,X2),min(X3,X4)) 4u2 – 4u3 + u4

17 max(min(X1,X2),min(X1,X3),min(X2,X3,X4)) 4u2 – 4u3 + u4

18 max(min(X1,X2),min(X2,X3),min(X3,X4)) 3u2 – 2u3

19 min(max(X1,X2),max(X2,X3),max(X3,X4)) 3u2 – 2u3

20 min(max(X1,X2),max(X1,X3),max(X2,X3,X4)) 2u2 – u4

21 min(max(X1,X2),max(X3,X4)) 2u2 – u4

22 min(max(X1,X2),max(X1,X3,X4),max(X2,X3,X4)) u2 + 2u3 – 2u4

23 X3:4 4u3 – 3u4

24 max(X1,min(X2,X3,X4)) 3u2 – 3u3 + u4

25 max(X1,min(X2,X3),min(X2,X4)) u2 + u3 – u4

26 max(X2:3,X4) 3u3 – 2u4

27 max(min(X1,X2,X3),min(X2,X3,X4)) 2u3 – u4

28 X4:4 = max(X1,X2,X3,X4) u4

For example, if the distortion function for a 2-out-of-3 system with i.i.d components is
q(u) = 3u2 – 2u3, then we obtain

0 ≤ CE3,2(T) ≤ 1.15CE3,2(X1)

and

0 ≤ CE3,3(T) ≤ 1.03CE3,3(X1).

In Table 1, we give the distortion functions for all the coherent systems with 1–4 i.i.d.
components. Also, in Table 2, we give CEn,2(T) for these systems when the components
have a uniform distribution in (0, 1).

In the following proposition, we compare the ECE of two systems with distinct lifetimes.

Proposition 3.4 Suppose that T1 and T2 are the lifetimes of two coherent systems
with i.d components and with distortion functions q1 and q2, respectively. Let ϕn,k(u) =
uk[– log(u)]n. Then

D1,nCEn,k(T1) ≤ CEn,k(T2) ≤ D2,nCEn,k(T1),

where D1,n = infu∈(0,1)(
ϕn,k (q2(u))
ϕn,k (q1(u)) ) and D2,n = supu∈(0,1)(

ϕn,k (q2(u))
ϕn,k (q1(u)) ).

It is clear that if D2,n ≤ 1, then CEn,k(T2) ≤ CEn,k(T1). Now, let us have two coherent
systems with i.i.d components. Suppose that T1 = X2:2 = max(X1, X2) is the lifetime of a 2
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Table 2 CEn,2(T ) and bounds for CEn,2(T ) obtained from the coherent systems given in Table 1 with
i.i.d. components having a uniform distribution in (0, 1)

N n CEn,2(T ) B1,n B2,n B2,nCEn,2(X1)

1 3 0.1975 1 1 0.1975
4 0.1316 1 1 0.1316
5 0.0877 1 1 0.0877

2 3 0.1233 0 3.19 0.6300
4 0.0767 0 2.96 0.3895
5 0.0489 0 2.75 0.2411

3 3 0.2048 0 7.99 1.5780
4 0.1638 0 15.99 2.1042
5 0.1310 0 31.99 2.8055

4 3 0.0890 0 6.25 1.2343
4 0.0540 0 5.54 0.7290
5 0.0338 0 4.90 0.4297

5 3 0.1567 0 1.05 0.2073
4 0.1066 0 1.03 0.1355
5 0.0730 0 1.01 0.0885

6 3 0.1592 0 1.15 0.2271
4 0.1185 0 1.37 0.1802
5 0.0901 0 1.73 0.1517

7 3 0.1869 0 1.70 0.3357
4 0.1411 0 2.29 0.3013
5 0.1082 0 3.19 0.2797

8 3 0.1799 0 26.99 5.3305
4 0.1542 0 80.97 10.6556
5 0.1321 0 242.93 21.3049

9 3 0.0696 0 10.03 1.9809
4 0.0416 0 8.58 1.1291
5 0.0258 0 7.35 0.6445

10 3 0.1103 0 3.19 0.6300
4 0.0700 0 2.96 0.3895
5 0.0455 0 2.75 0.2411

11 3 0.1268 0 1.15 0.2271
4 0.0867 0 1.08 0.1421
5 0.0603 0 1.04 0.0912

12 3 0.1408 0 1.10 0.2172
4 0.0956 0 1.05 0.1381
5 0.0659 0 1.03 0.0903

13 3 0.1741 0 1.007 0.1988
4 0.1197 0 1.002 0.1318
5 0.0820 0 1.0007 0.0877

14 3 0.1277 0 1.0002 0.1975
4 0.0922 0 1.044 0.1373
5 0.0686 0 1.15 0.1008

15 3 0.1386 0 1.012 0.1998
4 0.1003 0 1.095 0.1441
5 0.0748 0 1.253 0.1098

16, 17 3 0.1496 0 1.054 0.2081
4 0.1093 0 1.193 0.1569
5 0.0820 0 1.421 0.1246

18, 19 3 0.1592 0 1.15 0.2271
4 0.1185 0 1.37 0.1802
5 0.0901 0 1.73 0.1517
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Table 2 (Continued)

N n CEn,2(T ) B1,n B2,n B2,nCEn,2(X1)

20, 21 3 0.1655 0 1.32 0.2607
4 0.1264 0 1.71 0.2250
5 0.0983 0 2.32 0.2034

22 3 0.1661 0 1.59 0.3140
4 0.1306 0 2.28 0.3000
5 0.1044 0 3.41 0.2990

23 3 0.1580 0 1.96 0.3871
4 0.1263 0 3.11 0.4092
5 0.103 0 5.22 0.4577

24 3 0.1806 0 1.29 0.2547
4 0.1314 0 1.58 0.2079
5 0.0980 0 2.004 0.1757

25 3 0.1849 0 2.26 0.4463
4 0.1453 0 3.45 0.4540
5 0.1157 0 5.45 0.4779

26 3 0.1711 0 2.92 0.5767
4 0.1375 0 5.04 0.6632
5 0.1125 0 9.08 0.7963

27 3 0.1810 0 7.99 1.5780
4 0.1487 0 16 2.1056
5 0.1234 0 32.41 2.8423

28 3 0.1560 0 63.9 12.6202
4 0.1387 0 255.89 33.6751
5 0.1233 0 1023.5 89.7609

component parallel system with q1(u) = u2 and T2 is the lifetime of a 2-out-of-3 system
with q2(u) = 3u2 – 2u3, then from the previous proposition we obtain

CE2,2(T2) ≤ 8CE2,2(T1).

In the following example, we consider a parallel system with dependent and identically
distributed (d.i.d) components and obtain the bounds of CEn,k(T).

Example 3.3 Let T = max(X1, X2) be the lifetime of a parallel system with d.i.d compo-
nents. If the component lifetimes are dependent with the FGM copula as

C(u1, u2) = u1u2
[
1 + α(1 – u1)(1 – u2)

]
, 0 ≤ u1, u2 ≤ 1, –1 ≤ α ≤ 1,

then q(u) = u2[1 + α(1 – u)2]. So, from Proposition 3.3, we obtain

CE3,2(T) ≤ 8CE3,2(X1).

Also, if L ≤ f (x) ≤ M, then from Proposition 3.2 we obtain

0.2
M

≤ CE3,2(T) ≤ 0.2
L

.

Example 3.4 Suppose that T = max(X1, X2) is the lifetime of a parallel system with d.i.d
components. If the component lifetimes are dependent with the Clayton–Oakes copula
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as follows:

C(u1, u2) =
u1u2

u1 + u2 – u1u2
, 0 ≤ u1, u2 ≤ 1,

then q(u) = u
2–u . Hence, from Proposition 3.3, we obtain

CE4,2(T) ≤ 16CE4,2(X1).

Also, if L ≤ f (x) ≤ M, then from Proposition 3.2 we obtain

0.17
M

≤ CE4,2(T) ≤ 0.17
L

.

An application of (3.1) is the comparison of the ECE of two coherent systems when two
systems have the same structure with different i.d. component lifetimes. Thus we have the
following theorem.

Proposition 3.5 Let T1 and T2 be the lifetimes of two coherent systems with the same
structure and with i.d. components having common distributions F and G, respectively. If
X ≤disp Y , then for any k ≥ 1 and n = 1, 2, . . . , we have

CEn,k(T1) ≤ CEn,k(T2).

Proof Since both systems have a common distortion function q and the same structure,
the proof follows from Equation (3.1) and the assumption on the dispersive order. �

Corollary 3.1 Under the assumptions of Proposition 3.5, if X ≤hr Y and X or Y is DFR,
then CEn,k(T1) ≤ CEn,k(T2).

Corollary 3.2 Under the assumptions of Proposition 3.5, if X ≤su Y (X ≤∗ Y or X ≤c Y ),
then CEn,k(T1) ≤ CEn,k(T2).

Theorem 3.1 Let T1 and T2 be the lifetimes of two coherent systems with the same structure
and with i.d. components having common distributions F and G, respectively. If CEn,k(X) ≤
CEn,k(Y ) and

inf
u∈A1

[
ϕn,k(q(u))
ϕn,k(u)

]
≥ sup

u∈A2

[
ϕn,k(q(u))
ϕn,k(u)

]
,

for A1 = {u ∈ [0, 1] : f (F–1(u)) > g(G–1(u))} and A2 = {u ∈ [0, 1] : f (F–1(u)) ≤ g(G–1(u))},
then CEn,k(T1) ≤ CEn,k(T2).

Proof Since CEn,k(X) ≤ CEn,k(Y ), we have from (1.5) that

CEn,k(Y ) – CEn,k(X) =
kn+1

n!

∫ 1

0

(u) du ≥ 0,
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where 
(u) = ϕn,k (u)
gY (G–1

Y (u)) – ϕn,k (u)
fX (F–1

X (u)) . It follows from (3.1) that

CEn,k(T2) – CEn,k(T1)

=
kn+1

n!

∫ 1

0

ϕn,k(q(u))
ϕn,k(u)


(u) du

=
kn+1

n!

∫

A1

ϕn,k(q(u))
ϕn,k(u)


(u) du +
kn+1

n!

∫

A2

ϕn,k(q(u))
ϕn,k(u)


(u) du

≥ inf
u∈A1

ϕn,k(q(u))
ϕn,k(u)

∫

A1

kn+1

n!

(u) du + sup

u∈A2

ϕn,k(q(u))
ϕn,k(u)

∫

A2

kn+1

n!

(u) du

≥ sup
u∈A2

ϕn,k(q(u))
ϕn,k(u)

∫

A2

kn+1

n!

(u) du

≥ 0. (3.2)

So, the proof is completed. �

Remark 3.1 Under the assumptions of Theorem 3.1, if q is strictly increasing in (0, 1), then
CEn,k(X) ≤disp CEn,k(Y ) if and only if CEn,k(T1) ≤disp CEn,k(T2).

Proof The proof follows from Theorem 2.9 of Navarro et al. [21]. �

Remark 3.2 Let T be the lifetime of coherent system with cdf FT , then we have

CE(T) ≥ D∗
G(T),

where D∗
G(T) = DG(T)

2 =
∫ +∞

0 FT (x)F̄T (x) dx, and DG(T) is the Gini mean difference as a
dispersion measure.

4 Conditional ECE
Suppose that X is the lifetime of a system on a probability space (Ω ,F ,P) such that
E|X| < ∞. We denote by E(X|G) the conditional expectation of X given sub σ -field G ,
where G ⊂F . Here, we define the conditional ECE of X and discuss some properties of it.

Definition 4.1 Let X be the lifetime of a system with cdf FX . Then, for a given σ -field F ,
the conditional ECE is defined as follows:

CEn,k(X|F ) =
kn+1

n!

∫

R+

[
P(X ≤ x|F )

]k[– log
(
P(X ≤ x|F )

)]n dx

=
kn+1

n!

∫

R+

(
E[I(X≤x)|F ]

)k[– log
(
E[I(X≤x)|F ]

)]n dx.

Lemma 4.1 Let X be the lifetime of a coherent system with i.d components. If F = {φ,Ω},
then CEn,k(X|F ) = CEn,k(X).

The following proposition says that the conditional ECE has the “super-martingale prop-
erty”.
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Proposition 4.1 Let X ∈ Lp for some p > 2, then for σ -fields G ⊂F

E
(
CEn,k(X|F )|G) ≤ CEn,k(X|G). (4.1)

Proof The proof follows by applying Jensen”s inequality for the convex function
tk(– log t)n, 0 < t < 1 as follows:

E
(
CEn(X|F )|G)

=
kn+1

n!

∫

R+
E

[(
P(X ≤ x|F )

)k[– logP(X ≤ x|F )
]n|G]

dx

≤ kn+1

n!

∫

R+

(
E

[
P(X ≤ x|F )|G])k[– logE

[
P(X ≤ x|F )|G]]n dx

=
kn+1

n!

∫

R+

(
E

[
E(I(X≤x)|F )|G])k[– logE

[
E(I(X≤x)|F )|G]]n dx

=
kn+1

n!

∫

R+

[
E(I(X≤x)|G)

]k[– logE(I(X≤x)|G)
]n dx

=
kn+1

n!

∫

R+

[
P(X ≤ x|G)

]k[– logP(X ≤ x|G)
]n dx

= CEn,k(X|G). �

From the Markov property for the lifetime random variables T1, T2, and T3, we have the
following lemma.

Lemma 4.2 If T1 → T2 → T3 is a Markov chain, then
(i) CEn,k(T3|T2, T1) = CEn,k(T3|T2);

(ii) E[CEn,k(T3|T2)] ≤ E[CEn,k(T3|T1)].

Proof (i) By using the Markov property and the definition of CEn,k(T3|T2, T1), the result
follows.

(ii) Let G = σ (T1) and F = σ (T1, T2), then from (4.1) we have

E
[
CEn,k(T3|T1)

] ≥ E
(
E

[
CEn,k(T3|T1, T2)|T1

])

= E
[
CEn,k(T3|T1, T2)

]

= E
[
CEn,k(T3|T2)

]
,

and the result follows. �

Theorem 4.1 Let X ∈ Lp for some p > 2 be the lifetime of a system and F be a σ -field. Then
E(CEn,k(X|F )) = 0 iff X is F -measurable.

Proof Suppose that E(CEn,k(X|F )) = 0, then CEn,k(X|F ) = 0. Now using the definition of
CEn,k(X|F ), we conclude that E(I(X≤x)|F ) = 0 or 1. Hence, using relation (24) of Rao et al.
[26], T is F -measurable.

Supposing that T is F -measurable, again using relation (24) of Rao et al. [26], we have
P(X ≤ x|F ) = 0 or 1 for almost all x ∈ R

+, so the result follows. �
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Remark 4.1 For any random variable X > 0 and strictly convex φ : R+ → R
+(φ′′ > 0). If

E(φ(X)) = φ(E(X)), then X = E(X).

Theorem 4.2 For any random variable X and σ -field F , we have

E
(
CEn,k(X|F )

) ≤ CEn,k(X), (4.2)

and the equality holds if, and only if, X is independent of F .

Proof The inequality (4.2) follows from (4.1) by taking F = {φ,Ω}. Now, suppose that X
is independent of F , then clearly

P(X ≤ x|F ) = P(X ≤ x). (4.3)

Using Definition 4.1 and (4.3), we have

E
(
CEn,k(X|F )

)
= CEn,k(X).

Conversely, suppose that there is equality in (4.2). We set W := P(X ≤ x|F ); since φ(w) =
wk[– log w]n is strictly convex and E(φ(W )) = φ(E(W )), we have P(X ≤ x|F ) = P(X ≤ x),
i.e., X is independent of F . �

5 Extended cumulative past inaccuracy measure
Let X and Y be two nonnegative random variables with distribution functions F(x), G(x),
respectively. If F(x) is the actual cdf corresponding to the observations and G(x) is the cdf
assigned by the experimenter, then the cumulative past inaccuracy measure between F(x)
and G(x) is defined by Thapliyal and Taneja [33] as follows:

I(F , G) = –
∫ +∞

0
F(x) log G(x) dx. (5.1)

When G(x) = F(x), then (5.1) becomes cumulative entropy which is studied by Di
Crescenzo and Longobardi [8].

In analogy with the measure defined in Equation (5.1), we now introduce the extended
cumulative past inaccuracy (ECPI) defined as

In,k(F , G) =
kn+1

n!

∫ +∞

0

[
F(x)

]k[– log G(x)
]n dx. (5.2)

As applications of Equation (5.2), we have the following properties.

Theorem 5.1 Let X and Y be two nonnegative absolutely continuous random variables
with cdfs F and G, respectively. Then we have

In,k(F , G) = E
[
h̃n,k(X)

]
, (5.3)

where

h̃n,k(x) =
kn+1

n!

∫ +∞

x

[
F(z)

]k[– log G(z)
]n dz.
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Proof From Equation (5.2) and Fubini’s theorem, it follows

In,k(F , G) =
kn+1

n!

∫ +∞

0

[
F(x)

]k[– log G(x)
]n dx

=
kn+1

n!

∫ +∞

0

[∫ x

0
dF(t)

][
F(x)

]k–1[
[
– log G(x)

]n dx

=
∫ +∞

0

[∫ ∞

t

kn+1[F(x)]k–1[– log G(x)]n

n!
dx

]
dF(t) =

∫ +∞

0
h̃n,k(t) dF(t).

Therefore, the stated results follow. �

Proposition 5.1 Let X and Y be nonnegative random variables with distribution functions
F and G, respectively. If X ≤st Y , then for n, k ≥ 1 we have

In,k(G, F) ≤ CEn,k(X) ≤ In,k(F , G).

Proof The proof is similar to that of Proposition 7 of Cali et al. [6]. �

Proposition 5.2 Let X and Y be nonnegative random variables with distribution functions
F and G, respectively. If X ≤dcx Y , then for n, k ≥ 1 we have

CEn,k(X) ≤ In,k(G, F).

Proof Since CEn,k(X) and In,k(G, F) can be expressed as mean value of h̃n,k(·), the proof
follows by noting that h̃n,k(·) is a decreasing convex function.

Park et al. [22] have recently suggested an extension of KL information in terms of
the distribution function, which can be called cumulative Kullback–Leibler information
(CKL), as follows:

CKL(F , G) = CKL(X, Y ) = I1,1(F , G) – CE(X) + E(X) – E(Y ).

This measure of information is also studied in Di Crescenzo and Longobardi [9]. In the
following, we define a symmetric version of the CKL(X, Y ). �

Definition 5.1 Let X and Y be nonnegative random variables with distribution functions
F and G, respectively. Then the symmetric CKL is defined as follows:

SCKL(X, Y ) = CKL(X, Y ) + CKL(Y , X) =
∫ +∞

0

[
F(x) – G(x)

]
log

F(x)
G(x)

dx.

Note that SCKL(X, Y ) ≥ 0 and symmetric. It is noted that when we are comparing sys-
tems pairwise, then we can find a system in which its distribution is closer to the distri-
bution of the parallel system or the series system. Thus, in the following we will propose
a measure of distance symmetric to the mixed system.

Lemma 5.1 Let X and Y be random variables with cdfs F , G, and H , respectively. If X ≤st

Y ≤st Z, then SCKL(X, Y ) ≤ SCKL(X, Z) and SCKL(Y , Z) ≤ SCKL(X, Z).
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Proof Proof is similar to the proof of Lemma 1 in Toomaj et al. [37] and hence it is omit-
ted. �

A mixed system is a stochastic mixture of coherent systems. Hence, any coherent system
is a mixed system (Toomaj and Doostparast [36]). Toomaj and Doostparast [35] obtained
an expression for the Shannon entropy of mixed r-out-of-n systems when the lifetimes
of the components are independent and identically distributed. Toomaj [34] discussed
the Renyi entropy of mixed system’s lifetime. Kayal [16] studied a generalized entropy of
mixed systems whose component lifetimes are independent identically distributed.

If T is the lifetime of any arbitrary mixed system, then it is well known that X1:n ≤st T ≤st

Xn:n (see Samaniego [27] and Barlow and Proschan [2]). Therefore, we can find a system in
which its structure (or distribution) is similar (or closer) to the distribution of the parallel
system or the series system.

Proposition 5.3 Let T be the lifetime of a mixed(or coherent) system based on i.i.d. com-
ponent lifetimes X1, X2, . . . , Xn, then SCKL(T , Xi:n) ≤ SCKL(X1:n, Xn:n) for i = 1, n.

Now, we propose a measure of distance symmetric (DS) for T as follows:

DS(T) =
SCKL(T , X1:n) – SCKL(T , Xn:n)

SCKL(X1:n, Xn:n)
.

Note that |DS(T)| ≤ 1. If DS(T) is closer to 1(–1), then the distribution of T is closer to
the distribution of the parallel(series) system. In Table 3, we have computed the values of
DS(T), standard deviation, CE, and the Gini mean difference for all coherent system with
1–4 i.i.d components having uniform distribution in (0, 1). We can also see that D∗

G(T) ≤
CE(T) ≤ σ (T) and DS(T) = 1 if and only if T ≡d Xn:n or DS(T) = –1 if and only if T ≡d X1:n.

6 Empirical measures of ECE and ECPI
Let X1, X2, . . . , Xm be a random sample of size m from an absolutely continuous cumulative
distribution function F(x). If X1:m ≤ X2:m ≤ · · · ≤ Xm:m represent the order statistics of the
sample X1, X2, . . . , Xm, then the empirical measure of F(x) for i = 1, 2, . . . , m – 1 is defined
as follows:

F̂m(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < X1:m,
i

m , Xi:m ≤ x ≤ Xi+1:m,

1, x > Xm:m.

Thus the empirical measure of ECE is obtained as

CEn,k(F̂m) =
1
n!

∫ +∞

0

[
F̂m(x)

]k(– log F̂m(x)
)n dx

=
1
n!

m–1∑

i=1

∫ Xi+1:m

Xi:m

(
i

m

)k(
– log

(
i

m

))n

dx
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Table 3 DS, standard deviation, CE, and the Gini mean difference for all coherent system with 1–4
i.i.d components having uniform distribution in (0,1)

N DS(T ) σ (T ) CE (T ) D∗
G(T )

1 0.2886 0.2500 0.1666
2 –1 0.2357 0.1869 0.1333
3 1 0.2357 0.2222 0.1333
4 –1 0.1936 0.1463 0.1071
5 –0.4 0.2487 0.2074 0.1404
6 –0.1434 0.2236 0.1980 0.1285
7 0.2072 0.2521 0.2216 0.1404
8 1 0.1936 0.1875 0.1071
9 –1 0.1414 0.1198 0.0888
10 –0.6931 0.2000 0.1653 0.1174
11 –0.5280 0.1936 0.1746 0.1198
12 –0.4525 0.2357 0.1923 0.1317
13 –0.2950 0.2397 0.2196 0.1460
14 –0.3444 0.2000 0.1703 0.1142
15 –0.2623 0.2123 0.1830 0.1222
16 –0.1764 0.2069 0.1923 0.1269
17 –0.1764 0.2069 0.1923 0.1269
18 –0.0851 0.2236 0.1980 0.1285
19 –0.0851 0.2236 0.1980 0.1285
20 0.0140 0.2282 0.1993 0.1269
21 0.0140 0.2282 0.1993 0.1269
22 0.1265 0.2154 0.1953 0.1222
23 0.2726 0.2000 0.1844 0.1142
24 0.3857 0.2397 0.2245 0.1460
25 0.2209 0.2406 0.2127 0.1317
26 0.3857 0.2100 0.1957 0.1198
27 0.5185 0.2080 0.1976 0.1174
28 1 0.1632 0.1600 0.0888

=
1
n!

m–1∑

i=1

Ui

(
i

m

)k

[– log i + log m]n

=
1
n!

m–1∑

i=1

n∑

j=0

(–1)j
(

n
j

)
Ui

(
i

m

)k

[log i]j[log m]n–j, (6.1)

where Ui = Xi+1:m – Xi:m.The following example provides an application of the empirical
measure of ECE to real data.

Example 6.1 Consider the data set from Blischke and Murthy [4], concerning the failure
times of 84 mechanical components.

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467,0.309,1.899, 2.610, 3.478, 0.557,
1.911, 2.625, 3.578,0.943, 1.912, 2.632, 3.595,1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661,
3.779,1.248, 2.010, 2.688, 3.924,1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121,1.303,
2.089, 2.902, 4.167,1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,1.505, 2.154, 2.964,
4.278,1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376,1.615, 2.223,3.114, 4.449,1.619,
2.224, 3.117, 4.485,1.652,2.229,3.166, 4.570,1.652, 2.300, 3.344, 4.602,1.757, 2.324, 3.376,
4.663.

Then, from the data set, we compute CE5,1(F̂m) = 0.1564, CE5,2(F̂m) = 0.5280, CE5,3(F̂m) =
0.6701, CE5,4(F̂m) = 0.8043, and CE5,5(F̂m) = 0.9892. Figure 1 shows the function CEn,2(F̂m)
for n > 1. It decreases in empirical measure of ECE for different values of n ≥ 2.
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Figure 1 Plot of CEn,2(F̂m) for n ≥ 2

Let us remember that the well-known theorem of Glivenko–Cantelli states that

sup
∣
∣F̂m(x) – F(x)

∣
∣ → 0 a.s as m → ∞.

Using this result, the following theorem asserts that CEn,k(F̂m) converges almost surely to
CEn,k(X). The proof of which follows the same lines as given in Theorem 9 of Rao et al.
[26].

Theorem 6.1 Let X be a nonnegative and absolutely continuous random variable with cdf
F . Then, for any random X in Lp for some p > 2, we have

CEn,k(F̂m) → CEn,k(F) a.s as m → ∞.

Proof From (6.1), we have

n!
(–1)nkn+1 CEn,k(F̂m)

=
∫ 1

0

[
F̂m(x)

]k[
log F̂m(x)

]n dx +
∫ +∞

1

[
F̂m(x)

]k[
log F̂m(x)

]n dx

=: J1 + J2. (6.2)

Using the dominated convergence theorem and the Glivenko–Canlelli theorem, we have

∫ 1

0

[
F̂m(x)

]k[
log F̂m(x)

]n dx →
∫ 1

0

[
F(x)

]k[
log F(x)

]n dx as m → ∞. (6.3)

It follows that

xp ˆ̄Fm(x) ≤ 1
m

m∑

i=1

Xp
i . (6.4)

Moreover, by using SLLN 1
m

∑m
i=1 Xp

i → E(Xp) and supm( 1
m

∑m
i=1 Xp

i ) < ∞, then

ˆ̄Fm(x) ≤ x–p

(

sup
m

(
1
m

m∑

i=1

Xp
i

))

= Cx–p. (6.5)
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Now, by applying the dominated convergence theorem and using (5.2), we conclude

lim
m→∞ J2 =

∫ ∞

1

[
F(x)

]k[
log F(x)

]n dx. (6.6)

Using (6.2)–(6.6) the result follows.
According to Equation (5.2), we define the empirical ECPI as follows:

In,k(F̂m, Ĝm) =
kn+1

n!

∫ +∞

0

[
F̂m(u)

]k[– log Ĝm(u)
]n dx

=
kn+1

n!

m–1∑

j=1

(
– log

(
j

m

))k ∫ Yj+1:m

Yj:m

[
F̂m(u)

]k du, (6.7)

where Y1:m, Y2:m, . . . , Ym:m are the order statistics of the new sample. Let us denote by

m∑

i=1

1{Xi≤Yj:m}, j = 1, 2, . . . , m,

the number of random variables of the first sample that are less than or equal to the jth
order statistic of the second sample. Moreover, we rename by Xj,1 < Xj,2 < · · · the random
variables of the first sample belonging to interval (Yj:m, Yj+1:m]. So, we have

∫ Yj+1:m

Yj:m

[
F̂m(u)

]k du =
(

Nj

n

)k

[Yj+1:m – Yj:m] +
1
n

Nj+1–Nj∑

r=1

[Yj+1:m – Xj,r].

Then

In,k(F̂m, Ĝm) =
kn+1

n!

m–1∑

j=1

[
(
Nk

j – Nj + Nj+1
)
Yj+1:m – NjYj:m –

Nj+1–Nj∑

r=1

Xj,r

](
– log

j
m

)n

.

Clearly, I(Ĝm, F̂m) can be obtained by symmetry. �

Theorem 6.2 Let X and Y be the nonnegative and absolutely continuous random variables
with cdfs F and G. Then, for any random X and Y in Lp for some p > 2, we have

In,k(F̂m, Ĝm) → In,k(F , G) a.s as m → ∞.

Proof The proof is similar to that of Theorem 5 of Calì et al. [6]. �

7 Conclusions
In this paper, we have obtained various properties of ECE. This concept of cumulative
entropy can be applied in measuring the uncertainty contained in the associated past
lifetime. We studied this measure of uncertainty for the coherent systems lifetime with
identically distributed components. We also discussed the conditional ECE of a system
lifetime. Moreover, we proposed a measure of ECPI and its empirical version. We studied
a measure of distance symmetric in coherent and mixed systems. Finally, we proposed es-
timators of these measures by using empirical approach and studied numerical results of
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ECE in lifetime data. Further, it has been shown that the empirical measure of ECE and
ECPI converges to normal distribution, when a random sample is taken from continuous
distribution.
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