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Abstract
In this paper, we introduce Bregman subgradient extragradient methods for solving
variational inequalities with a pseudo-monotone operator which are not necessarily
Lipschitz continuous. Our algorithms are constructed such that the stepsizes are
determined by an Armijo line search technique, which improves the convergence of
the algorithms without prior knowledge of any Lipschitz constant. We prove weak
and strong convergence results for approximating solutions of the variational
inequalities in real reflexive Banach spaces. Finally, we provide some numerical
examples to illustrate the performance of our algorithms to related algorithms in the
literature.

MSC: 65K15; 47J25; 65J15; 90C33

Keywords: Pseudo-monotone; Extragradient method; Line search; Variational
inequalities; Bregman distance; Numerical result

1 Introduction
In this paper, we consider the Variational Inequalities (VIs) of Fichera [17] and Stampac-
chia [40] in a unified framework. The VI is defined as finding a point x† ∈ C such that

〈
Ax†, y – x†

〉 ≥ 0, ∀y ∈ C, (1.1)

where C ⊆ E is a nonempty, closed and convex set in a real Banach space E with dual E∗,
〈·, ·〉 denotes the duality paring on E, and A : E → E∗ is a given operator. We denote the set
of solutions of the VI by VI(C, A). The VI is a fundamental problem in optimization theory
and captures various applications such as partial differential equations, optimal control,
and mathematical programming (see, for instance, [19, 29]). A vast literature which deals
on iterative methods for solving VIs can be found, for instance, in [1, 12, 14–16, 24–28, 41].

A classical method for solving the VI is the projection method given by

xn+1 = PC(xn – αnAxn), (1.2)
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where PC is the metric projection onto C ⊂ R
N . The projection method is a natural ex-

tension of the projected gradient method for solving optimization problems, originally
proposed by Goldstein [20], and Levitin and Polyak [31]. Under the assumption that A is
η-strongly monotone and L-Lipschitz continuous with αn ∈ (0, 2

L2 ), the projection method
converges to a solution of the VI. But if these conditions are weakened, say for example,
the strong monotonicity is reduced to monotonicity, the situation becomes complicated
and yields a divergent sequence independent of the stepsize αn [13]. As a result of this set-
back, Korpelevich [30] and Antipin [3] introduced the Extragradient Method (EM) which
is a two-projection process and is defined as

⎧
⎨

⎩
yn = PC(xn – αnAxn),

xn+1 = PC(xn – αnAyn),
(1.3)

where αn ∈ (0, 1/L) and L is the Lipschitz constant of A in finite-dimensional settings. The
EM has received great attention in recent days and many authors have introduced several
improvements and modifications of the method. Observing that in the EM, there is need to
calculate the projection onto the feasible set C twice per each iteration, and in a case where
the set C is not simple to project onto, a minimal distance problem needs to be solved twice
to obtain the next iterate (which can fact can affect the efficiency and applicability of the
EM), Censor et al. [9] introduced the Subgradient Extragradient Method (SEM) in a real
Hilbert space H , while the second projection onto C is replaced with a projection onto a
half-space which can be calculated explicitly. In particular, the SEM is defined as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = PC(xn – αnAxn),

xn+1 = PTn (xn – αnAyn),

where

Tn = {w ∈ H : 〈xn – αnAxn – yn, w – yn〉 ≤ 0},

(1.4)

and αn ∈ (0, 1/L). Since the inception of the SEM, many authors have proposed various
modifications of the SEM; see for instance [7, 8, 14, 41, 42, 44, 45].

Many of the results which deal with EM and SEM for solving the VI used the Euclidean
norm distance and metric projections, which in certain cases do not allow for an applica-
tion to the structure of generally feasible sets and efficient problem-solving. A possible way
out is to use the Bregman divergence (or Bregman distance) introduced by Bregman [6]
where he proposed a method of the type of cyclic projection for finding the common point
of a convex set. His paper has initiated a new field in mathematical programming and non-
linear analysis. For solving the VI, one of the modern variants of the EM is the Nomirovski
prox-method [34], which can be interpreted as a variant of the EM with projection under-
stood in the sense of Bregman divergence. It sometimes allows for the consideration of the
structure of a general feasible set of the problem. For example, for a simplex, it is possible
to take the Kullback–Leibler divergence (Bregman divergence on negative entropy) as the
distance and to obtain explicitly calculated operator of projection onto a simplex. See [37]
for more details of the Bregman divergence.

Recently, Nomirovskii et al. [35] proposed the following two-stage method using the
Bregman divergence with operator f : H → R ∪ {+∞} being continuously differentiable
and σ -strongly convex.
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Algorithm 1.1 Choose x0, y0 ∈ C and positive number λ. Put n = 1.
Step 0: Calculate x1 = PC

x0 (–λy0), y1 = PC
x1 (–λAy0).

Step 1: Calculate xn+1 = PTn
xn (–λAyn) and yn+1 = PC

xn+1 (–λAyn) where

Tn =
{

z ∈ H :
〈∇f (xn) – λAyn–1 – ∇f (yn), z – yn

〉 ≤ 0
}

.

Step 2: If xn+1 = xn and yn+1 = yn = yn–1, then STOP and yn ∈ VI(C, A). Otherwise put
n := n + 1 and go to Step 1,

where PC
x is the projection defined by

PC
x (a) = argmin

y∈C

{
–〈a, y – x〉 + Df (y, x)

}
, ∀a ∈ H , x ∈ int(dom f )

and Df (y, x) is the Bregman divergence between x and y.

They proved a weak convergence result for the VI with a pseudo-monotone and L-
Lipschitz continuous operator in a finite-dimensional linear normed space provided the
stepsize λ satisfies

λ ∈
(

0, (
√

2 – 1)
σ

L

)
.

Also, Gibali [18] introduced the following Bregman subgradient extragradient method
for solving the VI with monotone and Lipschitz continuous operator in a real Hilbert
space.

Algorithm 1.2 Choose x0, y0 ∈ H , λ > 0. Given the current iterates xn and yn, and also
yn–1, if ∇f (xn) – λAyn–1 �= ∇f (yn), construct the half-space

Tn =
{

w ∈ H :
〈∇f (xn) – λAyn–1 – ∇f (yn), w – yn

〉 ≤ 0
}

and if ∇f (xn) – λAyn–1 = ∇f (yn), take Tn = H . Now compute the next iterates via

⎧
⎨

⎩
xn+1 = ΠTn ((∇f )–1(∇f (xn) – λAyn)),

yn+1 = ΠC((∇f )–1(∇f (xn+1) – λAyn)),

where ΠC denotes the Bregman projection onto C (see Definition 2.2).

Gibali [18] proved a weak convergence result for the sequence generated by Algo-
rithm 1.2 provided the stepsize satisfies the condition λ ∈ (0,

√
2–1
L ), where L is the Lip-

schitz constant of A.
It is obvious that the stepsize used in the EM and SEM has an essential role in the con-

vergence of the two methods. An obvious disadvantage of Algorithms 1.1 and 1.2, which
impedes their wide usage, is the assumption that the Lipschitz constant of the operator
is known or admits a simple estimate. Moreover, in many problems, operators may not
satisfy the Lipschitz condition and the operator may not even be monotone as our Exam-
ple 4.2 shows in Sect. 4.
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Motivated by the above results, in this paper, we present modified Bregman subgra-
dient extragradient algorithms with line search technique for solving VI with a pseudo-
monotone operator without necessarily satisfying the Lipschitz condition. The stepsize of
the algorithm is determined via an Armijo line search technique which helps us to avoid
finding a prior estimate of the Lipschitz constant as well as improve the convergence of
the algorithm by finding optimum stepsize for each iteration. We proved weak and strong
convergence results for approximating solutions of VI in real reflexive Banach spaces and
provide numerical examples to illustrate the performance of our algorithms. Our results
improve and extend the corresponding results of [7, 12, 18, 34, 35] in the literature.

2 Preliminaries
In this section, we give some definitions and basic results which will be used in our sub-
sequent analysis. Let E be a real Banach space with dual E∗ and C be a nonempty, closed
and convex subset of E. We denote the strong and the weak convergences of a sequence
{xn} ⊆ H to a point p ∈ E by xn → p and xn ⇀ p, respectively.

We now introduce some necessary structure to formulate our algorithm. Let f : E →
R∪ {+∞} be a function satisfying the following:

(i) int(dom f ) ⊆ E is a nonempty convex set;
(ii) f is continuously differentiable on int(dom f );

(iii) f is strongly convex with strong convexity constant σ > 0, i.e.,

f (x) ≥ f (y) –
〈∇f (y), x – y

〉
+

σ

2
‖x – y‖2, ∀x ∈ dom f and y ∈ int(dom f ). (2.1)

The subdifferential set of f at a point x denoted by ∂f is defined by

∂f (x) =
{
ξ ∈ E∗ : f (y) – f (x) ≥ 〈ξ , y – x〉,∀y ∈ E

}
. (2.2)

Each element ξ ∈ ∂f (x) is called a subgradient of f at x. Since f is continuously differen-
tiable, ∂f (x) = {∇f (x)}, which is the gradient of f at x. The Fenchel conjugate of f is the
convex functional f ∗ : E∗ →R∪{+∞} defined by f ∗(ξ ) = sup{〈ξ , x〉 – f (x) : x ∈ E}. Let E be
a reflexive Banach space, the function f is said to be Legendre if and only if it satisfies the
following two conditions:

(L1) int(dom f ) �= ∅ and ∂f is single-valued on its domain;
(L2) int(dom f ∗) �= ∅ and ∂f ∗ is single-valued on its domain.

The Bregman divergence (or Bregman distance) corresponding to the function f is defined
by (see [6])

Df (x, y) = f (x) – f (y) –
〈∇f (y), x – y

〉
, ∀x ∈ dom f and y ∈ int(dom f ). (2.3)

Remark 2.1 Example of practically important Bregman divergence can be found in [5].
We consider the following two: for f (·) = 1

2‖ · ‖2, we have Df (x, y) = 1
2‖x – y‖2 which is the

Euclidean norm distance. Also, if f (x) = –
∑m

i=1 xi log(xi) which is the Shannon entropy for
the non-negative orthant Rm

++ := {x ∈ R
m : xi > 0}, we obtain the Kullback–Leibler cross

entropy defined by

Df (x, y) =
m∑

i=1

(
xi log

(
xi

yi

)
– 1

)
+

m∑

i=1

yi.
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It is well known that the Bregman distance is not a metric, however, it satisfies the follow-
ing three point identity:

Df (x, z) = Df (x, y) + Df (y, z) +
〈∇f (y) – ∇f (z), x – y

〉
. (2.4)

Also from the strong convexity of f , we have

Df (x, y) ≥ 1
2
‖x – y‖2. (2.5)

Definition 2.2 The Bregman projection (see e.g. [38]) with respect to f of x ∈ int(dom f )
onto a nonempty closed convex set C ⊂ int(dom f ) is the unique vector ΠC(x) ∈ C satisfy-
ing

ΠC(x) := inf
{

Df (x, y) : x ∈ C
}

.

The Bregman projection is characterized by the inequality

z = ΠC(x) ⇐⇒ 〈∇f (x) – ∇f (z), y – z
〉 ≤ 0, ∀y ∈ C. (2.6)

Also

Df
(
y,ΠC(x)

)
+ Df

(
ΠC(x), x

) ≤ Df (y, x), ∀y ∈ C, x ∈ int(dom f ). (2.7)

Following [2, 10], we define the function Vf : E × E → [0,∞) associated with f by

Vf (x, y) = f (x) – 〈x, y〉 + f ∗(y), ∀x, y ∈ E. (2.8)

Vf is non-negative and Vf (x, y) = Df (x,∇f (y)) for all x, y ∈ E. Moreover, by the subdiffer-
ential inequality, it is easy to see that

Vf (x, y) +
〈
z,∇f ∗(y) – x

〉 ≤ Vf (x, z + y) (2.9)

for all x, y, z ∈ E. In addition, if f : E → R ∪ {+∞} is proper lower semicontinuous, then
f ∗ : E →R∪ {+∞} is proper weak lower semicontinuous and convex. Hence, Vf is convex
in second variable, i.e.,

Df

(

z,∇f ∗
( N∑

i=1

ti∇f (xi)

))

≤
N∑

i=1

tiDf (z, xi), (2.10)

where {xi} ⊂ E and {ti} ⊂ (0, 1) with
∑N

i=1 ti = 1.

Definition 2.3 (see [32, 33]) The Minty Variational Inequality Problem (MVI) is defined
as finding a point x̄ ∈ C such that

〈Ay, y – x̄〉 ≥ 0, ∀y ∈ C. (2.11)
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We denote by M(C, A) the set of solutions of (2.11). Some existence results for the MVI
have been presented in [32]. Also, the assumption that M(C, A) �= ∅ has already been used
for solving VI(C, A) in finite-dimensional spaces (see e.g. [39]). It is not difficult to prove
that pseudo-monotonicity implies property M(C, A) �= ∅, but the converse is not true.

Lemma 2.4 (see [33]) Consider the VI (1.1). If the mapping h : [0, 1] → E∗ defined as h(t) =
A(tx + (1 – t)y) is continuous for all x, y ∈ C (i.e., h is hemicontinuous), then M(C, A) ⊂
VI(C, A). Moreover, if A is pseudo-monotone, then VI(C, A) is closed, convex and VI(C, A) =
M(C, A).

The following lemma was proved for the case of metric projection in [11] and can also
be extended to Bregman projection.

Lemma 2.5 For every x ∈ E and α ≥ β > 0, the following inequalities hold:

‖x – PC(x – αAx)‖
α

≤ ‖x – PC(x – βAx)‖
β

(2.12)

and

∥∥x – PC(x – βAx)
∥∥ ≤ ∥∥x – PC(x – αAx)

∥∥.

One powerful tool for deriving weak or strong convergence of iterative sequence is due
to Opial [36]. A Banach space E is said to satisfy Opial property [36] if for any weakly
convergent sequence {xn} in E with weak limit x, we have

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y in E with y �= x. Note that all Hilbert space, all finite-dimensional Banach space
and the Banach space lp (1 ≤ p < ∞) satisfy the Opial property. However, not every Banach
space satisfies the Opial property; see for example [21]. But, the following Bregman Opial-
like inequality for every Banach space E has been proved in [23].

Lemma 2.6 ([23]) Let E be a Banach space and let f : E → (–∞,∞] be a proper strictly
convex function so that it is Gâteaux differentiable and {xn} is a sequence in E such that
xn ⇀ u for some u ∈ E. Then

lim sup
n→∞

Df (u, xn) < lim sup
n→∞

Df (v, xn)

for all v in the interior of dom f with u �= v.

Lemma 2.7 ([46]) Let {an} be a non-negative real sequence satisfying an+1 ≤ (1 – αn)an +
αnbn, where {αn} ⊂ (0, 1),

∑∞
n=0 αn = ∞ and {bn} is a sequence such that lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.
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3 Main results
In this section, we present our algorithms and discuss the convergence analysis. The main
advantages of our algorithms are that the stepsize is determined by an Armijo line search
technique and does not require the prior knowledge of any Lipschitz constant. We assume
that the following conditions are satisfied:

(A1) C is nonempty, closed and convex subset of a reflexive Banach space E;
(A2) the operator A : E → E∗ is pseudo-monotone, i.e., for all x, y ∈ E, 〈Ax, y – x〉 ≥ 0

implies 〈Ay, y – x〉 ≥ 0;
(A3) the operator A is weakly sequentially continuous, i.e., if for any sequence {xn} ⊂ E,

we have xn ⇀ x implies Axn ⇀ Ax;
(A4) the set VI(C, A) is nonempty;
(A5) the function f : E →R∪ {+∞} is Legendre, uniformly Gâteaux differentiable,

strongly convex, bounded on bounded subsets of E and its gradient ∇f is
weak-weak continuous, i.e., xn ⇀ x implies that ∇f (xn) ⇀ ∇f (x).

First, we introduce a weak convergence Bregman subgradient extragradient method for
approximating solutions of the VI in real Banach spaces.

Algorithm 3.1
Step 0: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x1 ∈ E and set n = 1.
Step 1: Compute

yn = ΠC
(∇f ∗(∇f (xn) – αnAxn

))
, (3.1)

where αn = γ lkn , with kn being the smallest non-negative integer k satisfying

γ lk‖Axn – Ayn‖ ≤ μ‖xn – yn‖. (3.2)

If xn = yn or Ayn = 0, stop, yn is a solution of the VI. Else, do Step 2.
Step 2: Compute

xn+1 = ΠTn

(∇f ∗(∇f (xn) – αnAyn
))

, (3.3)

where Tn is the half-space defined by

Tn =
{

w ∈ E :
〈∇f (xn) – αnxn – ∇f (yn), w – yn

〉 ≤ 0
}

. (3.4)

Set n := n + 1 and return to Step 1.

Remark 3.2 We note that our Algorithm 3.1 is proposed in real Banach spaces while that of
Nomirovski et al. [34] and Denisov et al. [12] were proposed in finite-dimensional spaces.
Furthermore, our method is more general than that of [12, 18, 34, 35] which used a fixed
stepsize for all iterates. We will see in the following result that the stepsize rule defined by
(3.2) is well defined.

Lemma 3.3 There exists a non-negative integer k satisfying (3.2). In addition 0 < αn ≤ γ .
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Proof If xn ∈ VI(C, A), then xn = ΠC(∇f ∗(∇f (xn) –αnAxn)) and kn = 0. Hence, we consider
the case where xn /∈ VI(C, A) and assume the contrary, i.e. for k > 0,

γ lk∥∥Axn – AΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ > μ
∥∥xn – ΠC

(∇f ∗(∇f (xn) – γ lkAxn
))∥∥.

This implies that

∥∥Axn – AΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ >
‖xn – ΠC(∇f ∗(∇f (xn) – γ lkAxn))‖

γ lk . (3.5)

Next, we consider two possibilities, namely, when xn ∈ C and when xn /∈ C.
First, if xn ∈ C, then xn = ΠC(xn). Since ΠC and A are continuous,

lim
k→∞

∥∥xn – ΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ = 0.

Consequently, by the continuity of A on bounded sets, we get

lim
k→∞

∥∥Axn – AΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ = 0. (3.6)

Combining (3.5) and (3.6), we have

lim
k→∞

‖xn – ΠC(∇f ∗(∇f (xn) – γ lkAxn))‖
γ lk = 0. (3.7)

Moreover, from the uniform continuity of ∇f on bounded subsets, we have

lim
k→∞

‖∇f (xn) – ∇f (ΠC(∇f ∗((xn) – γ lkAxn)))‖
γ lk = 0. (3.8)

Now let zn = ΠC(∇f ∗(∇f (xn) – γ lkAxn)), then, by (2.6), we obtain

〈∇f (zk) – ∇f (xn) + γ lkAxn, x – zn
〉 ≥ 0, ∀x ∈ C.

This means that

〈Axn, x – zn〉 ≥
〈∇f (xn) – ∇f (zn)

γ lk , x – zn

〉
, ∀x ∈ C.

Hence by taking the limit as n → ∞ and from (3.8), we get

〈Axn, x – xn〉 ≥ 0, ∀x ∈ C.

Therefore, xn ∈ VI(C, A). This is a contradiction.
On the other hand, if xn /∈ C, then

lim
k→∞

∥∥xn – ΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ =
∥∥xn – ΠC(xn)

∥∥ > 0 (3.9)
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and

lim
k→∞

γ lk∥∥Axn – AΠC
(∇f ∗(∇f (xn) – γ lkAxn

))∥∥ = 0. (3.10)

Combining (3.5), (3.9) and (3.10), we get a contradiction. �

We now present the convergence analysis of Algorithm 3.1. The following lemma will
be used in the sequel.

Lemma 3.4 Assume Conditions (A1)–(A5) hold. Let {xn} and {yn} be the sequences gener-
ated by Algorithm 3.1. Then

Df (p, xn+1) ≤ Df (p, xn) – (1 – μ)Df (yn, xn) – (1 – μ)Df (xn+1, yn)

for any p ∈ VI(C, A).

Proof Since xn+1 ∈ Tn, it follows from (2.7) that

Df (p, xn+1) = Df
(
p,ΠC

(∇f ∗(∇f (xn) – αnAyn
)))

≤ Df
(
p,∇f ∗(∇f (xn) – αnAyn

))
– Df

(
xn+1,∇f ∗(∇f (xn) – αnAyn

))

= Vf
(
p,∇f (xn) – αnAyn

)
– Vf

(
xn+1,∇f (xn) – αnAyn

)

= f (p) –
〈
p,∇f (xn) – αnAyn

〉
+ f ∗(∇f (xn) – αnAyn

)

– f (xn+1) +
〈
xn+1,∇f (xn) – αnAyn

〉
– f ∗(∇f (xn) – αnAyn

)

= f (p) –
〈
p,∇f (xn)

〉
+ f ∗(xn) – f (xn+1) +

〈
xn+1,∇f (xn)

〉
– f ∗(xn)

+ αn〈p, Ayn〉 – αn〈xn+1, Ayn〉
= Df (p, xn) – Df (xn+1, xn) + αn〈p – xn+1, Ayn〉. (3.11)

Since A is pseudo-monotone and p ∈ VI(C, A),

〈Ayn, yn – p〉 ≥ 0. (3.12)

Hence, using (3.12) and (2.4) in (3.11), we get

Df (p, xn+1) ≤ Df (p, xn) – Df (xn+1, xn) + αn〈p – yn, Ayn〉 + αn〈yn – xn+1, Ayn〉
≤ Df (p, xn) – Df (xn+1, xn) + αn〈yn – xn+1, Ayn〉
= Df (p, xn) – Df (xn+1, yn) – Df (yn, xn) +

〈∇f (xn) – ∇f (yn), xn+1 – yn
〉

+ αn〈yn – xn+1, Ayn〉
= Df (p, xn) – Df (xn+1, yn) – Df (yn, xn)

+
〈∇f (xn) – αnAyn – ∇f (yn), xn+1 – yn

〉
. (3.13)
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Now, we estimate the last variable in (3.13) as follows:

〈∇f (xn) – αnAyn – ∇f (yn), xn+1 – yn
〉

=
〈∇f (xn) – αnAxn – ∇f (yn), xn+1 – yn

〉

+ αn〈Axn – Ayn, xn+1 – yn〉
≤ αn〈Axn – Ayn, xn+1 – yn〉. (3.14)

Using the Cauchy–Schwartz inequality and (3.2), we have

〈∇f (xn) – αnAyn – ∇f (yn), xn+1 – yn
〉 ≤ αn‖Axn – Ayn‖‖xn+1 – yn‖
≤ μ‖xn – yn‖‖xn+1 – yn‖
≤ μ

2
(‖yn – xn‖2 + ‖xn+1 – yn‖2)

≤ μ
(
Df (yn, xn) + Df (xn+1, yn)

)
. (3.15)

Substituting (3.15) into (3.13), we get

Df (p, xn+1) ≤ Df (p, xn) – (1 – μ)Df (yn, xn) – (1 – μ)Df (xn+1, yn). �

Theorem 3.5 Assume that Conditions (A1)–(A5) holds and lim infn→∞ αn > 0. Then any
sequence {xn} generated by Algorithm 3.1 converges weakly to an element of VI(C, A).

Proof Claim 1: {xn} is bounded. Indeed, let p ∈ VI(C, A), we have from Lemma 3.4

Df (p, xn+1) ≤ Df (p, xn).

This implies that {Df (p, xn)} is bounded and nonincreasing, thus, limn→∞ Df (p, xn) exists.
Hence

lim
n→∞

(
Df (p, xn) – Df (p, xn+1)

)
= 0. (3.16)

Moreover, due to (2.5), we see that {xn} is bounded. Consequently {yn} is bounded.
Claim 2: limn→∞ ‖xn – yn‖ = limn→∞ ‖xn+1 – yn‖ = limn→∞ ‖xn+1 – xn‖ = 0. Indeed, from

Lemma 3.4, we get

(1 – μ)Df (yn, xn) + (1 – μ)Df (xn+1, yn) ≤ Df (p, xn) – Df (p, xn+1).

Since μ ∈ (0, 1), it follows from (3.16) that

lim
n→∞ Df (yn, xn) = lim

n→∞ Df (xn+1, yn) = 0. (3.17)

Hence from (2.5), we get

lim
n→∞‖xn – yn‖ = lim

n→∞‖xn+1 – yn‖ = 0, (3.18)

and

lim
n→∞‖xn+1 – xn‖ = 0.
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Claim 3: {xn} weakly converges to an element of VI(C, A). Indeed, since {xn} is a bounded
sequence, there exists a subsequence {xnk } of {xn} such that xnk ⇀ z ∈ E. From the fact that
limn→∞ ‖xn – yn‖ = 0, we obtain ynk ⇀ z, where {ynk } is a subsequence of {yn}. Since

ynk = ΠC
(∇f ∗(∇f (xnk ) – αnk Axnk

))
,

it follows from (2.6) that

〈∇f (xnk ) – αnk Axnk – ∇f (ynk ), y – ynk

〉 ≤ 0, ∀y ∈ C. (3.19)

This means that

1
αnk

〈∇f (xnk ) – ∇f (ynk ), y – ynk

〉 ≥ 〈Axnk , y – ynk 〉, ∀y ∈ C.

Hence

1
αnk

〈∇f (xnk ) – ∇f (ynk ), y – ynk

〉
+ 〈Axnk , ynk – xnk 〉 ≤ 〈Axnk , y – xnk 〉, ∀y ∈ C.

Now we show that

lim inf
k→∞

〈Axnk , y – xnk 〉 ≥ 0. (3.20)

We consider two possible cases. First suppose that lim infk→∞ αnk > 0, since ‖xnk – ynk ‖ →
0 as k → ∞, by the weak-weak continuity of ∇f , we have ‖∇f (xnk ) – ∇f (ynk )‖ → 0 as
k → ∞. Taking the limit of the above inequality as k → ∞ we get

lim inf
k→∞

〈Axnk , y – xnk 〉 ≥ 0, ∀y ∈ C. (3.21)

On the other hand, suppose lim infk→∞ αnk = 0. Let znk = ΠC(∇f ∗(∇f (xn) – αnk l–1Axnk )),
we have αnk l–1 > αnk and by using Lemma 2.5, we obtain

‖xnk – znk ‖ ≤ 1
l
‖xnk – ynk ‖ → 0 as k → ∞.

Furthermore, znk ⇀ z ∈ C, which implies that {znk } is a bounded sequence. By the uniform
continuity of A, we have

‖Axnk – Aznk ‖ → 0 as k → ∞. (3.22)

Using the Armijo line search rule, we get

1
μ

‖Axnk – Aznk ‖ >
‖xnk – znk ‖

αnk l–1 . (3.23)

Combining (3.22) and (3.23), we get

lim
k→∞

‖xnk – znk ‖
αnk l–1 = 0.
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Moreover,

〈∇f (xnk ) – αnk l–1Axnk – ∇f (znk ), x – znk

〉 ≤ 0, ∀x ∈ C.

Hence

1
αnk l–1

〈∇f (xnk ) – ∇f (znk ), x – znk

〉
+ 〈Axnk , znk – xnk 〉 ≤ 〈Axnk , x – xnk 〉, ∀x ∈ C.

Taking the limit of the above inequality as k → ∞, we get

lim inf
k→∞

〈Axnk , x – xnk 〉 ≥ 0.

Thus, the inequality is proven.
Now choose a sequence {εk} ⊂ (0, 1) such that εk → 0 as k → ∞. For each k ≥ 1, there

exists a smallest number N ∈N satisfying

〈Axnk , y – xnk 〉 + εk ≥ 0, ∀k ≥ N .

This implies that

〈Axnk , y + εktnk – xnk 〉 ≥ 0, ∀k ≥ N

for some tnk ∈ E satisfying 1 = 〈Axnk , tnk 〉 (since Axnk �= 0). Since A is pseudo-monotone,
we have

〈
A(y + εktnk ), y + εktnk – xnk

〉 ≥ 0, ∀k ≥ N .

This implies that

〈Ay, y – xnk 〉 ≥ 〈
Ay – A(y + εktnk ), y + εktnk – xnk

〉
– εk〈Ay, tnk 〉, ∀k ≥ N . (3.24)

Since εk → 0 and A is continuous, then the right hand side of (3.24) tends to zero. Thus,
we obtain

lim inf
k→∞

〈Ay, y – xnk 〉 ≥ 0, ∀y ∈ C.

Hence

〈Ay, y – z〉 = lim
k→∞

〈Ay, y – xnk 〉 ≥ 0, ∀y ∈ C.

Therefore, from Lemma 2.4, we obtain z ∈ VI(C, A).
Finally, we show that z is unique. Assume the contrary, i.e., there exists a subsequence

{xnj} of {xn} such that xnj ⇀ ẑ with ẑ �= z. Following a similar argument to the one above,
we get ẑ ∈ VI(C, A). It follows from the Bregman Opial-like property of H (more precisely,
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Lemma 2.6) that

lim
n→∞ Df (z, xn) = lim

k→∞
Df (z, xnk ) < lim

k→∞
Df (ẑ, xnk )

= lim
n→∞ Df (ẑ, xn) = lim

j→∞ Df (ẑ, xnj )

< lim
j→∞ Df (z, xnj ) = lim

n→∞ Df (z, xn),

which is a contradiction. Thus, we have z = ẑ and the desired result follows. This completes
the proof. �

Next, we propose a strong convergence Bregman subgradient extragradient algorithm
with Halpern iterative method [22] for solving the VI (1.1) in real Banach spaces. This is
important for supporting the infinite-dimensional setting of our work.

Algorithm 3.6
Step 0: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1), {δn} ⊂ (0, 1). Let x1, u ∈ E and set n = 1.
Step 1: Compute

yn = ΠC
(∇f ∗(∇f (xn) – αnAxn

))
, (3.25)

where αn = γ lkn , with kn being the smallest non-negative integer k satisfying

γ lk‖Axn – Ayn‖ ≤ μ‖xn – yn‖. (3.26)

If xn = yn or Ayn = 0, stop, yn is a solution of the VI. Else, do Step 2.
Step 2: Compute

zn = ΠTn

(∇f ∗(∇f (xn) – αnAyn
))

, (3.27)

where Tn is the half-space defined by

Tn =
{

w ∈ E :
〈∇f (xn) – αnxn – ∇f (yn), w – yn

〉 ≤ 0
}

. (3.28)

Step 3: Compute

xn+1 = ∇f ∗(δn∇f (u) + (1 – δn)∇f (zn)
)
. (3.29)

Set n := n + 1 and return to Step 1.

For proving the convergence of Algorithm 3.6, we assume that the following condition
is satisfied.

(C1) limn→∞ δn = 0 and
∑∞

n=0 δn = +∞.
We first prove the following lemmas which are crucial for our main theorem.

Lemma 3.7 The sequence {xn} generated by Algorithm 3.6 is bounded.
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Proof Let p ∈ VI(C, A), then

Df (p, zn) = Df
(
p,ΠC

(∇f ∗(∇f (xn) – αnAyn
)))

≤ Df
(
p,∇f ∗(∇f (xn) – αnAyn

))
– Df

(
zn,∇f ∗(∇f (xn) – αnAyn

))

= Vf
(
p,∇f (xn) – αnAyn

)
– Vf

(
zn,∇f (xn) – αnAyn

)

= f (p) –
〈
p,∇f (xn) – αnAyn

〉
+ f ∗(∇f (xn) – αnAyn

)

– f (zn) +
〈
zn,∇f (xn) – αnAyn

〉
– f ∗(∇f (xn) – αnAyn

)

= f (p) –
〈
p,∇f (xn)

〉
+ f ∗(xn) – f (zn) +

〈
zn,∇f (xn)

〉
– f ∗(xn)

+ αn〈p, Ayn〉 – αn〈zn, Ayn〉
= Df (p, xn) – Df (zn, xn) + αn〈p – zn, Ayn〉. (3.30)

Since p is a solution of VI (1.1), we have 〈Ap, x – p〉 ≥ 0 for all x ∈ C. By the pseudo-
monotonicity of A on H , we get 〈Ax, x – p〉 ≥ 0 for all x ∈ C. Hence 〈Ayn, p – yn〉 ≥ 0. Thus,
we have

〈Ayn, p – zn〉 = 〈Ayn, p – yn〉 + 〈Ayn, yn – zn〉 ≤ 〈Ayn, yn – zn〉. (3.31)

From (3.30) and (3.31), we have

Df (p, zn) ≤ Df (p, xn) – Df (zn, xn) + 〈Ayn, yn – zn〉
= Df (p, xn) – Df (zn, yn) – Df (yn, xn) +

〈∇f (xn) – ∇f (yn), zn – yn
〉

+ αn〈yn – zn, Ayn〉
= Df (p, xn) – Df (zn, yn) – Df (yn, xn)

+
〈∇f (xn) – αnAyn – ∇f (yn), zn – yn

〉
. (3.32)

Note that

〈∇f (xn) – αnAyn – ∇f (yn), zn – yn
〉

=
〈∇f (xn) – αnAxn – ∇f (yn), zn – yn

〉

+ αn〈Axn – Ayn, zn – yn〉
≤ αn〈Axn – Ayn, zn – yn〉
≤ αn‖Axn – Ayn‖‖zn – yn‖
≤ μ‖xn – yn‖‖zn – yn‖
≤ μ

2
(‖yn – xn‖2 + ‖zn – yn‖2)

≤ μ
(
Df (yn, xn) + Df (zn, yn)

)
. (3.33)

Hence from (3.32) and (3.33), we get

Df (p, zn) ≤ Df (p, xn) – (1 – μ)Df (yn, xn) – (1 – μ)Df (zn, yn)

≤ Df (p, xn). (3.34)
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Furthermore, from (3.29), we have

Df (p, xn+1) = Df
(
p,∇f ∗(δn∇f (u) + (1 – δn)∇f (zn)

))

≤ δnDf (p, u) + (1 – δn)Df (p, zn)

≤ δnDf (p, u) + (1 – δn)Df (p, xn)

≤ max
{

Df (p, u), Df (p, xn)
}

...

≤ max
{

Df (p, u), Df (p, x1)
}

.

This implies that {Df (p, xn)} is bounded. Hence, {xn} is bounded. Consequently, we see
that {∇f (xn)}, {yn}, {zn} are bounded. �

Lemma 3.8 The sequence {xn} generated by Algorithm 3.6 satisfies the following estimates:
(i) sn+1 ≤ (1 – δ)sn + δnbn,

(ii) –1 ≤ lim supn→∞ bn < +∞,
where sn = Df (p, xn), bn = 〈∇f (u) – ∇f (p), xn+1 – p〉 for all p ∈ VI(C, A).

Proof From (2.9) we have

Df (p, xn+1) ≤ Df
(
p,∇f ∗(δn∇f (u) + (1 – δn)∇f (zn)

))

= Vf
(
p, δn∇f (u) + (1 – δn)∇f (zn)

)

≤ Vf
(
p, δn∇f (u) + (1 – δn)∇f (zn) – δn

(∇f (u) – ∇f (p)
))

–
〈
–δn

(∇f (u) – ∇f (p)
)
, xn+1 – p

〉

= Vf
(
p, δn∇f (p) + (1 – δn)∇f (zn)

)
+ δn

〈∇f (u) – ∇f (p), xn+1 – p
〉

≤ δnVf (p, p) + (1 – δn)Vf
(
p,∇f (zn)

)
+ δn

〈∇f (u) – ∇f (p), xn+1 – p
〉

= (1 – δn)Df (p, zn) + δn
〈∇f (u) – ∇f (p), xn+1 – p

〉

≤ (1 – δn)Df (p, xn) + δn
〈∇f (u) – ∇f (p), xn+1 – p

〉
. (3.35)

This established (i). Next, we show (ii). Since {xn} is bounded and δn ∈ (0, 1), we have

sup
n≥0

bn ≤ sup
n≥0

∥∥∇f (u) – ∇f (p)
∥∥‖xn+1 – p‖ < ∞.

We now show that lim supn→∞ bn ≥ –1. Assume the contrary, i.e., there exists n0 ∈N such
that bn ≥ –1 for all n ≥ n0. Hence it follows that

sn+1 ≤ (1 – δn)sn + δnbn

< (1 – δn)sn – δn

= sn – δn(sn + 1)

≤ sn – δn.
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By induction, we obtain

sn+1 ≤ sn0 –
n∑

i=1

δi, ∀n ≥ n0.

Taking the lim sup of the above inequality, we have

lim sup
n→∞

sn ≤ sn0 – lim
n→∞

n∑

i=1

δi = –∞.

This contradicts the fact that {sn} is a non-negative real sequence. Thus lim supn→∞ bn ≥
–1. �

Next, we present our strong convergence theorem.

Theorem 3.9 Assume Conditions (A1)–(A5) and (C1) hold. Then the sequence {xn} gen-
erated by Algorithm 3.6 converges strongly to an element in VI(C, A).

Proof Let p ∈ VI(C, A) and Γn = Df (p, xn). We divide the proof into two cases.
Case I: Suppose that there exists n0 ∈R such that {Γn} is monotonically non-increasing

for n ≥ n0. Since {Γn} is bounded (see Lemma 3.7), {Γn} converges and therefore

Γn – Γn+1 → 0 as n → ∞.

From (3.34), we have

Df (p, xn+1) ≤ δnDf (p, u) + (1 – δn)Df (p, zn)

≤ δnDf (p, u) + (1 – δn)
[
Df (p, xn) – (1 – μ)Df (zn, yn) – (1 – μ)Df (yn, xn)

]
.

This implies that

(1–δn)(1–μ)
[
Df (zn, yn)+Df (yn, xn)

] ≤ δn
(
Df (p, u)–Df (p, xn)

)
+Df (p, xn)–Df (p, xn+1).

Since δn → 0, we have

lim
n→∞(1 – μ)

[
Df (zn, yn) + Df (yn, xn)

]
= 0.

Hence

lim
n→∞ Df (zn, yn) = lim

n→∞ Df (yn, xn) = 0.

Using (2.5), we obtain

lim
n→∞‖zn – yn‖ = lim

n→∞‖yn – xn‖ = 0.

This implies that

lim
n→∞‖zn – xn‖ = 0. (3.36)
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Furthermore

Df (zn, xn+1) = Df
(
zn,∇f ∗(δn∇f (u) + (1 – δn)∇f (zn)

))

≤ δnDf (zn, u) + (1 – δn)Df (zn, zn) → 0.

Thus

lim
n→∞‖zn – xn+1‖ = 0. (3.37)

Therefore from (3.36) and (3.37), we get

lim
n→∞‖xn+1 – xn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ x̄. We now
show that x̄ ∈ VI(C, A). From

ynk = ΠC
(∇f ∗(∇f (xnk ) – αnk Axnk

))
,

we have

〈∇f (xnk ) – αnk Axnk – ∇f (ynk ), x – ynk

〉 ≤ 0, ∀x ∈ C. (3.38)

This implies that

1
αnk

〈∇f (xnk ) – ∇f (ynk ), x – ynk

〉 ≥ 〈Axnk , x – ynk 〉, ∀x ∈ C.

Hence

1
αnk

〈∇f (xnk ) – ∇f (ynk ), x – ynk

〉
+ 〈Axnk , ynk – xnk 〉 ≤ 〈Axnk , x – xnk 〉, ∀x ∈ C.

Following a similar approach to Theorem 3.5, we can show that

lim inf
k→∞

〈Axnk , x – xnk 〉 ≥ 0, ∀x ∈ C. (3.39)

Let {εk} be a sequence in (0, 1) such that εk → 0 as k → ∞. For each k ≥ 1, there exists a
smallest number N ∈N satisfying

〈Axnk , x – xnk 〉 + εk ≥ 0, ∀k ≥ N .

This implies that

〈Axnk , x + εktnk – xnk 〉 ≥ 0, ∀k ≥ N

for some tnk ∈ E satisfying 1 = 〈Axnk , tnk 〉 (since Axnk �= 0). Since A is pseudo-monotone,
we have

〈
A(x + εktnk ), x + εktnk – xnk

〉 ≥ 0, ∀k ≥ N .
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Thus

〈Ax, x – xnk 〉 ≥ 〈
Ax – A(x + εktnk ), x + εktnk – xnk

〉
– εk〈Ax, tnk 〉, ∀k ≥ N . (3.40)

Since εk → 0 and A is continuous, the right hand side of (3.40) tends to zero. Thus, we
obtain

lim inf
k→∞

〈Ax, x – xnk 〉 ≥ 0, ∀x ∈ C.

Hence

〈Ax, x – x̄〉 = lim
k→∞

〈Ax, x – xnk 〉 ≥ 0, ∀x ∈ C.

Therefore, from Lemma 2.4, we obtain x̄ ∈ VI(C, A). We now show that {xn} converges
strongly to p. It suffices to show that lim supn→∞〈∇f (u) – ∇f (p), xn+1 – p〉 ≤ 0. To do this,
choose a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈∇f (u) – ∇f (p), xn+1 – p
〉

= lim
k→∞

〈∇f (u) – ∇f (p), xnk +1 – p
〉
. (3.41)

Since ‖xnk +1 – xnk ‖ → 0 and xnk ⇀ x̄ as k → ∞, we have from (2.6) and (3.41)

lim sup
n→∞

〈∇f (u) – ∇f (p), xn+1 – p
〉

= lim
k→∞

〈∇f (u) – ∇f (p), xnk +1 – p
〉

=
〈∇f (u) – ∇f (p), x̄ – p

〉

≤ 0. (3.42)

Using Lemma 2.7, Lemma 3.8(i) and (3.42), we obtain limn→∞ Df (p, xn) = 0. This implies
that ‖xn – p‖ → 0, hence, {xn} converges strongly to p. Consequently, {yn} and {zn} con-
verges strongly to p.

Case II: Suppose {Df (p, xn)} is not monotonically decreasing. Let τ : N →N for all n ≥ n0

(for some n0 large enough) be defined by

τn = max{k ∈N : τk ≤ τk+1}.

Clearly, τ is nondecreasing, τ (n) → ∞ as n → ∞ and

0 ≤ Df (p, xτ (n)) ≤ Df (p, xτ (n)+1), ∀n ≥ n0.

Following a similar argument to Case I, we obtain

‖xτ (n) – yτ (n)‖ → 0, ‖vτ (n) – Tvτ (n)‖ → 0, ‖xτ (n)+1 – xτ (n)‖ → 0

as n → ∞ and Ωw(xτ (n)) ⊂ VI(C, A), where Ωw(xτ (n)) is the weak subsequential limit of
{xτ (n)}. Also,

lim sup
n→∞

〈∇f (u) – ∇f (p), xτ (n)+1 – p
〉 ≤ 0. (3.43)
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From Lemma 3.8(i), we have

Df (p, xτ (n)+1) ≤ (1 – δτ (n))Df (p, xτ (n)) + δτ (n)
〈∇f (u) – ∇f (p), xτ (n)+1 – p

〉
.

Since Df (p, xτ (n)) ≤ Df (p, xτ (n)+1),

0 ≤ Df (p, xτ (n)+1) – Df (p, xτ (n))

≤ (1 – δτ (n))Df (p, xτ (n)) + δτ (n)
〈∇f (u) – ∇f (p), xτ (n)+1 – p

〉
– Df (p, xτ (n)).

Hence, from (3.42), we get

Df (p, xτ (n)) ≤ 〈∇f (u) – ∇f (p), xτ (n)+1 – p
〉 → 0 as n → ∞.

As a consequence, we obtain, for all n ≥ n0,

0 ≤ Df (p, xn) ≤ max
{

Df (p, xτ (n)), Df (p, xτ (n)+1)
}

= Df (p, xτ (n)+1).

Thus

Df (p, xn) → 0 as n → ∞.

Therefore, from (2.5)

lim
n→∞‖xn – p‖ = 0.

This implies that {xn} converges strongly to p. This completes the proof. �

Remark 3.10
(i) We note that our results extend the results of [12, 35] from finite-dimensional

spaces to real Banach spaces.
(ii) We also extend the result of Gibali [18] to solving pseudo-monotone variational

inequalities and real Banach spaces.
(iii) Moreover, our algorithms does not require any prior estimate of the Lipschitz

constant for their convergence. This improves the corresponding results of
[7, 8, 12, 18, 35] in the literature.

(iv) The strong convergence theorem proved in this paper is more desirable for solving
optimization problems.

Remark 3.11 The operator A is said to be monotone if 〈Ax – Ay, x – y〉 ≥ 0 for all x, y ∈ E.
It is easy to see that every monotone operator is pseudo-monotone but the converse is not
true (see Example 4.2). Moreover, we give the following example of a variational inequality
problem satisfying assumptions (A2)–(A4), but not Lipschitz continuous (see also [43]).

Example 3.12 Let E = �2(R), C = {x = (x1, x2, . . . , xi, . . . ) ∈ E : |xi| ≤ 1
i ,∀i = 1, 2, . . . } and

Ax =
(

‖x‖ +
1

‖x‖ + 1

)
x.
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It is easy to see that VI(C, A) �= ∅ since 0 ∈ VI(C, A), A is pseudo-monotone, sequentially
weakly continuous but not Lipschitz continuous on E. Indeed, let u, v ∈ C be such that
〈Ax, y – x〉 ≥ 0. This means that 〈x, y – x〉 ≥ 0. Consequently,

〈Ay, y – x〉 =
(

‖y‖ +
1

‖y‖ + 1

)
〈y, y – x〉

>
(

‖y‖ +
1

‖y‖ + 1

)(〈y, y – x〉 – 〈x, y – x〉)

=
(

‖y‖ +
1

‖y‖ + 1

)
‖y – x‖2 > 0.

Hence, A is pseudo-monotone. Also, since A is compact, it is uniformly continuous and
thus sequentially weakly continuous on E. To see that A is not L-Lipschitz continuous, let
x = (L, 0, . . . , 0, . . . ) and y = (0, 0, . . . , 0, . . . ), then

‖Ax – Ay‖ = ‖Ax‖ =
(

‖x‖ +
1

‖x‖ + 1

)
‖x‖ =

(
L +

1
L + 1

)
L.

Moreover, ‖Ax – Ay‖ ≤ L‖x – y‖ is equivalent to

(
L +

1
L + 1

)
L ≤ L2.

This implies that

1
L + 1

≤ 0.

This is a contradiction, and thus A is not Lipschitz continuous on E.

4 Numerical illustrations
In this section, we present some numerical examples to illustrate the convergence and
efficiency of the proposed algorithms. The projection onto C is computed effectively by
using the function quadprog in Matlab optimization toolbox, while the projection onto the
half-space is calculated explicitly. All program computation are performed on a Lenovo PC
Intel(R) Core i7, 4.00 GB RAM. The stopping criterion used for the examples is ‖xn+1–xn‖2

‖x2–x1‖2 <
ε, where ε is stated in each example.

Example 4.1 Consider an operator A : Rm → R
m defined by Ax = Mx + q with q being a

vector in R
m and

M = NNT + S + D,

where N is a m×m matrix, S is a m×m skew-symmetric matrix and D is a m×m diagonal
matrix with its diagonal entries being non-negative (so that M is positive semidefinite).
The feasible set C in this case is defined by

C :=
{

x = (x1, x2, . . . , xm) ∈R
m : –5 ≤ xi ≤ 5, i = 1, 2, . . . , m

}
.
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Table 1 Computation result for Example 4.1

Algorithm 1.1 Algorithm 1.2 Algorithm 3.1 Algorithm 3.6

m = 50 No of Iter. 33 60 31 16
CPU time (sec) 0.0074 0.0184 0.0099 0.0040

m = 100 No of Iter. 60 48 29 19
CPU time (sec) 0.0169 0.0143 0.0094 0.0063

m = 200 No of Iter. 72 54 50 19
CPU time (sec) 0.0258 0.0183 0.0170 0.0034

m = 500 No of Iter. 148 120 68 59
CPU time (sec) 0.0609 0.0469 0.0193 0.0172

Figure 1 Example 4.1, top left:m = 50; top right:m = 100, bottom left:m = 200; bottom right:m = 500

Clearly A is monotone (hence, pseudo-monotone). We set q = 0 ∈ R
m and choose the

entries of N and S to be randomly generated in (–2, 2) while that of D are randomly gen-
erated in (0, 1). It is easy to see that VI(C, A) = {0 ∈ R

m}. For the sake of simplicity, we
define f (x) = 1

2‖x‖2
2, we take σ = 0.57, γ = 0.3, l = 5, μ = 0.02 and test our algorithm for

m = 50, 100, 200 and 500. We compare the performance of our algorithms with the algo-
rithms of Nomirovski [35] and Gibali [18], taking ε = 10–4. The numerical result can be
found in Table 1 and Fig. 1.

Next, we give an example in infinite-dimensional space to support the strong conver-
gence of our algorithm. We take f (x) = 1

2‖x‖2.

Example 4.2 Let E = L2([0, 1]) with norm ‖x‖ = (
∫ 1

0 |x(t)|2 dt) 1
2 and inner product 〈x, y〉 =

∫ 1
0 x(t)y(t) dt, x, y ∈ E. Let C be the unit ball in E defined by C = {x ∈ E : ‖x‖ ≤ 1}. Let

B : C → R be an operator defined by B(u) = 1
1+‖u‖2 and F : L2([0, 1]) → L2([0, 1]) be the
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Volterra integral operator defined by F(u)(t) =
∫ t

0 u(s) ds for all u ∈ L2([0, 1]) and t ∈ [0, 1].
F is bounded, linear and monotone (cf. Exercise 20.12 in [4]). Now define A : C → L2([0, 1])
by A(u)(t) = (B(u)F(u))(t). Suppose 〈Au, v – u〉 ≥ 0 for all u, v ∈ C, then 〈Fu, v – u〉 ≥ 0.
Hence

〈Av, v – u〉 = 〈BvFv, v – u〉
= Bv〈Fv, v – u〉
≥ Bv

(〈Fv, v – u〉 – 〈Fu, v – u〉)

= Bv〈Fv – Fu, v – u〉 ≥ 0. (4.1)

Thus, A is pseudo-monotone. To see that A is not monotone, choose v = 1 and u = 2, then

〈Av – Au, v – u〉 = –
1

10
< 0.

Now consider the VI in which the underlying operator A is as defined above. Clearly, the
unique solution of the VI is 0 ∈ L2([0, 1]). Choosing σ = 0.15, γ = 0.7, l = 7, μ = 0.34 and
ε < 10–4. We plot the graph of ‖xn+1 – xn‖2 against number of iteration for Algorithm 3.6
and Algorithm 1.2 of [18]. We choose the same x1 for both algorithms and take u in Algo-
rithm 3.6 to be y1 in Algorithm 1.2 as follows:

Case I: x1 = sin(t), u = t2 + t/5,
Case II: x1 = exp(2t)/40, u = exp(3t)/7.

The numerical result is reported in Fig. 2 and Table 2.

Figure 2 Example 4.2, left: Case I; right: Case II

Table 2 Computation result for Example 4.2

Algorithm 3.6 Algorithm 1.2

Case I No of Iter. 24 112
CPU time (sec) 1.3052 69.5319

Case II No of Iter. 16 62
CPU time (sec) 1.8171 88.4272
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Table 3 Computation result for Example 4.3

Algorithm 3.1 Algorithm 3.6

N = 50 No of Iter. 17 9
CPU time (sec) 0.0284 0.0122

N = 100 No of Iter. 17 9
CPU time (sec) 0.0832 0.0428

N = 200 No of Iter. 18 9
CPU time (sec) 0.3606 0.1757

N = 500 No of Iter. 18 9
CPU time (sec) 3.1267 1.4778

Figure 3 Example 4.2, top left: N = 50; top right: N = 100; bottom left: N = 200; bottom right: N = 500

Example 4.3 Finally, we consider E = R
N with C = {x ∈R

N : xi ≥ 0,
∑N

i=1 xi = 1} and f (x) =
–

∑N
i=1 xi log(xi), x ∈R

N
++. The projection onto C in this case is given by (see [5, 12])

ΠC(x) =
[

x1e1
∑N

j=1 xjej
,

x2e2
∑N

j=1 xjej
, . . . ,

xmem
∑N

j=1 xjej

]
,

where e = (e1, e2, . . . , eN ) is the standard basis of RN . We define the operator A as

A(x) = max{x, 0}.

It is not difficult to see that A is monotone (hence pseudo-monotone) and VI(C, A) = {0}.
Taken σ = 0.02, γ = 0.5, l = 5, μ = 0.9 and ε < 10–5. We apply Algorithm 3.1 and 3.6 for
solving the variational inequality with respect to the above operator A using different ran-
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domly generated initial point x1 for N = 50, N = 100, N = 200 and N = 500. The numerical
results can be found in Table 3 and Fig. 3.

5 Conclusion
The aim of the research is to study new subgradient extragradient methods for solving
variational inequalities using Bregman distance approach in real reflexive Banach spaces.
One of the advantages of the new methods is the use of an Armijo-like line search tech-
nique which prevents finding a prior estimate of the Lipschitz constant of the pseudo-
monotone operator involved in the variational inequalities. Weak and strong convergence
theorems were proved under mild conditions and some numerical experiments were per-
formed to show the computational advantages of the new methods. The results in this
paper improve and extend many recent results in the literature.
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