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Abstract
This paper concerns the long term behavior of the stochastic two-dimensional
g-Navier–Stokes equations with additive noise defined on a sequence of expanding
domains, where the ultimate domain is unbounded and of Poincaré type. We prove
that the weak continuity is uniform with respect to all expanding cocycles, which
yields the equi-asymptotic compactness by using an energy equation method.
Finally, we show the existence of a random attractor for the equation on each domain
and the upper semi-continuity of random attractors as the bounded domain is
expanded to the unbounded ultimate domain.
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1 Introduction
The fluid dynamics of deterministic or stochastic Navier–Stokes (NS) equations has
been extensively studied. For example, many properties such as existence, upper semi-
continuity, regularity, and fractal dimension of an attractor were studied in the literature
[4, 5, 8, 13, 19]. However, we find that most of the above-mentioned studies are given in a
two-dimensional situation rather than three-dimensional one, which encourages us to do
more in-depth research about the dynamic behavior of Navier–Stokes equations.

The g-NS equations in spatial dimension 2 were introduced by Roh [18] as follows:

⎧
⎨

⎩

∂u
∂t – ν�u + (u · ∇)u + ∇p = f (x),

∇ · (gu) = 0,
(1)

where g is a suitable smooth real-valued function. The uniqueness and existence of solu-
tions for the g-NS equations in R

n (n = 2, 3) were proved by Bae and Roh [3]. When g = 1,
Eq. (1) becomes the usual 2D Navier–Stokes equations. In the last decade, the limiting be-
havior of solutions in terms of the existence of attractors for 2D g-NS equations has been
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studied in both autonomous and non-autonomous cases without the stochastic situations,
see [10, 11, 18].

As described in [18], the 2D g-NS equations arise in a natural way when we study the
standard 3D Navier–Stokes problem in a 3D thin domainOg = O× (0, εg), (O ⊂R

2) which
was introduced by [9, 17], and we do not claim that the g-NS equations form a model of
any fluid flow. They may, or may not. That they are derived from a standard 3D problem is
the basis for our study. However, as we know, there are no results related to the long-time
behavior of solutions for the 2D stochastic g-NS equations.

In this paper, we consider both the existence and large-domain stability of a random
attractor for the stochastic 2D g-NS equations on an unbounded Poincaré-type domain
O∞ ⊂ R

2, which is regarded as a limit of the sequence of expanding domains Ok = {x ∈
O∞ : |x| < k}.

We write the sequence of stochastic 2D g-NS equations on Ok (k ∈ N := N ∪ {∞}) as a
unified form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

duk – (ν�uk – (uk · ∇)uk – ∇p) dt = f (x, t) dt + εh(x) dW (t), x ∈Ok ,

∇ · (guk) = 0, x ∈Ok ,

uk = 0, x ∈ ∂Ok ,

uk(τ , x) = uτ ,k(x), x ∈Ok , τ ∈R,

(2)

where ν, ε > 0, p is the pressure, uk is the velocity vector, W is a scalar Wiener process
defined on a probability space (Ω ,F , P). h(x) is a given time-independent two-dimensional
vector function belonging to some Sobolev spaces which will be specified later.

The first subject is to show the existence of a random attractor Ak in Hg(Ok) (a special
subspace of L2(Ok)) for each k ∈N. Due to both non-autonomy and randomness of model
(2), the attractor is actually a bi-parametric set Ak = {Ak(τ ,ω) : τ ∈ R,ω ∈ Ω} in Hg(Ok)
(see [21]). Even for this existence of a pullback attractor, the assumption of small noise
(ε ≤ ε0) seems to be necessary.

To study problem (2), the real-valued function g = g(x) ∈ W 1,∞(O∞) satisfies the follow-
ing basic assumption:

0 < m0 ≤ g(x) ≤ M0, ∀x = (x1, x2) ∈O∞. (3)

Using the famous energy equation method [19], we establish the existence of random
attractors. More precisely, for each k ∈N, the stochastic g-NS equations (2) have a random
attractor Ak in Hg(Ok).

The second subject is to investigate large-domain stability of the attractor, which means
thatAk is stable (upper semi-continuous) atA∞ under a suitable Hausdorff semi-distance.

Such an expanding-domain problem is contrary to the thin-domain problem, the lat-
ter was extensively investigated in the literature (see [14, 15]) and time-varying domains
problem [20]. However, the same difficulty arises from the fact that both Ak and A∞ lie in
different phase spaces, compared with the same phase space in time-dependent stability
of a pullback attractor [6, 7, 12].

In order to define a distance between two subsets lying in different spaces, we consider
the null-expansion ũk of the solution uk ∈ Hg(Ok) defined by

ũk = uk , x ∈Ok ; ũk = 0, x ∈O∞ \Ok .
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One can show easily that ũk ∈ Hg(O∞) if uk ∈ Hg(Ok). However, in general, ũk 	= u∞. So,
the attractor Ak can be expanded to a bi-parametric set Ãk in Hg(O∞), defined by

Ãk(τ ,ω) =
{

u ∈ Hg(O∞) : ∃v ∈Ak(τ ,ω), s.t. u = ṽ
}

, ∀τ ∈ R,ω ∈ Ω .

In this way, the Hausdorff semi-distance between Ãk and A∞ lies in the same space
Hg(O∞) where the Hausdorff semi-distance can be understood in the following sense:

distHg (O∞)
(
Ãk(τ ,ω),A∞(τ ,ω)

)
= sup

u∈Ãk (τ ,ω)
inf

v∈A∞(τ ,ω)
‖u – v‖Hg (O∞). (4)

Then our aim is to prove

distHg (O∞)
(
Ãk(τ ,ω),A∞(τ ,ω)

) → 0 as k → ∞. (5)

However, the usual energy equation method is not sufficient to prove the large-domain
stability from Ak to A∞ as k → ∞. We will expand each cocycle Φk (on Hg(Ok)) to the
null-expansion cocycle Φ̃k on a subspace of Hg(O∞) and prove that the sequence of ex-
panding cocycles {Φ̃k}k is equi-asymptotically compact (uniformly in k) in Hg(O∞).

For this end, we develop the usual energy equation method from a single system to a
sequence of systems, and prove weak equi-continuity of expanding cocycles {Φ̃k}k , which
together with an energy equality can help us to establish the equi-asymptotic compactness
of expanding cocycles {Φ̃k}k .

Finally, by proving the convergence from Φ̃k to Φ∞ in Hg(O∞), we establish the large-
domain stability (5) as desired.

This paper is organized as follows. In the next section, the functional spaces and a con-
tinuous cocycle for the stochastic g-Navier–Stokes equations are defined. In Sect. 3, we
define the expanding cocycles and prove the convergence of the expanding cocycles for
stochastic g-Navier–Stokes equations. We derive the uniform estimates and weak equi-
continuity of the solution sequence {vk} in Sect. 4, which yields the equi-asymptotic com-
pactness of the sequence {Φ̃k}k of expanding cocycles in Sect. 5. In the last section, we
show the existence and large-domain stability of the attractor when the domain changes
from bounded to unbounded.

2 Random attractor on varying domain
2.1 Functional spaces and operators
As pointed out in Sect. 1, the unbounded domain O∞ is of Poincaré type, and thus there
exists λ∞ > 0 such that

∫

O∞

∣
∣∇ζ (x)

∣
∣2 dx ≥ λ∞

∫

O∞

∣
∣ζ (x)

∣
∣2 dx, ∀ζ ∈ H1

0 (O∞). (6)

Let Ok = {x ∈O∞ : |x| ≤ k}, and for each k ∈N, we use (L2
g (Ok),‖ · ‖g) to denote the space

L2(Ok) with the following norm:

‖ζ‖2
g :=

∫

Ok

g(x)
∣
∣ζ (x)

∣
∣2 dx, ∀ζ ∈ L2(Ok), k ∈ N.
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By (3), one can show that m0‖ζ‖2 ≤ ‖ζ‖2
g ≤ M0‖ζ‖2. So, both norms ‖ · ‖g and ‖ · ‖ are

indeed equivalent.
Also, we use (H1

0,g(Ok),‖ · ‖H1
0,g

) to denote the space H1
0 (Ok) with the following norm:

‖ζ‖2
H1

0,g (Ok ) :=
∫

Ok

g(x)
∣
∣∇ζ (x)

∣
∣2 dx, ∀ζ ∈ H1

0 (Ok), k ∈N.

Then, by [16], there exists λ0 > 0 (independent of k) such that

‖ζ‖2
H1

0,g (Ok ) ≥ λ0‖ζ‖2
g , ∀ζ ∈ H1

0 (Ok), k ∈N, (7)

which implies that the new norm is (uniformly) equivalent to the original H1
0 (Ok)-norm.

To reformulate system (2), we introduce some function space:

V(Ok) =
{

u ∈ C
∞
0 (Ok) : ∇ · (gu) = 0

}
,

Hg(Ok) = cl
L

2
g (Ok ) V , Vg(Ok) = cl

H
1
0,g (Ok ) V ,

where clX denotes the closure taken in X and C
∞
0 (Ok) = C∞

0 (Ok)2, L2
g (Ok) := L2

g (Ok)2,
H

1
0,g(Ok) = H1

0,g(Ok)2, respectively.
Then Hg(Ok), Vg(Ok) are Hilbert spaces with the inner products (·, ·)g and ((·, ·))g of

L
2
g (Ok) given by, for u = (u1, u2), v = (v1, v2) ∈ Hg(Ok),

(u, v)g =
∫

Ok

u · vg dx =
2∑

i=1

(ui, vi)g and ‖u‖g = (u, u)1/2
g ,

and for all u = (u1, u2), v = (v1, v2) ∈ Vg(Ok),

(
(u, v)

)

g := (Du, Dv)g =
2∑

i,j=1

∫

Ok

∂uj

∂xi

∂vj

∂xi
g dx and ‖u‖Vg = (Du, Du)1/2

g ,

where Du = (( ∂u1
∂x1

, ∂u1
∂x2

), ( ∂u2
∂x1

, ∂u2
∂x2

)).
Now, we can define the g-Laplace operator as follows:

–�gu = –
1
g

(∇ · g∇)u = –�u –
1
g

(∇g · ∇)u.

Then, the first equation of (2) can be rewritten as

duk –
(

ν�guk –
ν

g
(∇g · ∇)uk – (uk · ∇)uk – ∇p

)

dt = f (x, t) dt + εh(x) dW (t). (8)

Consider the g-orthogonal projection Pg,k : L2
g (Ok) → Hg(Ok) and define the g-Stokes

operator[18] by

Ag,ku = –Pg,k

(
1
g

(∇ · g∇)u
)

, 〈Ag,ku, v〉g = 〈Ag,ku, gv〉 =
(
(u, v)

)

g
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for all u, v ∈ Vg(Ok). Let V ∗
g (Ok) be the dual space of Vg(Ok). Then Ag,k : Vg(Ok) → V ∗

g (Ok)
is a homomorphism with ‖Ag,k‖ ≤ 1/m0 (see [16]) and the bound is independent of k ∈N.

Furthermore, we consider the uniform bound of operator Rg,k : Vg(Ok) → V ∗
g (Ok) given

by

Rg,ku = Pg,k

(
1
g

(∇g · ∇)u
)

, ∀u ∈ Vg(Ok).

In this case, by [16], we have the following result.

Lemma 2.1 For each k ∈N and u ∈ Vg(Ok), we have the following uniform bounds:

‖u‖2
Hg (Ok ) ≤ 1

λ0
‖u‖2

Vg (Ok ) and ‖Rg,ku‖V∗
g (Ok ) ≤ ‖∇g‖∞

m2
0λ

1/2
0

‖u‖Vg (Ok ), (9)

where λ0 is given by (7) and ‖ · ‖∞ is the norm in L∞(O∞).

In the sequel, we will define the bilinear operator Bg,k : Vg(Ok) × Vg(Ok) → V ∗
g (Ok) and

the trilinear form bg,k : Vg(Ok) × Vg(Ok) × Vg(Ok) →R by

〈
Bg,k(u, v), w

〉

g = bg,k(u, v, w) =
2∑

i,j=1

∫

Ok

ui
∂vj

∂xi
wjg dx, ∀u, v, w ∈ Vg(Ok),

and we write Bg,k(u) = Bg,k(u, u) without confusion. By Roh [18], we have

bg,k(u, v, v) = 0, bg,k(u, v, w) = –bg,k(u, w, v), (10)
∥
∥Bg,k(u)

∥
∥

V∗
g

≤ c‖u‖g‖u‖Vg , (11)

∣
∣bg,k(u, v, w)

∣
∣ ≤ c‖u‖ 1

2
g ‖u‖ 1

2
Vg ‖v‖Vg ‖w‖ 1

2
g ‖w‖ 1

2
Vg . (12)

Therefore, we can rewrite (8) in the sense of abstract equation

duk +
(
νAg,kuk + Bg,k(uk , uk) + νRg,kuk

)
dt = Pg,kf (x, t)|Ok dt + εh(x) dW (t). (13)

Definition 2.2 For a function u : Ok →R
2, its null-expansion ũ : O∞ →R

2 is defined by

ũ(x) =

⎧
⎨

⎩

u(x) for x ∈Ok ,

0 for x ∈O∞ \Ok .
(14)

Conversely, for a function v : O∞ →R
2, the restriction v|Ok : Ok → R

2 is given by

v|Ok (x) = v(x), x ∈Ok .

We need to estimate the norms of both expansion and restriction in Hg , Vg , and V ∗
g .

Lemma 2.3 ([16])
(1) If u ∈ Hg(Ok), then ũ ∈ Hg(O∞) and ‖ũ‖Hg (O∞) = ‖u‖Hg (Ok ).
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(2) If u ∈ Vg(Ok), then ũ ∈ Vg(O∞) and ‖ũ‖Vg (O∞) = ‖u‖Vg (Ok ).
(3) If v ∈ Hg(O∞), then v|Ok ∈ Hg(Ok) and ‖v|Ok ‖Hg (Ok ) ≤ ‖v‖Hg (O∞).
(4) If w ∈ V ∗

g (O∞), then the restriction w|Ok ∈ V ∗
g (O∞) and ‖w|Ok ‖V∗

g (Ok ) ≤ ‖w‖V∗
g (O∞).

2.2 Cocycles for stochastic g-NS equations
The standard probability space (Ω ,F , P) will be used in this paper where

Ω =
{
ω ∈ C(R,R) : ω(0) = 0

}
and lim

t→±∞
ω(t)

t
= 0, (15)

F is the Borel algebra induced by the compact-open topology of Ω , and P is the Wiener
measure on (Ω ,F ). Given t ∈R, define θt : Ω → Ω by

θtω(·) = ω(· + t) – ω(t), (ω, t) ∈ Ω ×R.

Then (Ω ,F , P, {θt}t∈R) is a parametric dynamical system. Let z(θtω) = –
∫ 0

–∞ es(θtω)(s) ds,
which solves the stochastic Ornstein–Uhlenbeck equation dz + z dt = dW (t). It follows
from [1] that there exists a θ -invariant subset Ω̃ ⊂ Ω of full measure such that z(θtω) is
continuous in t for every ω ∈ Ω̃ , and we have the following limits:

lim
t→±∞

z(θtω)
t

= lim
t→±∞

1
t

∫ 0

–t
z(θsω) ds = E

(
z(ω)

)
= 0, (16)

lim
t→∞

1
t

∫ 0

–t

∣
∣z(θsω)

∣
∣m ds = E

(∣
∣z(ω)

∣
∣m)

=
Γ ( 1+m

2 )√
π

, ∀m > 0, (17)

where E, Γ denote expectation and gamma function, respectively.
Suppose h ∈ Hg(O∞), then denote by hk(x) := Pg,kh|Ok (x) for x ∈Ok , k ∈N and consider

the change of variables:

vk(t, τ ,ω, vτ ,k) = uk(t, τ ,ω, uτ ,k) – εz(θtω)hk ,

with vτ ,k = uτ ,k – εz(θτω)hk , where we understand h∞ = Pg,∞h = h.
In this case, system (13) can be rewritten as follows:

dvk

dt
+ νAg,kvk + Bg,k

(
vk + εhkz(θtω)

)
+ νRg,kvk

= –ενz(θtω)Ag,khk – ενz(θtω)Rg,khk + Pg,kf (t)|Ok + εz(θtω)hk (18)

with the initial value

vk(τ , τ ,ω, vτ ,k) = vτ ,k = uτ ,k – εz(θτω)hk . (19)

Definition 2.4 The function vk(·, τ ,ω, vτ ,k) is called a weak solution of Eqs. (18)–(19) if

vk ∈ C
(
[τ ,∞), Hg(Ok)

) ∩ L2
loc

(
(τ ,∞), Vg(Ok)

)
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and, for all t ≥ τ , P-a.s. ω ∈ Ω , and w ∈ Vg(Ok),

(
vk(t), w

)

g + ν

∫ t

τ

〈Ag,kvk , w〉g ds + ν

∫ t

τ

〈Rg,kvk , gw〉ds

+
∫ t

τ

〈
Bg,k

(
vk + εhkz(θsω)

)
, w

〉

g ds + εν

∫ t

τ

z(θsω)〈Ag,khk + Rg,khk , w〉g ds

= (vτ ,k , w)g +
∫ t

τ

〈
f (s)|Ok + εhkz(θsω), gw

〉
ds. (20)

Lemma 2.5 Assume that f ∈ L2
loc(R, V ∗

g (O∞)). Then, for each k ∈ N and vτ ,k ∈ Hg(Ok),
system (18)–(19) has a unique weak solution vk in the sense of Definition 2.4. Moreover, the
solution vk(t, τ ,ω; vτ ,k) is continuous in vτ ,k and measurable in ω.

Then we can define a family of measurable mappings Φk : R+ × R × Ω × Hg(Ok) →
Hg(Ok) corresponding to system (18). Given τ ∈R, ω ∈ Ω , and vτ ,k ∈ Hg(Ok), we have

Φk(t, τ ,ω)vτ ,k = vk(t + τ , τ , θ–τω, vτ ,k), (21)

where t ≥ 0. Then, for each k ∈N, Φk is a continuous cocycle [21] and we have

Φk(0, τ ,ω) = I, Φk(t + s, τ ,ω) = Φk(t, τ + s, θsω)Φk(s, τ ,ω)

for all t, s ≥ 0, τ ∈ R, and ω ∈ Ω .
We now take a universe D on Hg(O∞), which consists of all set-valued mappings D :

R× Ω → 2Hg (O∞) \ {∅} satisfying

lim
t→+∞ e– 3

2 λt∥∥D(τ – t, θ–tω)
∥
∥2

Hg (O∞) = 0, τ ∈R,ω ∈ Ω , (22)

where ‖D‖ denotes the supremum of norms of all elements and λ = 1
3λ0ν .

Denote D|Ok to be the restriction universe of D on Hg(Ok). By Lemma 2.3, we have
Dk ∈D|Ok if and only if

lim
t→+∞ e– 3

2 λt∥∥Dk(τ – t, θ–tω)
∥
∥2

Hg (Ok ) = 0 for k ∈N. (23)

It is easy to check that if Dk ∈ D|Ok , then D̃k ∈D. Furthermore, D̃|Ok 	= D for D ∈D.
In order to obtain the D|Ok -pullback attractor Ak for all k ∈ N, we make further as-

sumptions.

Assumption G We further assume g ∈ W 1,∞(Ok) and

‖∇g‖∞ ≤ 1
4

m0λ
1
2
0 , ∀k ∈N, (24)

where λ0 is given by (7).

Assumption H We take the function h(x) ∈ (W 1,∞(Ok))2 ∩ Vg(Ok) ∩H
2(Ok), ∀k ∈N.
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Assumption F f ∈ L2
loc(R, V ∗

g (O∞)), we assume that, for λ = 1
3λ0ν ,

∫ 0

–∞
eλs∥∥f (s + τ )

∥
∥2

V∗
g (O∞) ds < ∞, ∀τ ∈R. (25)

By Lemma 2.3(4) and Assumption F, the restriction f |Ok is still tempered:

∫ 0

–∞
eλs∥∥f |Ok (s + τ )

∥
∥2

V∗
g (Ok ) ds < ∞, ∀τ ∈R, k ∈N. (26)

Assumption S (Small noise) The density of noise ε ∈ (0, ε0] is small enough, where

ε0 = min

{√
πλ

4c0
, 1

}

and c0 = 2M0
(‖h‖ + 1

)‖∇h‖L∞(O∞).

3 Random attractor and convergence of expanding cocycles
3.1 Expanding cocycles
In this section, we need to expand the cocycle Φk from Hg(Ok) to Hg(O∞). For this end,
we define the corresponding null-expansion of an operator Φk(t, τ ,ω) : Hg(Ok) → Hg(Ok)
by Φ̃k : Hg(O∞) → Hg(O∞),

(Φ̃ku)(x) =
(
Φk(u|Ok )

)
(x), ∀x ∈Ok , (Φ̃ku)(x) = 0, ∀x ∈O∞ \Ok . (27)

However, in general, ũ|Ok 	= u for u ∈ Hg(O∞) and so Φ̃k(0, τ ,ω) is not an identical op-
erator on Hg(O∞). Hence, Φ̃k is not a cocycle on the whole space Hg(O∞).

Fortunately, we can show that the null-expansion Φ̃k is a cocycle on the closed linear
subspace Hk(O∞) defined by

Hk(O∞) :=
{

u ∈ Hg(O∞) : u(x) = 0 for x ∈O∞ \Ok
}

,

and thus Hk(O∞) is a Banach space with the same norm as in Hg(O∞).
A D-pullback random attractor means a bi-parametric set which is measurable, com-

pact, invariant, and D-pullback attracting. For the concept and existence theorem, the
reader can refer to[21].

Theorem 3.1 For each k ∈ N, the null-expansion Φ̃k of Φk is a cocycle on Hk(O∞) and
it has a D̃k-pullback random attractor in Hk(O∞), given by the null-expansion Ãk of the
random attractor Ak .

Proof By (27), for each u ∈ Hk(O∞), we have

Φ̃k(0, τ ,ω)u = expansion of Φk(0, τ ,ω)u|Ok = ũ|Ok = u.

So, Φ̃k(0, τ ,ω) is the identical operator on Hk(O∞). Other properties of cocycle are easily
verified.

Next, we prove that Ãk is a D̃k-pullback random attractor for Φ̃k in four steps.



Li et al. Journal of Inequalities and Applications        (2020) 2020:193 Page 9 of 24

Step 1. We show that Ãk is measurable on Hk(O∞). Let u ∈ Hk(O∞), which means u ≡ 0
on O∞ \Ok and thus

‖u‖2
Hk (O∞) =

∫

O∞

∣
∣u(x)

∣
∣2g dx =

∫

Ok

∣
∣u(x)

∣
∣2g dx = ‖u|Ok ‖2

Hg (Ok ).

This equality implies that

dHk (O∞)
(
u, Ãk(τ ,ω)

)
= dHg (Ok )

(
u|Ok ,Ak(τ ,ω)

)
. (28)

Since Ak(τ ,ω) is measurable on Hg(Ok), the above equality implies the measurability of
the mapping ω → dHk (O∞)(u, Ãk(τ ,ω)) for each u ∈ Hk(O∞), that is, Ãk is measurable on
Hk(O∞).

Step 2. We show that Ãk(τ ,ω) is a compact set in Hk(O∞). Let {un} be a sequence of
Ãk(τ ,ω). Then there exists vn ∈ Ak(τ ,ω) such that un = ṽn. Due to Ak(τ ,ω) is compact
in Hg(Ok), passing to a subsequence, we have vn′ → v ∈ Ak(τ ,ω). Denote ṽ by the null-
expansion of v, then ṽ ∈ Ãk . By Lemma 2.3(1),

‖un′ – ṽ‖Hg (O∞) = ‖ṽn′ – ṽ‖Hg (O∞) = ‖vn′ – v‖Hg (Ok ) → 0 as n′ → ∞,

which implies that un′ → ṽ ∈ Ãk(τ ,ω). Therefore, Ãk(τ ,ω) is compact in Hk(O∞).
Step 3. We show the invariance. Given u ∈ Ãk(t + τ , θtω), there is v ∈Ak(t + τ , θtω) such

that the null-expansion ṽ = u. By the negative invariance of Ak(τ ,ω), there is w ∈Ak(τ ,ω)
such that

v = Φk(t, τ ,ω)w.

Let w̃ be the null-expansion of w, then w̃|Ok = w. It follows from (27) that we have

u = ṽ = Φ̃k(t, τ ,ω)w̃ ∈ Φ̃k(t, τ ,ω)Ãk(τ ,ω),

which proves the negative invariance of Ãk . Similarly, one can prove the positive invari-
ance.

Step 4. We show that Ãk is D̃k-pullback attracting. Let D ∈ D̃k , then there is Dk ∈ Dk

such that D = D̃k . By the same method as given in (28), we know that

distHk (O∞)
(
Φ̃k(t, τ – t, θ–tω)D(τ – t, θ–tω), Ãk(τ ,ω)

)

= distHg (Ok )
(
Φk(t, τ – t, θ–tω)Dk(τ – t, θ–tω),Ak(τ ,ω)

)
.

Then the attraction of Ãk follows from the attraction of Ak . �

3.2 Convergence of expanding cocycles
In this subsection, we prove the convergence of the expanding cocycles as follows.

Lemma 3.2 Let v0,k ∈ Hg(Ok) (k ∈N) such that ‖ṽ0,k – v0,∞‖Hg (O∞) → 0 as k → ∞. Then

∥
∥ṽk(t, τ ,ω; v0,k) – v∞(t, τ ,ω; v0,∞)

∥
∥

Hg (O∞) → 0, as k → ∞, (29)

uniformly in t ∈ [τ , τ + T] for any T > 0.
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Proof By considering the expansion, we rewrite Eq. (18) on the domain O∞ for all t ∈
[τ , τ + T], k ∈ N:

dṽk

dt
+ νAg,∞ṽk + ενz(θtω)Ag,∞h̃k + Bg,∞

(
ṽk + εh̃kz(θtω)

)

+ νRg,∞ṽk + ενz(θtω)Rg,∞h̃k = ˜f (t)|Ok + εz(θtω)h̃k , (30)

where ṽ∞ = v∞ and ˜f (t)|Ok is regarded as the null-expansion of the restriction of f (t).
Let Vk = ṽk – v∞ ∈ Hg(O∞). Subtracting Eq. (18) for k = ∞ from (30) and multiplying

the result by gVk , we have

d
dt

‖Vk‖2
g + 2ν‖DVk‖2

g = –2bg,∞
(
ṽk + εh̃kz(θtω), ṽk + εh̃kz(θtω), Vk

)

+ 2bg,∞
(
v∞ + εhz(θtω), v∞ + εhz(θtω), Vk

)
– 2ν〈Rg,kVk , gVk〉

– ενz(θtω)
〈
(Ag,∞ + Rg,∞)(h̃k – h), gVk

〉

+ 2
〈
˜f (t)|Ok – f (t), gVk

〉
+ εz(θtω)(h̃k – h, gVk). (31)

By (10) and the trilinear property of bg,∞,

I1 := –2(bg,∞
(
ṽk + εh̃kz(θtω), ṽk + εh̃kz(θtω), Vk

)

+ 2bg,∞
(
v∞ + εhz(θtω), v∞ + εhz(θtω), Vk

)

= –2bg,∞
(
Vk + εz(θtω)(h̃k – h), ṽk + εh̃kz(θtω), Vk

)

– 2bg,∞
(
v∞ + εz(θtω)h, Vk + εz(θtω)(h̃k – h), Vk

)

= –2bg,∞
(
Vk + εz(θtω)(h̃k – h), v∞ + εh̃kz(θtω), Vk

)

–2bg,∞
(
v∞ + εz(θtω)h, εz(θtω)(h̃k – h), Vk

)
. (32)

Notice that εz(θtω) is bounded in t ∈ [τ , τ + T], ε ≤ ε0 and the sequence {h̃k : k ∈ N} is
bounded in Vg(O∞). We infer from (12) and (32) that

I1 ≤ 2‖Vk‖g‖DVk‖g
(‖Dv∞‖g + c

)
+ c

∥
∥D(h̃k – h)

∥
∥

g

(‖Dv∞‖g + c
)‖DVk‖g

≤ ν

2
‖DVk‖2

g + c
(‖Dv∞‖2

g + 1
)‖Vk‖2

g + c
(‖Dv∞‖2

g + 1
)∥
∥D(h̃k – h)

∥
∥2

g . (33)

By Assumption G,

I2 := –2ν〈Rg,kVk , gVk〉 ≤ 2ν

∣
∣
∣
∣

〈(∇g
g

· ∇
)

Vk , gVk

〉∣
∣
∣
∣

≤ 2ν‖∇g‖∞
m0λ

1/2
0

‖DVk‖2
g ≤ ν

2
‖DVk‖2

g . (34)

Since Ag,∞ and Rg,∞ are bounded linear operators from Vg(O∞) to V ∗
g , we have

I3 := –ενz(θtω)
〈
(Ag,∞ + Rg,∞)(h̃k – h), gVk

〉

≤ ν

2
‖DVk‖2

g + c
∥
∥D(h̃k – h)

∥
∥2

g . (35)
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For the forcing term, since Vk = ṽk – v∞ = –v∞ on O∞ \Ok , we have

I4 := 2
∣
∣
〈
˜f (t)|Ok – f (t), gVk

〉∣
∣ = 2

∣
∣
∣
∣

∫

O∞\Ok

f (t)v∞g dx
∣
∣
∣
∣

= 2
∣
∣
∣
∣

∫

O∞
f (t)(v∞ – ṽ∞|Ok )g dx

∣
∣
∣
∣ ≤ 2

∥
∥f (t)

∥
∥

V∗
g (O∞)‖v∞ – ṽ∞|Ok ‖Vg (O∞). (36)

By the Holder inequality and Poincaré inequality,

I5 := εz(θtω)(h̃k – h, gVk) ≤ ‖Vk‖2
g + c

∥
∥D(h̃k – h)

∥
∥2

g . (37)

It follows from (33) to (37) that

d
dt

‖Vk‖2
g ≤ c‖Dv∞‖2

g‖Vk‖2
g + c

∥
∥f (t)

∥
∥

V∗
g (O∞)‖v∞ – ṽ∞|Ok ‖Vg (O∞)

+ c
(‖Dv∞‖2

g + 1
)∥
∥D(h̃k – h)

∥
∥2

g . (38)

By Gronwall’s lemma we get, for all t ∈ [τ , τ + T],

∥
∥Vk(t)

∥
∥2 ≤ CeC

∫ τ+T
τ ‖v∞(r)‖2

Vg dr
(

∥
∥Vk(τ )

∥
∥2 +

∫ τ+T

τ

∥
∥f (r)

∥
∥

V∗
g
‖v∞ – ṽ∞|Ok ‖Vg (O∞) dr

+
∥
∥D(h̃k – h)

∥
∥2

g

∫ τ+T

τ

(∥
∥v∞(r)

∥
∥2

Vg
dr + 1

)
dr

)

. (39)

By Lemma 2.5, v∞ ∈ L2(τ , τ + T ; Vg(O∞)) and thus

∫ τ+T

τ

∫

O∞

∣
∣Dv∞(r, x)

∣
∣2 dx dr < +∞. (40)

Since f ∈ L2(τ , τ + T ; V ∗
g (O∞)), it follows from the Holder inequality that, as k → ∞,

∫ τ+T

τ

∥
∥f (r)

∥
∥

V∗
g (O∞)

∥
∥D

(
v∞(r) – ṽ∞|Ok

(r)
)∥
∥

g dr

≤
(∫ τ+T

τ

∥
∥f (r)

∥
∥2

V∗
g (O∞)

) 1
2 (∥

∥D
(
v∞(r) – ṽ∞|Ok

(r)
)∥
∥2

g dr
) 1

2

≤ c
(∫ τ+T

τ

∫

O∞\Ok

∣
∣Dv∞(r, x)

∣
∣2 dx dr

) 1
2 → 0 (41)

in view of (40) and the Lebesgue controlled convergence theorem. By Assumption H and
the absolute continuity of the integrals, by the convergence of the initial value, we have

∥
∥D(h̃k – h)

∥
∥2

g → 0 as k → ∞. (42)

By the assumption that ‖Vk(τ )‖2
g → 0 as k → ∞, we infer from (39)–(42) that ‖Vk(t)‖2

g →
0 as k → ∞, uniformly in t ∈ [τ , τ + T]. �
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4 Weak equi-continuity of the sequence of expanding cocycles
4.1 Uniform absorption
Lemma 4.1 There is a random variable C0(ω) such that

c0ε

∫ 0

–t

∣
∣z(θrω)

∣
∣dr ≤ 1

2
λt + C0(ω), ∀t ≥ 0, ε ≤ ε0. (43)

Proof By (17) and the ergodic theorem,

1
t

∫ 0

–t

∣
∣z(θrω)

∣
∣dr → E

(∣
∣z(ω)

∣
∣
)

=
1√
π

as t → +∞.

We choose large t0(ω) ≥ 0 and use Assumption S to obtain, for all ε ≤ ε0,

c0ε

∫ 0

–t

∣
∣z(θrω)

∣
∣dr ≤ c0ε0

2√
π

t ≤ 1
2
λt, ∀t ≥ t0, (44)

while, for all t ≤ t0,

c0ε

∫ 0

–t

∣
∣z(θrω)

∣
∣dr ≤ c0ε0t0 max

r∈[–t0,0]

∣
∣z(θrω)

∣
∣ := C0(ω).

LetQ be the set of rational numbers, then [–t0, 0]∩Q = {r1, r2, . . .} is a countable set. Hence,

max
r∈[–t0,0]

∣
∣z(θrω)

∣
∣ = sup

n∈N

∣
∣z(θrnω)

∣
∣,

which is measurable in ω and so is C0(ω). Therefore, (43) holds true. �

Lemma 4.2 For each τ ∈R, ω ∈ Ω , and D ∈D, there exists T = T(τ ,ω,σ , D) > 0 such that,
for all t ≥ T , σ ∈ [τ – t, τ ], and vτ–t,k ∈ D|Ok (τ – t, θ–tω),

sup
k∈N

∥
∥vk(σ , τ – t, θ–τω, vτ–t,k)

∥
∥2

Hg (Ok ) ≤ e2λ(τ–σ )ρ(σ , τ ,ω), (45)

where, from Assumptions F, S,

ρ(σ , τ ,ω) = c
∫ σ–τ

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O∞) ds

+ c
∫ σ–τ

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds < +∞.

Proof We multiply Eq. (18) by gvk and integrate over Ok to obtain

d
dt

‖vk‖2
g + 2ν‖vk‖2

Vg

= 2
〈
f (t)|Ok , gvk

〉
+ 2εz(θtω)(hk , gvk) – 2ενz(θtω)〈Ag,khk , gvk〉

– 2ενz(θtω)〈Rg,khk , gvk〉 – 2ν〈Rg,kvk , gvk〉 – 2
〈
Bg,k

(
vk + εhkz(θtω)

)
, vk

〉

g . (46)
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For the nonlinear term, by Lemma 2.3(4), we have

2
∣
∣
〈
f (t)|Ok , gvk

〉∣
∣ ≤ 2M0

∥
∥f (t)|Ok

∥
∥

V∗
g (Ok )‖vk‖Vg

≤ ν

2
‖vk‖2

Vg +
2M2

0
ν

∥
∥f (t)|Ok

∥
∥2

V∗
g (Ok )

≤ ν

2
‖vk‖2

Vg +
2M2

0
ν

∥
∥f (t)

∥
∥2

V∗
g (O∞). (47)

By Assumption G and Lemma 2.1, we have

–2ν〈Rg,kvk , gvk〉 ≤ 2ν‖∇g‖∞
m0

‖vk‖Vg ‖vk‖g ≤ 2ν‖∇g‖∞
m0λ

1/2
0

‖vk‖2
Vg . (48)

By Assumption H and Lemma 2.3,

2εz(θtω)(hk , gvk) ≤ λ

4
‖vk‖2

g + c
∣
∣z(θtω)

∣
∣2‖hk‖2

Hg (Ok

≤ λ

4
‖vk‖2

g + c
∣
∣z(θtω)

∣
∣2, (49)

–2ενz(θtω)〈Ag,khk , gvk〉 ≤ 2νz(θtω)
‖∇g‖∞

m0
‖∇h‖L∞‖vk‖g

≤ λ

4
‖vk‖2

g + c
∣
∣z(θtω)

∣
∣2, (50)

–2ενz(θtω)〈Rg,khk , gvk〉 ≤ 2νz(θtω)
‖∇g‖∞

m0
‖∇h‖L∞‖vk‖g

≤ λ

4
‖vk‖2

g + c
∣
∣z(θtω)

∣
∣2. (51)

Using (10), (12), and Assumption H, we have

2
∣
∣
〈
Bg,k

(
vk + εhkz(θtω), vk + εhkz(θtω)

)
, vk

〉

g

∣
∣

= 2
∣
∣bg,k

(
vk + εhkz(θtω), εhkz(θtω), vk

)∣
∣

≤ 2M0ε‖∇h‖L∞
∣
∣z(θtω)

∣
∣‖vk‖2

g + 2M0ε
2‖h‖‖∇h‖L∞

∣
∣z(θtω)

∣
∣2‖vk‖g

≤ c0ε
(∣
∣z(θtω)

∣
∣‖vk‖2

g +
∣
∣z(θtω)

∣
∣2‖vk‖g

)

≤ c0ε
∣
∣z(θtω)

∣
∣‖vk‖2

g +
λ

4
‖vk‖2

g + c
∣
∣z(θtω)

∣
∣4, (52)

where c0 = 2M0(‖h‖+ 1)‖∇h‖L∞ > 0. It follows from (46) to (52) and the Poincaré inequal-
ity in (9)

2ν‖vk‖2
Vg ≥ λ0ν‖vk‖2

g + ν‖vk‖2
Vg = 3λ‖vk‖2

g + ν‖vk‖2
Vg .

We obtain that

d
ds

‖vk‖2
g +

(
2λ – c0ε

∣
∣z(θsω)

∣
∣
)‖vk‖2

g + Cg‖vk‖2
Vg

≤ c
∥
∥f (s)

∥
∥2

V∗
g (O∞) + c

(∣
∣z(θsω)

∣
∣4 +

∣
∣z(θsω)

∣
∣2), (53)

where Cg := ν
2 (1 – 4ν‖∇g‖∞

m0λ1/2
0

) > 0 in view of Assumption G.
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Multiplying (53) by e
∫ τ

s –2λ+c0ε|z(θrω)|dr , then integrating the result w.r.t. s ∈ (τ – t,σ ) and
replacing ω by θ–τω, we find that

∥
∥vk(σ , τ – t, θ–τω, vτ–t,k)

∥
∥2

g + Cg

∫ σ

τ–t
e
∫ σ

s –2λ+c0ε|z(θr–τ ω)|dr∥∥vk(s)
∥
∥2

Vg
ds

≤ e2λ(τ–σ )e–2λt+c0ε
∫ σ–τ

–t |z(θrω)|dr‖vτ–t,k‖2
Hg (Ok )

+ ce2λ(τ–σ )
∫ σ–τ

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O∞) ds

+ ce2λ(τ–σ )
∫ σ–τ

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds

≤ e2λ(τ–σ )(e–2λt+c0ε
∫ σ–τ

–t |z(θrω)|dr‖vτ–t,k‖2
Hg (Ok ) + ρ(σ , τ ,ω)

)
. (54)

Using (43), (23), and P-a.s. ρ(σ , τ ,ω) > 0, there is T > 0 such that, for all t ≥ T and σ ∈
[τ – t, τ ],

e–2λt+c0ε
∫ σ–τ

–t |z(θrω)|dr‖vτ–t,k‖2
Hg (Ok )

≤ e–2λt+c0ε
∫ 0

–t |z(θrω)|dr∥∥D(τ – t, θ–tω)
∥
∥2

Hg (O∞)

≤ eC0(ω)e– 3
2 λt∥∥D(τ – t, θ–tω)

∥
∥2

Hg (O∞) ≤ ρ(σ , τ ,ω). (55)

We substitute (55) into (54) to obtain (45) as desired. In addition, by (43),

ρ(σ , τ ,ω) ≤ c
∫ 0

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∥∥f (s + τ )

∥
∥2

V∗
g (O∞) +

∣
∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds

≤ ceC0(ω)
∫ 0

–∞
e

3
2 λs(∥∥f (s + τ )

∥
∥2

V∗
g (O∞) +

∣
∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds,

then both (16) and Assumption F imply ρ(σ , τ ,ω) < +∞. �

4.2 Weak equi-continuity
In this subsection, we show the weak equi-continuity of the solution sequence {vk}. This
is different from the weak continuity for a single system as given by Rosa [19].

Lemma 4.3 Suppose f ∈ L2
loc(R, V ∗

g (O∞)). Let τ ∈ R, ω ∈ Ω , and vτ ,k ∈ Hg(Ok) such that
the expansion ṽτ ,k ⇀ vτ ,∞ weakly in Hg(O∞) as k → ∞. Then the sequence ṽk of expanding
solutions satisfies

ṽk(t, τ ,ω, vτ ,k) ⇀ v∞(t, τ ,ω, vτ ,∞) weakly in Hg(O∞), (56)

ṽk(·, τ ,ω, vτ ,k) ⇀ v∞(·, τ ,ω, vτ ,∞) weakly in L2(τ , τ + T ; Vg(O∞)
)
,∀T > 0. (57)

Proof From Lemmas 4.2 and 2.3, we can prove that, for all T > 0,

{ṽk}k is bounded in L∞(
τ , τ + T ; Hg(O∞)

) ∩ L2(τ , τ + T ; Vg(O∞)
)
. (58)
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We rewrite (18) as follows:

dvk

dt
= –νAg,kvk – ενz(θtω)Ag,khk – Bg,k

(
vk + εhkz(θtω)

)

– νRg,kvk – ενz(θtω)Rg,khk + εz(θtω)hk + Pg,kf (t)|Ok ,

where hk = Pg,kh|Ok . Since the norms of the operators Ag,k , Bg,k are bounded in k and Rg,k

satisfies (9), respectively, it follows from Lemma 2.3 and Assumption H that

∥
∥
∥
∥

dvk

dt

∥
∥
∥
∥

V∗
g (Ok )

≤ c
(
1 +

∣
∣z(θtω)

∣
∣2 +

∣
∣z(θtω)

∣
∣4)(‖ṽk‖2

Vg (O∞) +
∥
∥f (t)

∥
∥2

V∗
g (O∞)

)
.

This together with ‖ṽk
′‖V∗

g (O∞) = ‖vk
′‖V∗

g (Ok ) and (58) implies that

{
ṽk

′}
k is bounded in L2(τ , τ + T , V ∗

g (O∞)
)
.

For each i ∈ N, according to Aubin’s compactness theorem [2] and the compactness of
Vg(Oi) ↪→ L

2(Oi), we obtain that

{ṽk|Oi}k is relatively compact in L2(τ , τ + T ;L2(Oi)
)
, ∀T > 0. (59)

From (58) and (59), by a diagonal process, we can extract an index subsequence k∗ of k
such that

ṽk∗ → v weak-star in L∞(
τ , τ + T ; Hg(O∞)

)

weakly in L2(τ , τ + T ; Vg(O∞)
)

strongly in L2(τ , τ + T ;L2(Oi)
)
, ∀T > 0,∀i ∈N, (60)

for some

v ∈ L∞(
τ , τ + T ; Hg(O∞)

) ∩ L2(τ , τ + T ; Vg(O∞)
)
, ∀T > 0.

We now show that v is a weak solution of Eq. (18) at k = ∞. Indeed, by the weak formu-
lation (20), the expansion ṽk∗ satisfies that, for each w ∈ Vg(O∞) and t > τ ,

(
ṽk∗ (t), w

)

g =
(
ṽk∗ (τ ), w

)

g +
∫ t

τ

〈
˜f (s)|Ok∗ , gw

〉
ds + ε

∫ t

τ

z(θsω)(h, gṽk∗ ) ds

– ν

∫ t

τ

〈Ag,∞ṽk∗ , w〉g ds – εν

∫ t

τ

z(θsω)〈Ag,∞h, w〉g ds

–
∫ t

τ

〈
Bg,∞

(
ṽk∗ + εhz(θsω)

)
, gw

〉
ds – ν

∫ t

τ

〈Rg,∞ṽk∗ , gw〉ds

– εν

∫ t

τ

z(θsω)〈Rg,∞h, gw〉ds, (61)
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and we only need to consider the convergence of the forcing term f as k∗ → ∞. Since
f ∈ L2(τ , t; V ∗

g (O∞)) and w ∈ Vg(O∞), we have

∫ t

τ

〈
f (s) – ˜f (s)|Ok∗ , gw

〉
ds =

∫ t

τ

∫

O∞\Ok∗
f (s, x) · wg dx ds

≤ M0

∫ t

τ

∥
∥f (s)

∥
∥

V∗
g (O∞) ds

(∫

O∞\Ok∗

∣
∣Dw(x)

∣
∣2g dx

) 1
2

≤ cM0

(∫ t

τ

∥
∥f (s)

∥
∥2

V∗
g (O∞) ds

) 1
2
(∫

O∞\Ok∗

∣
∣Dw(x)

∣
∣2g dx

) 1
2

≤ c
(∫

O∞\Ok∗

∣
∣Dw(x)

∣
∣2g dx

) 1
2 → 0 as k∗ → ∞.

By taking the limit of (61) as k∗ → ∞ and noticing that Ag,∞, Bg,∞, Rg,∞ are continuous
operators, we see that v is a weak solution of Eq. (18) with k = ∞. By the uniqueness of
the solutions, we have v(t) = v∞(t, τ ,ω, vτ ,∞). Using a standard contradiction argument, we
can show that the whole sequence {ṽk}k converges to v∞ in the sense of (60). This proves
(57).

In addition, from the strong convergence in (60), we also have

(
ṽk(t), ξ

)

g → (
v∞(t), ξ

)

g for a.e. t ∈ [τ , +∞) and any ξ ∈ V(O∞). (62)

On the other hand, for all ξ ∈ V(O∞), τ ≤ t ≤ t + a ≤ τ + T with T > 0,

∣
∣
(
ṽk(t + a) – ṽk(t), ξ

)

g

∣
∣ =

∫ t+a

t

〈
ṽk

′(s), ξ
〉

g ds =
∫ t+a

t

∫

O∞
ṽk

′(s)ξg dx ds

≤
(∫ t+a

t
1 ds

) 1
2
(∫ t+a

t

(∫

O∞
ṽk

′(s)ξg dx
)2

ds
) 1

2

≤ a
1
2 M

1
2
0

(∫

O∞
ξ 2g dx

) 1
2
(∫ t+a

t

∫

O∞
ṽk

′2(s) dx ds
) 1

2

= a
1
2 M

1
2
0 ‖ξ‖Vg (O∞)

∥
∥ṽk

′∥∥
L2(τ ,τ+T ;V∗

g (O∞))

≤ CT a
1
2 ‖ξ‖Vg (O∞), (63)

where CT is positive and independent of k. Thus, it follows from (58) and (63), we see that
{(ṽk(t),χ )} is equi-bounded and equi-continuous on [τ , τ + T] for all T > 0. This together
with (62) yields

(
ṽk(t), ξ

) → (
v∞(t), ξ

)
, ∀t ∈ [τ , +∞),∀ξ ∈ V(O∞). (64)

According to the density of V(O∞) in Hg(O∞), we show (56). �

By the similar (more simple) method as given in Lemma 4.3, we have weak continuity of
each vk .
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Corollary 1 For each fixed k ∈N, if vτ ,n ⇀ vτ weakly in Hg(Ok), then, as n → ∞,

vk(t, τ ,ω, vτ ,n) ⇀ vk(t, τ ,ω, vτ ) weakly in Hg(Ok),

vk(·, τ ,ω, vτ ,n) ⇀ vk(·, τ ,ω, vτ ) weakly in L2(τ , τ + T ; Vg(Ok)
) ∀T > 0.

5 Equi-asymptotic compactness
In this section, we establish an energy equation (as (75) below) for the expanding solution
ṽk and then we use this energy equation to verify the equi-asymptotic compactness of the
sequence {Φ̃k}k of expanding cocycles.

Theorem 5.1 Let Assumptions F, H, G hold true. Then, for any initial data v0,k ∈ D|Ok (τ –
tk , θ–tk ω) with tk → +∞, τ ∈R, ω ∈ Ω , and D ∈D, the sequence of expanded solutions

{
Φ̃k(tk , τ – tk , θ–tk ω)ṽ0,k

}
=

{
ṽk(τ , τ – tk , θ–τω, v0,k)

}

for problem (18) has a convergent subsequence in Hg(O∞).

Proof By taking σ = τ in (45), there is k0 ∈N such that

sup
k≥k0

∥
∥vk(τ , τ – tk , θ–τω, v0,k)

∥
∥2

Hg (Ok ) ≤ ρ(τ , τ ,ω) < +∞, (65)

and thus, by Lemma 2.3(1), the sequence of expanding solutions

{
ṽk(τ , τ – tk , θ–τω, v0,k)

}

k is bounded in Hg(O∞). (66)

Passing to subsequence, there is v ∈ Hg(O∞) such that

ṽk(τ , τ – tk , θ–τω, v0,k) ⇀ v weakly in Hg(O∞). (67)

By the resonance theorem,

lim inf
k→∞

∥
∥ṽk(τ , τ – tk , θ–τω, v0,k)

∥
∥

Hg (O∞) ≥ ‖v‖Hg (O∞). (68)

Hence, in order to prove the weak convergence in (67) is strongly convergent, it suffices to
prove that, for a subsequence,

lim sup
k→∞

∥
∥ṽk(τ , τ – tk , θ–τω, v0,k)

∥
∥

Hg (O∞) ≤ ‖v‖Hg (O∞). (69)

By the cocycle property, we have, for each m, k ∈N,

ṽk(τ , τ – tk , θ–τω, v0,k) = ṽk
(
τ , τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)
. (70)

For each m ∈N, by taking σ = τ – m in (45), there is Km ∈ N such that

sup
k≥Km

∥
∥ṽk(τ – m, τ – tk , θ–τω, v0,k)

∥
∥2

Hg (O∞) ≤ e2λmρ(τ – m, τ ,ω) < +∞,
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which means that the sequence {ṽk(τ – m, τ – tk , θ–τω, v0,k)}k is bounded in Hg(O∞) and
thus there are vm ∈ Hg(O∞) and an index subsequence {k(m)} of {k(m – 1)} such that

ṽk(m)(τ – m, τ – tk(m), θ–τω, v0,k(m)) ⇀ vm weakly in Hg(O∞).

We still use {k} to denote the index diagonal subsequence {k(k)}. Then, as k → ∞,

ṽk(τ – m, τ – tk , θ–τω, v0,k) ⇀ vm weakly in Hg(O∞) for all m ∈ N. (71)

By (70), (71), and (56), we have

ṽk(τ , τ – tk , θ–τω, v0,k) ⇀ v∞
(
τ , τ – m, θ–τω, vm)

in Hg(O∞). (72)

From (67), (72), and the uniqueness of weak limit, we have

v∞
(
τ , τ – m, θ–τω, vm)

= v. (73)

Now, we infer from (46) an energy equation Ok for all k ∈N:

d
dt

‖vk‖2
g + 2λ‖vk‖2

g + Ψ (vk) + 2ενz(θtω)〈Ag,khk , gvk〉

+ 2ενz(θtω)〈Rg,khk , gvk〉 + bg,k
(
vk + εhkz(θtω), vk + εhkz(θtω), vk

)

= 2
〈
f (t)|Ok , gvk

〉
+ 2εz(θtω)(hk , gvk), (74)

where Ψ (vk) = 2ν‖vk‖2
Vg (Ok ) + 2ν〈Rg,kvk , gvk〉 – 2λ‖vk‖2

g .
Since the null-expansion does not change the norm, we have

Ψ (vk) = Ψ (ṽk), and
〈
f (t)|Ok , gvk

〉
=

〈
f (t), gṽk

〉
.

Hence, we can rewrite (74) on O∞ as follows:

d
dt

‖ṽk‖2
g + 2λ‖ṽk‖2

g + Ψ (ṽk) + 2ενz(θtω)〈Ãg,khk , gṽk〉 + 2ενz(θtω)〈R̃g,khk , gṽk〉

+ bg,∞
(
ṽk + εhz(θtω), ṽk + εhz(θtω), ṽk

)
= 2

〈
f (t), gṽk

〉
+ 2εz(θtω)(h, gṽk) (75)

for all k ∈ N, where we regard ṽ∞ as v∞. Multiplying (75) by e2λt and then integrating the
result over [s, τ ], we obtain

∥
∥ṽk(τ , s,ω, vs,k)

∥
∥2

g = e2λ(s–τ )‖ṽs,k‖2
g –

∫ τ

s
eλ(r–τ )Ψ

(
ṽk(r, s,ω, vs,k)

)
dr

– 2νε

∫ τ

s
e2λ(r–τ )z(θrω)

〈
Ãg,khk , gṽk(r, s,ω, vs,k)

〉
dr

– 2νε

∫ τ

s
e2λ(r–τ )z(θrω)

〈
R̃g,khk , gṽk(r, s,ω, vs,k)

〉
dr

– 2
∫ τ

s
e2λ(r–τ )bg,∞(ṽk(r, s,ω, vs,k) + εhz(θrω), ṽk(r, s,ω, vs,k)
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+ εhz(θrω), ṽk(r, s,ω, vs,k)) dr

+ 2
∫ τ

s
e2λ(r–τ )〈f (r), gṽk(r, s,ω, vs,k)

〉
dr

+ 2ε

∫ τ

s
e2λ(r–τ )z(θrω)

(
h, gṽk(r, s,ω, vs,k)

)
dr. (76)

Let s = τ – m and ṽs,k = ṽk(τ – m, τ – tk , θ–τω, v0,k) in (76), we infer from (70) that, for all
k ∈N,

∥
∥ṽk(τ , τ – tk , θ–τω, v0,k)

∥
∥2

g

=
∥
∥ṽk

(
τ , τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)∥
∥2

g

= e–2λm∥
∥ṽk(τ – m, τ – tk , θ–τω, v0,k)

∥
∥2

g

–
∫ τ

τ–m
e2λ(r–τ )Ψ

(
ṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

))
dr

– 2νε

∫ τ

τ–m
e2λ(r–τ )

× z(θr–τω)
〈
Ãg,khk , gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

– 2νε

∫ τ

τ–m
e2λ(r–τ )

× z(θr–τω)
〈
R̃g,khk , gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

– 2
∫ τ

τ–m
e2λ(r–τ )bg,k

(
ũk(r, τ – m), ũk(r, τ – m), ũk(r, τ – m) – εhz(θr–τω)

)
dr

+ 2
∫ τ

τ–m
e2λ(r–τ )〈f (r), gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

+ 2ε

∫ τ

τ–m
e2λ(r–τ )

× z(θr–τω)
(
h, gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

))
dr. (77)

We then consider the limits of the right-hand side of (77) as k → ∞ one by one. For the
first term, by (45) with σ = τ – m and t = tk , we see that

e–2λm∥
∥ṽk(τ – m, τ – tk , θ–τω, v0,k)

∥
∥2

Hg (O∞)

≤ e– 3
2 λtk ‖ṽ0,k‖2

Hg (O∞) + c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

+ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds.

Since v0,k ∈ D|Ok (τ – tk , θ–tk ω), we have

e– 3
2 λtk ‖ṽ0,k‖2

Hg (O∞) = e– 3
2 λtk ‖v0,k‖2

Hg (Ok ) ≤ e– 3
2 λtk

∥
∥D|Ok (τ – tk , θ–tk ω)

∥
∥2

Hg (Ok )

≤ e– 3
2 λtk

∥
∥D(τ – tk , θ–tk ω)

∥
∥2

Hg (O∞) → 0 as k → ∞.
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Hence, we have the following estimate of the limit:

lim sup
k→∞

e–2λm∥
∥ṽk(τ – m, τ – tk , θ–τω, v0,k)

∥
∥2

≤ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

+ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds. (78)

For the second term, we claim that Ψ (vk) = 2ν‖vk‖2
Vg (Ok ) + 2ν〈Rg,kvk , gvk〉– 2λ‖vk‖2

g defines
a norm which is equivalent to the norm in Vg(Ok). Indeed, by Lemma 2.1 and Assump-
tion G, we see that

Ψ (vk) ≤ 2ν‖vk‖2
Vg (Ok ) +

2ν‖∇g‖∞
m0λ

1/2
0

‖vk‖2
Vg (Ok ) ≤ 2ν‖vk‖2

Vg (Ok ) +
ν

2
‖vk‖2

Vg (Ok )

=
5ν

2
‖vk‖2

Vg (Ok ).

On the other hand, by the uniform Poincaré inequality and λ = 1
3λ0ν ,

Ψ (vk) ≥ 2ν‖v‖2
Vg (Ok ) –

ν

2
‖vk‖2

Vg (Ok ) – 2λ
1
λ0

‖vk‖2
Vg (Ok ) =

5ν

6
‖vk‖2

Vg (Ok ).

Thus, by the Fatou lemma and weak equi-continuity (57), we obtain

lim inf
k→∞

∫ τ

τ–m
e2λ(r–τ )Ψ

(
ṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

))
dr

≥
∫ τ

τ–m
e2λ(r–τ ) lim inf

k→∞
Ψ

(
ṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

))
dr

≥
∫ τ

τ–m
e2λ(r–τ )Ψ

(
v∞

(
r, τ – m, θ–τω, vm))

dr,

which implies

lim sup
k→∞

–
∫ τ

τ–m
e2λ(r–τ )Ψ

(
ṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

))
dr

≤ –
∫ τ

τ–m
e2λ(r–τ )Ψ

(
v∞

(
r, τ – m, θ–τω, vm))

dr. (79)

Similarly, from Lemma 4.3 and [5], we get

lim sup
k→∞

–2
∫ τ

τ–m
e2λ(r–τ )bg,k

(
ũk(r, τ – m), ũk(r, τ – m), ũk(r, τ – m) – εhz(θr–τω)

)
dr

≤ –2
∫ τ

τ–m
e2λ(r–τ )bg,∞

(
u∞(r, τ – m), u∞(r, τ – m), v∞

(
r, τ – m, θ–τω, vm))

dr. (80)
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From (50) and the weak equi-continuity (57), we have

lim sup
k→∞

–
∫ τ

τ–m
e2λ(r–τ )

× z(θr–τω)
〈
Ãg,khk , gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

≤ –
∫ τ

τ–m
e2λ(r–τ )z(θr–τω)

〈
Ag,∞h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr. (81)

By (51) and the weak equi-continuity (57), we get

lim sup
k→∞

–
∫ τ

τ–m
e2λ(r–τ )

× z(θr–τω)
〈
R̃g,khk , gṽk

(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

≤ –
∫ τ

τ–m
e2λ(r–τ )z(θr–τω)

〈
Rg,∞h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr. (82)

By the weak equi-continuity (57) again, it follows from (71), on L2(τ – m, τ ; Vg(O∞)), that

ṽk
(·, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)
⇀ v∞

(·, τ – m, θ–τω, vm)
.

By f ∈ L2(τ – m, τ ; V ∗
g (O∞)) and Assumption H, we know

r �→ e2λ(r–τ )(f (r) + εz(θr–τω)h
)
g ∈ L2(τ – m, τ ; V ∗

g (O∞)
)
.

Thereby, we have

lim
k→∞

2
∫ τ

τ–m
e2λ(r–τ )〈f (r) + εz(θr–τω)h,

gṽk
(
r, τ – m, θ–τω, ṽk(τ – m, τ – tk , θ–τω, v0,k)

)〉
dr

= 2
∫ τ

τ–m
e2λ(r–τ )〈f (r) + εz(θr–τω)h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr. (83)

Taking the sup-limit of (77) as k → ∞, from (78) to (83), we obtain

lim sup
k→∞

∥
∥ṽk(τ , τ – tk , θ–τω, v0,k)

∥
∥2

≤ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

+ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds

–
∫ τ

τ–m
e2λ(r–τ )Ψ

(
v∞

(
r, τ – m, θ–τω, vm))

dr

– 2νε

∫ τ

τ–m
e2λ(r–τ )z(θr–τω)

〈
Ag,∞h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr

– 2εν

∫ τ

τ–m
e2λ(r–τ )z(θr–τω)

〈
Rg,∞h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr
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– 2
∫ τ

τ–m
e2λ(r–τ )bg,∞

(
u∞(r, τ – m), u∞(r, τ – m), v∞

(
r, τ – m, θ–τω, vm))

dr

+ 2
∫ τ

τ–m
e2λ(r–τ )〈f (r) + εz(θr–τω)h, gv∞

(
r, τ – m, θ–τω, vm)〉

dr. (84)

We denote the sum of last five terms in (84) by I(m), let k = ∞, s = τ – m in (76), and then
we obtain

‖v‖2
Hg (O∞) =

∥
∥v∞

(
τ , τ – m, θ–τω, vm)∥

∥2
Hg (O∞) = e–2λm∥

∥vm∥
∥2

g + I(m). (85)

Substituting (85) into (84) yields, for all m ∈N,

lim sup
k→∞

∥
∥ṽk(τ , τ – tk , θ–τω, v0,k)

∥
∥2

Hg (O∞)

≤ ‖v‖2
Hg (O∞) – e–2λm∥

∥vm∥
∥2

g + c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

+ c
∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds. (86)

By Lemma 4.1 and Assumption F, as m → ∞,

∫ –m

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

≤ eC0(ω)
∫ –m

–∞
e

3
2 λs∥∥f (s + τ )

∥
∥2

V∗
g (O) ds → 0.

Therefore, letting m → ∞ in (86), we obtain (69) as desired. �

Corollary 2 Let k ∈ N be fixed. Then, for any v0,n ∈ D|Ok (τ – tn, θ–tnω) with tn → +∞,
D ∈ D, τ ∈ R, and ω ∈ Ω , the sequence {vk(τ , τ – tn, θ–τω)v0,n}n of solutions of (18) has a
convergent subsequence in Hg(Ok).

6 Final conclusion
In the last section, we deduce the existence and large-domain stability of the attractor
when the domain changes from bounded to unbounded.

Theorem 6.1 For each k ∈N, let Φk be the cocycle associated with the g-NS equation (18)
on Ok , and let Dk := D|Ok be the restriction of the universe D in (22). Then Φk has a Dk-
pullback random attractor Ak in Hg(Ok).

Proof By taking σ = τ in (45), we find that Φk has an absorbing set Mk given by

Mk(τ ,ω) =
{

u ∈ Hg(Ok) : ‖u‖Hg (Ok ) ≤ ρ(τ ,ω)
}

, ∀k ∈N,

where ρ(τ ,ω) := ρ(τ , τ ,ω) = c(ρ1(τ ,ω) + ρ2(τ ,ω)) with

ρ1(τ ,ω) :=
∫ 0

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O∞) ds,
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ρ2(τ ,ω) :=
∫ 0

–∞
e2λs+c0ε

∫ 0
s |z(θrω)|dr(∣∣z(θsω)

∣
∣2 +

∣
∣z(θsω)

∣
∣4)ds.

We need to prove that ρ1 and ρ2 are tempered with the growth rate 3
2λ. Indeed, by

Lemma 4.1 and Assumption F,

e– 3
2 λtρ1(τ – t, θ–tω)

= e– 3
2 λt

∫ 0

–∞
e2λs+c0ε

∫ 0
s |z(θr–tω)|dr∥∥f (s + τ – t)

∥
∥2

V∗
g (O) ds

≤ e– 3
2 λt

∫ –t

–∞
e

3
2 λ(s+t)+c0ε

∫ –t
s |z(θrω)|dr∥∥f (s + τ )

∥
∥2

V∗
g (O) ds

≤ eC0(ω)
∫ –t

–∞
eλs∥∥f (s + τ )

∥
∥2

V∗
g (O) ds → 0

as t → +∞. Similarly, the tempered property of |z(θsω)|2 + |z(θsω)|4 implies that ρ2 is tem-
pered. Therefore, Mk ∈Dk .

On the other hand, by Corollary 2, Φk is Dk-pullback asymptotically compact. There-
fore, it follows from the abstract result [21] that Φk has a unique Dk-pullback random
attractor denoted by Ak = {Ak(τ ,ω)}.

In addition, by Theorem 3.1, the expanded cocycle Φ̃k has a D̃k-pullback random at-
tractor in Hk(O∞). This expanded attractor is just the null-expansion Ãk of Ak . �

Finally, we establish the large-domain stability (upper-semicontinuity) of random attrac-
tors as k → ∞.

Theorem 6.2 The sequence {Ak}k of random attractors associated with problem (18) sat-
isfies

distHg (O∞)
(
Ãk(τ ,ω),A∞(τ ,ω)

) → 0 (87)

as k → ∞ for all τ ∈ R and ω ∈ Ω , where Ãk is the null-expansion of Ak .

Proof The proof is similar to that of [16, Theorem VI.2] and so is omitted here. �
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