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monotone if 〈Au – Av, u – v〉 ≥ 0 for all u, v ∈ C [6, 7, 11]. A mapping A is said to be α-
strongly monotone if there exists a positive real number α such that 〈Au – Av, u – v〉 ≥
α‖u – v‖2 for all u, v ∈ C [6, 7, 11]. A mapping A is said to be α-inverse strongly monotone
if there exists a positive real number α such that 〈Au – Av, u – v〉 ≥ α‖Au – Av‖2 for all
u, v ∈ C [6, 7, 11]. In such a case, A is said to be α-inverse-strongly monotone.

Let T : C → C be a mapping. We denote by F(T) the fixed-point set of T , that is, F(T) =
{x ∈ C : T(x) = x}. A mapping T is said to be L-Lipschitz if there exists L ≥ 0 such that
‖Tu – Tv‖ ≤ L‖u – v‖ for all u, v ∈ C. The mapping T is called nonexpansive if L = 1. It is
also called contraction if L < 1. Note that any α-inverse strongly monotone mapping A is
Lipschitz and ‖Au – Av‖ ≤ 1

α
‖u – v‖ [6, 7, 11]. There are a lot works associated with the

fixed point algorithms for nonexpansive mappings (see, e.g., [12–23]).
Let A : H → H be a single-valued nonlinear map, and let B : H → 2H be a set-valued

mapping. The variational inclusion is finding p ∈ H such that

θ ∈ A(p) + B(p), (4)

where θ is the zero vector in H . For A = 0, (4) becomes the inclusion problem introduced
by Rockafellar [24]. The effective domain of B is denoted by D(B), that is, D(B) = {x ∈
H : Bx 
= ∅}. The graph of B is G(B) = {(u, v) ∈ H × H : v ∈ Bu}. A set-valued mapping
B is said to be monotone if 〈x – y, f – h〉 ≥ 0 for all x, y ∈ D(B), f ∈ Bx, and h ∈ By [25].
A monotone operator B is maximal if the graph G(B) of B is not properly contained in
the graph of any other monotone mapping [25]. Also, a monotone mapping B is maximal
if and only if 〈x – y, f – h〉 ≥ 0 ((x, f ) ∈ H × H (y, h) ∈ G(B)) implies f ∈ Bx [25]. For a
maximal monotone operator B on H and r > 0, we define the single-valued operator JB

r x =
(I + rB)–1 : H → D(B), which is called the resolvent of B for r. It is well known that JB

r x is
firmly nonexpansive, that is, 〈x – y, JB

r x – JB
r y〉 ≥ ‖JB

r x – JB
r y‖2 for all x, y ∈ H (see [13]), and

that a solution of (4) is a fixed point of JB
r (I – rA) for all r > 0 [25].

A basic problem for maximal monotone operator B is finding

x ∈ H such that 0 ∈ Bx. (5)

A known method for solving problem (5) is the proximal point algorithm: x1 = x ∈ H , and

xn+1 = JB
rn xn (n ≥ 1),

where JB
rn = (I + rnB)–1 and {rn} ⊂ (0,∞). Then Rockafellar [24, 26] proved that the se-

quence {xn} converges weakly to an element of B–1(0) (see also [27]). In the literature,
there are a large number references associated with the proximal point algorithm [27–
29]. In 2011, Shehu [8] suggested the following iterative sequence. Let {xn} be the sequence
generated by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

xn+1 = anxn + (1 – an)T[βnf (xn) + (1 – βn)JB
rn (yn – rnAyn)] (∀n ≥ 1).

Under appropriate conditions, the author proved that the sequence {xn} converges
strongly to a point PF(T)∩(A+B)–1(0)∩GEP(F ,A)u [8]. Our goal in this paper is to present an
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iterative method that converges strongly to a common element of the fixed point set of
two nonexpansive mappings and the zero set of the sums of maximal monotone operators
in Hilbert spaces. Our results extend and improve some related old results.

2 Preliminaries
Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H . It is well
known that, for any x ∈ H , there exists a unique nearest point in C, denoted by PC(x), such
that ‖x – PC(x)‖ = infy∈C ‖x – y‖ =: d(x, C). It is well known that PC is nonexpansive mono-
tone mapping from H onto C, 〈x – PCx, z – PCx〉 ≤ 0, ‖x – z‖2 ≥ ‖x – PCx‖2 + ‖z – PCx‖2

for all x ∈ H and z ∈ C, and 〈PCx – PCz, x – z〉 ≥ ‖PCx – PCz‖2 for all z, x ∈ H (see [13]).
Let A be a monotone mapping from C into H . In the context of the variational inequality
problem, it is easy to see that from the relation 〈x – PCx, z – PCx〉 ≤ 0 we have

p ∈ VI (C, A) ⇔ p = PC(p – λAp) for some λ > 0.

For solving the equilibrium problem for a a bifunction F : C × C → R, we assume that F
satisfy the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,
(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,
(A3) for each x, y, z ∈ C, limt→0 F(tz + (1 – t)x, y) ≤ F(x, y),
(A4) for each x ∈ C, the function y �→ F(x, y) is convex and lower semicontinuous.

Put F(x, y) = 〈Ax, y – x〉 for x, y ∈ C. Then we see that the equilibrium problem (2) is re-
duced to the variational inequality (3). We need the following results.

Lemma 2.1 ([2, 30]) Let C be a nonempty closed convex subset of H , and let F be a bifunc-
tion from C×C toR satisfying (A1)–(A4). For r > 0 and x ∈ H , consider the map Tr : H → C
defined by Tr(x) = {z ∈ C : F(z, y) + 1

r 〈y – z, z – x〉 ≥ 0 for all y ∈ C}. Then Tr(x) 
= ∅ for all
x ∈ H , Tr is single-valued, EP(F) is closed and convex, F(Tr) = EP(F), and Tr is firmly non-
expansive, that is, ‖Tr(x) – Tr(y)‖2 ≤ 〈Tr(x) – Tr(y), x – y〉 for all x, y ∈ H .

Lemma 2.2 ([31]) Let C be a nonempty closed convex subset of H , and let F be a bifunction
from C ×C toR satisfying (A1)–(A4). Define the multivalued mapping AF from H into itself
by AF x = {z ∈ C : F(z, y) ≤ 〈y – x, z〉 for all y ∈ C} whenever x ∈ C and AF x = ∅ otherwise.
Then AF is a maximal monotone operator with the domain Tr(x) = (I +rAF )–1x for all x ∈ H
and r > 0.

Lemma 2.3 ([32]) Let H be a real Hilbert space, let C be a closed convex subset of H , and
let T : C → C be a nonexpansive mapping. Then (I – T) is demiclosed at zero, that is, if
{xn} is a sequence in C such that xn ⇀ x and Txn – xn → 0, then x = T(x).

Lemma 2.4 ([33]) Let {xn} be a sequence of nonnegative real numbers satisfying

xn+1 ≤ (1 – λn)xn + γn,

where {λn} is a sequence in (0, 1), and γn is a sequence with
∑∞

n=0 λn = ∞ and
limsupn→∞ γn ≤ 0 or

∑∞
n=0 |γnλn| < ∞. Then limn→∞ xn = 0.
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Lemma 2.5 ([34]) Let H be a real Hilbert space, let xj ∈ H , and let aj ∈ [0, 1], j = 1, 2, 3, be
such that a1 + a2 + a3 = 1. Then we have

‖a1x1 + a2x2z + a3x3‖2 = a1‖x1‖2 + a2‖x2‖2 + a3‖x3‖2 –
∑

1≤i,j≤3

aiaj‖xi – xj‖2.

Lemma 2.6 ([31]) Let B be a maximal monotone operator on H . Then we have

λ – r
r

〈
JB
λ x – JB

r x, JB
λ x – x

〉 ≥ ∥
∥JB

λ x – JB
r x

∥
∥2 (∀λ, r > 0 and x ∈ H).

3 Main results
Now we are ready to state and prove our main results.

Theorem 3.1 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from C
into H , let M be a β-inverse strongly monotone map from C into H , and let B be a maximal
monotone operator on H with domain contained in C. Assume that S, T : C → C are two
nonexpansive mappings such that Ω = F(T) ∩ F(S) ∩ (M + B)–1(0) ∩ GEP(F , A) 
= ∅ and
f : C → C is a contraction map with the constant ρ ∈ (0, 1). Suppose that {bn}, {an}, and
{μn} are some sequences in (0, 1) and {xn}, {yn}, and {zn} are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

zn = μnxn + (1 – μn)JB
λn (yn – λnMyn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

(6)

Suppose the following conditions hold:
(d1) 0 < c ≤ λn ≤ d < 2β , limn→∞ |λn – λn–1| = 0,
(d2) 0 < a ≤ rn ≤ b < 2α, limn→∞ |rn – rn–1| = 0,
(d3) limn→∞ bn = 0,

∑∞
n=1 bn = ∞,

∑∞
n=1 |bn – bn–1| < ∞,

(d4)
∑∞

n=1 |μn – μn–1| < ∞,
∑∞

n=1 |an – an–1| < ∞.
Then {xn} converges strongly to a point q ∈ Ω , which is the unique solution to the variational
inequality 〈(I – f )q, x – q〉 ≥ 0 for all x ∈ Ω .

Proof First, we show that I – λnM is nonexpansive. Let x, y ∈ C and 0 < λn < 2β . Then

∥
∥(I – λnM)x – (I – λnM)y

∥
∥2 =

∥
∥(x – y) – λn(Mx – My)

∥
∥2

≤ ‖x – y‖2 – 2λn〈x – y, Mx – My〉 + λ2
n‖Mx – My‖2

≤ ‖x – y‖2 – λnβ‖Mx – My‖2 + λ2
n‖Mx – My‖2

= ‖x – y‖2 + λn(λn – 2β)‖Mx – My‖2

≤ ‖x – y‖2. (7)

Thus I – λnM is nonexpansive. Note that yn can be rewritten as yn = Trn (xn – rnAxn) for
n ≥ 1. Let q ∈ Ω . From (d2) and Lemma 2.1 we have

‖yn – q‖2 =
∥
∥Trn (xn – rnAxn) – q

∥
∥2
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=
∥
∥Trn (xn – rnAxn) – Trn (q – rnAq))

∥
∥2

≤ ∥
∥(xn – rnAxn) – (q – rnAq)

∥
∥2

= ‖xn – q‖2 + rn(rn – 2α)‖Axn – Aq‖2 ≤ ‖xn – q‖2. (8)

By (6) and (7), since JB
λn is nonexpansive, we have

‖zn – q‖2 =
∥
∥μnxn + (1 – μn)JB

λn (yn – λnMyn) – q
∥
∥2

=
∥
∥μn(xn – q) + (1 – μn)

(
JB
λn (yn – λnMyn) – q

)∥
∥2

≤ μn‖xn – q‖2 + (1 – μn)
∥
∥JB

λn (yn – λnMyn) – q
∥
∥2

≤ μn‖xn – q‖2 + (1 – μn)
∥
∥JB

λn (yn – λnMyn) – JB
λn (q – λnMq)

∥
∥2

≤ μn‖xn – q‖2 + (1 – μn)
∥
∥(yn – λnMyn) – (q – λnMq)

∥
∥2

≤ μn‖xn – q‖2 + (1 – μn)
(‖yn – q‖2 + λn(λn – 2β)‖Myn – Mq‖2)

≤ ‖xn – q‖2 + (1 – μn)λn(λn – 2β)‖Myn – Mq‖2 ≤ ‖xn – q‖2. (9)

Hence

‖xn+1 – q‖ =
∥
∥PC

[
bnf (xn) + (1 – bn)

(
anSzn + (1 – an)Tyn

)]
– PC(q)

∥
∥

≤ ∥
∥
[
bnf (xn) + (1 – bn)

(
anSzn + (1 – an)Tyn

)]
– q

∥
∥

≤ bn
∥
∥f (xn) – q

∥
∥ + (1 – bn)

[
an‖Szn – q‖ + (1 – an)‖Tyn – q‖]

≤ bn
∥
∥f (xn) – q

∥
∥ + (1 – bn)

[
an‖xn – q‖ + (1 – an)‖yn – q‖]

≤ bn
∥
∥f (xn) – q

∥
∥ + (1 – bn)‖xn – q‖

≤ bn
(∥
∥f (xn) – f (q)

∥
∥ +

∥
∥f (q) – q

∥
∥
)

+ (1 – bn)‖xn – q‖
≤ bn

(
ρ‖xn – q‖ +

∥
∥f (q) – q

∥
∥
)

+ (1 – bn)‖xn – q‖
≤ (

1 – bn(1 – ρ)
)‖xn – q‖ + bn

∥
∥f (q) – q

∥
∥

≤ max
{

‖xn – q‖,
‖f (q) – q‖

(1 – ρ)

}

...

≤ max
{

‖x1 – q‖,
‖f (q) – q‖

(1 – ρ)

}

.

Thus {xn} is bounded, and the sequences {yn} and {zn} are bounded as well. From yn =
Trn (xn – rnAxn) and yn–1 = Trn–1 (xn–1 – rn–1Axn–1) we obtain

F(yn, y) + 〈Axn, y – yn〉 +
1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C) (10)

and

F(yn–1, y) + 〈Axn–1, y – yn–1〉 +
1

rn–1
〈y – yn–1, yn–1 – xn–1〉 ≥ 0 (∀y ∈ C). (11)
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By substituting y = yn–1 into (10) and y = yn into (11), we find

F(yn, yn–1) + 〈Axn, yn–1 – yn〉 +
1
rn

〈yn–1 – yn, yn – xn〉 ≥ 0

and

F(yn–1, yn) + 〈Axn–1, yn – yn–1〉 +
1

rn–1
〈yn – yn–1, yn–1 – xn–1〉 ≥ 0.

Now from (A2) we get 〈Axn–1 – Axn, yn – yn–1〉 + 〈yn–1 – yn, yn–xn
rn

– yn–1–xn–1
rn–1

〉 ≥ 0, and so

0 ≤
〈

yn – yn–1, rn(Axn–1 – Axn) +
rn

rn–1
(yn–1 – xn–1) – (yn – xn)

〉

=
〈

yn–1 – yn, yn – yn–1 +
(

1 –
rn

rn–1

)

yn–1 + (xn–1 – rn–1Axn–1)
〉

–
〈

yn+1 – yn, (xn – rnAxn) + xn–1 –
rn

rn–1
xn–1

〉

=
〈

yn–1 – yn, yn – yn–1 +
(

1 –
rn

rn–1

)

(yn–1 – xn–1)

+ (xn–1 – rn–1Axn–1) – (xn – rnAxn)
〉

.

This implies that ‖yn – yn–1‖2 ≤ ‖yn – yn–1‖[|1 – rn
rn–1

|‖yn–1 – xn–1‖ + ‖xn – xn–1‖], and so

‖yn – yn–1‖ ≤ |rn – rn–1|
rn–1

‖yn–1 – xn–1‖ + ‖xn – xn–1‖. (12)

Set wn = JB
λn (yn – λnMyn) and un = yn – λnMyn for n ≥ 1. By using Lemma 2.6 we obtain

‖wn – wn–1‖ =
∥
∥JB

λn (yn – λnMyn) – JB
λn–1 (yn–1 – λn–1Myn–1)

∥
∥

=
∥
∥JB

λn un – JB
λn–1 un–1 + JB

λn un–1 – JB
λn un–1

∥
∥

≤ ∥
∥(yn – λnMyn) – (yn–1 – λn–1Myn–1)

∥
∥

+
∥
∥JB

λn un–1 – JB
λn–1 un–1

∥
∥

≤ ∥
∥(yn – λnMyn) – (yn–1 – λnMyn–1) + (λn–1 – λn)Myn–1

∥
∥

+
|λn–1 – λn|

λn–1

∥
∥JB

λn–1 un–1 – un–1
∥
∥

≤ ‖yn – yn–1‖ + |λn–1 – λn|‖Myn–1‖ +
|λn–1 – λn|

λn–1

∥
∥JB

λn–1 un–1 – un–1
∥
∥

≤ ‖xn – xn–1‖ +
|rn – rn+1|

rn+1
‖yn+1 – xn+1‖ + |λn–1 – λn|‖Myn–1‖

+
|λn–1 – λn|

λn–1

∥
∥JB

λn–1 un–1 – un–1
∥
∥,

which gives

‖zn – zn–1‖ =
∥
∥
[
μnxn + (1 – μn)wn

]
–

[
μn–1xn–1 + (1 – μn–1)wn–1

]∥
∥
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=
∥
∥μn(xn – xn–1) + (1 – μn)(wn – wn–1) + (μn – μn–1)(xn–1 – wn–1)

∥
∥

≤ μn‖xn – xn–1‖ + |μn – μn–1|‖xn–1 – wn–1‖ + (1 – μn)‖wn – wn–1‖
≤ ‖xn – xn–1‖ + |μn – μn–1|‖xn–1 – wn–1‖

+ (1 – μn)
(

|λn–1 – λn|‖Myn–1‖ +
|rn – rn+1|

rn+1
‖yn+1 – xn+1‖

+
|λn–1 – λn|

λn–1

∥
∥JB

λn–1 un–1 – un–1
∥
∥

)

.

Set tn = anSzn + (1 – an)Tyn for n ≥ 1. By using (12) and last inequality we have

‖tn – tn–1‖ =
∥
∥an(Szn – Szn–1) + (1 – an)(Tyn – Tyn–1)

+ (an – an–1)(Szn–1 – Tyn–1)
∥
∥

≤ an‖Szn – Szn–1‖ + (1 – an)‖Tyn – Tyn–1‖
+ |an – an–1|‖Szn–1 – Tyn–1‖

≤ an‖zn – zn–1‖ + (1 – an)‖yn – yn–1‖ + |an – an–1|‖Szn–1 – Tyn–1‖
≤ ‖xn – xn–1‖ +

|rn – rn+1|
rn+1

‖yn+1 – xn+1‖ + |an – an–1|‖Szn–1 – Tyn–1‖

+ (1 – μn)an

(

|λn–1 – λn|‖Myn–1‖ +
|λn–1 – λn|

λn–1

∥
∥JB

λn–1 un–1 – un–1
∥
∥

)

+ an|μn – μn–1|‖xn–1 – wn–1‖,

which implies that

‖xn+1 – xn‖ =
∥
∥PC

[
bnf (xn) + (1 – bn)tn

]
– PC

[
bn–1f (xn–1) + (1 – bn–1)tn–1

]∥
∥

≤ ∥
∥
[
bnf (xn) + (1 – bn)tn

]
–

[
bn–1f (xn–1) + (1 – bn–1)tn–1

]∥
∥

≤ ∥
∥bn

(
f (xn) – f (xn–1)

)
+ (1 – bn)(tn – tn–1)

∥
∥

+
∥
∥(bn – bn–1)

(
f (xn–1) – tn–1

)∥
∥

≤ bn
∥
∥f (xn) – f (xn–1)

∥
∥ + |bn – bn–1|

∥
∥f (xn–1) – tn–1

∥
∥

+ (1 – bn)‖tn – tn–1‖
≤ bnρ‖xn – xn–1‖ + |bn – bn–1|

∥
∥f (xn–1) – tn–1

∥
∥ + (1 – bn)‖tn – tn–1‖

≤ (
1 – bn(1 – ρ)

)‖xn – xn–1‖ + |bn – bn–1|
∥
∥f (xn–1) – tn–1

∥
∥

+
|rn – rn+1|

a
‖yn+1 – xn+1‖ + |μn – μn–1|‖xn–1 – wn–1‖

+ |λn–1 – λn|‖Myn–1‖ +
|λn–1 – λn|

c
∥
∥JB

λn–1 un–1 – un–1
∥
∥

+ |an – an–1|‖Szn–1 – Tyn–1‖

≤ (
1 – bn(1 – ρ)

)‖xn – xn–1‖ + L
[

|bn – bn–1| + |μn – μn–1|

+
|rn – rn+1|

a
+

(

1 +
1
c

)

|λn–1 – λn| + |an – an–1|
]

,
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where L is a constant such that

L ≥ max
{
sup
n≥1

‖Szn–1 – Tyn–1‖, sup
n≥1

‖Myn‖, sup
n≥1

∥
∥JB

λn–1 un–1 – un–1
∥
∥,

sup
n≥1

∥
∥f (xn–1) – tn–1

∥
∥, sup

n≥1
‖yn+1 – xn+1‖, sup

n≥1
‖xn–1 – wn–1‖

}
.

Now by using (d1), (d2), (d3), (d4), and Lemma 2.4 we get

limsup
n→∞

‖xn+1 – xn‖ = 0. (13)

From (6) we have

‖xn – tn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – tn‖
= ‖xn – xn+1‖ +

∥
∥pC

[
bnf (xn) + (1 – bn)tn

]
– PC(tn)

∥
∥

≤ ‖xn – xn+1‖ +
∥
∥
[
bnf (xn) + (1 – bn)tn

]
– tn

∥
∥

≤ ‖xn – xn+1‖ + bn
∥
∥f (xn) – tn

∥
∥.

Consequently, from the condition (d3) we obtain

lim
n→∞‖xn – tn‖ = 0. (14)

Let q = PΩ f (q). In addition, from (6), (8), Lemma 2.5, and (9) we get

‖xn+1 – q‖2 =
∥
∥PC

[
bnf (xn) + (1 – bn)

(
anSzn + (1 – an)Tyn

)]
– PC(q)

∥
∥2

≤ ∥
∥
[
bnf (xn) + (1 – bn)

(
anSzn + (1 – an)Tyn

)]
– q

∥
∥2

≤ bn
∥
∥f (xn) – q

∥
∥2 + (1 – bn)

[
an‖Szn – q‖2 + (1 – an)‖Tyn – q‖2

– an(1 – an)‖Szn – Tyn‖
]

≤ bn
∥
∥f (xn) – q

∥
∥2 + (1 – bn)

[
an‖zn – q‖2 + (1 – an)‖yn – q‖2

– an(1 – an)‖Szn – Tyn‖
]

≤ bn
∥
∥f (xn) – q

∥
∥2 + (1 – bn)

(
an‖xn – q‖2 – an(1 – an)‖Szn – Tyn‖

)

+ (1 – bn)an(1 – μn)λn(λn – 2β)‖Myn – Mq‖2

+ (1 – bn)(1 – an)
(‖xn – q‖2 + rn(rn – 2α)‖Axn – Aq‖2)

≤ bn
∥
∥f (xn) – q

∥
∥ + (1 – bn)

(‖xn – q‖ – an(1 – an)‖Szn – Tyn‖
)

+ (1 – bn)an(1 – μn)λn(λn – 2β)‖Myn – Mq‖2

+ (1 – bn)(1 – an)rn(rn – 2α)‖Axn – Aq‖2,

which yields

(1 – bn)(1 – an)rn(2α – rn) · ‖Axn – Aq‖2
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≤ bn
∥
∥f (xn) – q

∥
∥2 + ‖xn – q‖2 – ‖xn+1 – q‖2

+ (1 – bn)an(1 – μn)λn(λn – 2β)‖Myn – Mq‖2

– (1 – bn)an(1 – an)‖Szn – Tyn‖,

(1 – bn)an(1 – μn)λn(2β – λn) · ‖Myn – Mq‖2

≤ bn
∥
∥f (xn) – q

∥
∥2 + ‖xn – q‖2 – ‖xn+1 – q‖2

+ (1 – bn)(1 – an)rn(rn – 2α)‖Axn – Aq‖2

– (1 – bn)an(1 – an)‖Szn – Tyn‖,

and

(1 – bn)an(1 – an)‖Szn – Tyn‖ ≤ bn
∥
∥f (xn) – q

∥
∥2 + ‖xn – q‖2 – ‖xn+1 – q‖2

+ (1 – bn)(1 – an)rn(rn – 2α)‖Axn – Aq‖2

+ (1 – bn)an(1 – μn)λn(λn – 2β)‖Myn – Mq‖2.

By using (d1), (d2), (d3), and (13) we get

lim
n→∞‖Myn – Mq‖ = lim

n→∞‖Axn – Aq‖ = lim
n→∞‖Szn – Tyn‖ = 0. (15)

Since ‖tn – Tyn‖ ≤ an‖Szn – Tyn‖ and ‖tn – Szn‖ ≤ (1 – an)‖Tyn – Szn‖, we obtain

lim
n→∞‖tn – Tyn‖ = lim

n→∞‖tn – Szn‖ = 0. (16)

Note that

‖wn – q‖2 =
∥
∥JB

λn (yn – λnMyn) – JB
λn (q – λnMq)

∥
∥2

≤ 〈
(yn – λnMyn) – (q – λnMq), wn – q

〉

=
1
2
∥
∥(yn – λnMyn) – (q – λnMq)

∥
∥2 +

1
2
‖wn – q‖2

–
1
2
∥
∥(yn – λnMyn) – (q – λnMq) – (wn – q)

∥
∥2

≤ 1
2
[‖yn – q‖2 + ‖wn – q‖2 –

∥
∥(yn – wn) – λn(Myn – Mq)

∥
∥2]

=
1
2
[‖yn – q‖2 + ‖wn – q‖2 – ‖yn – wn‖2 + 2λn〈yn – wn, Myn – Mq〉

– λ2
n‖Myn – Mq‖2],

and so

‖wn – q‖2 ≤ ‖yn – q‖2 – ‖yn – wn‖2 + 2λn‖yn – wn‖‖Myn – Mq‖. (17)

By using Lemma 2.1 and (6) we have

‖yn – q‖2 =
∥
∥Trn (xn – rnAxn) – Trn (q – rnAq)

∥
∥2
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≤ 〈
(xn – rnAxn) – (q – rnAq), yn – q

〉

=
1
2
∥
∥(xn – rnAxn) – (q – rnAq)

∥
∥2 +

1
2
‖yn – q‖2

–
1
2
∥
∥(xn – rnAxn) – (q – rnAq) – (yn – q)

∥
∥2

≤ 1
2
[‖xn – q‖2 + ‖yn – q‖2 –

∥
∥(xn – yn) – 2rn(Axn – Aq)

∥
∥2]

=
1
2
[‖xn – q‖2 + ‖yn – q‖2 – ‖xn – yn‖2 + 2rn〈xn – yn, Axn – Aq〉

– r2
n‖Axn – Aq‖2].

It follows that

‖yn – q‖2 ≤ ‖xn – q‖2 – ‖xn – yn‖2 + 2rn〈xn – yn, Axn – Aq〉. (18)

From (8), (17), and (18) we have

‖tn – q‖2 =
∥
∥an(Szn – q) + (1 – an)(Tyn – q)

∥
∥2

≤ an‖Szn – q‖2 + (1 – an)‖Tyn – q‖2

≤ an‖zn – q‖2 + (1 – an)‖yn – q‖2

≤ an
(
μn‖xn – q‖2 + (1 – μn)‖wn – q‖2) + (1 – an)‖yn – q‖2

≤ an
(
μn‖xn – q‖2 + (1 – μn)

(‖yn – q‖2 – ‖yn – wn‖2))

+ (1 – μn)an2λn‖yn – wn‖‖Myn – Mq‖
+ (1 – an)

(‖xn – q‖2 – ‖xn – yn‖2 + 2rn〈xn – yn, Axn – Aq〉)

≤ ‖xn – q‖2 – an(1 – μn)‖yn – wn‖2

+ (1 – μn)an2λn‖yn – wn‖‖Myn – Mq‖
+ (1 – an)

(
2rn‖xn – yn‖‖Axn – Aq‖ – ‖xn – yn‖2).

By using (6) and last inequality we see that

‖xn+1 – q‖2 =
∥
∥PC

[
bnf (xn) + (1 – bn)tn

]
– PC(q)

∥
∥2

≤ bn
∥
∥f (xn) – q

∥
∥2 + (1 – bn)‖tn – q‖2

≤ bn
∥
∥f (xn) – q

∥
∥2 + (1 – bn)

(‖xn – q‖2 – an(1 – μn)‖yn – wn‖2

+ (1 – μn)an2λn‖yn – wn‖‖Myn – Mq‖
+ (1 – an)

(
2rn‖xn – yn‖‖Axn – Aq‖ – ‖xn – yn‖2)).

Thus

(1 – bn)(1 – an)‖xn – yn‖2 ≤ bn
∥
∥f (xn) – q

∥
∥2 + ‖xn – q‖2 – ‖xn+1 – q‖2

+ (1 – μn)an2λn‖yn – wn‖‖Myn – Mq‖ – ‖yn – wn‖2

+ (1 – an)
(
2rn‖xn – yn‖‖Axn – Aq‖ – ‖xn – yn‖2)



Rezapour and Zakeri Journal of Inequalities and Applications        (2020) 2020:190 Page 11 of 20

and

(1 – bn)(1 – μn)an‖yn – wn‖2 ≤ bn
∥
∥f (xn) – q

∥
∥2 + ‖xn – q‖2 – ‖xn+1 – q‖2

+ (1 – μn)an2λn‖yn – wn‖‖Myn – Mq‖
+ (1 – an)2rn‖xn – yn‖‖Axn – Aq‖.

From (d3), (15), and limn→∞ ‖xn – xn+1‖ = 0 we find limn→∞ ‖xn – yn‖ = 0 and also
limn→∞ ‖yn – wn‖ = 0. Since ‖xn – wn‖ ≤ ‖xn – yn‖ + ‖yn – wn‖, we get ‖xn – wn‖ → 0.
Consequently, by using (6) we get limn→∞ ‖zn – xn‖ = limn→∞(1 –μn)‖wn – xn‖ = 0. More-
over, from (14) and (16) we get ‖zn – Szn‖ ≤ ‖zn – xn‖ + ‖xn – tn‖ + ‖tn – Szn‖ → 0 and
‖yn – Tyn‖ ≤ ‖yn – xn‖ + ‖xn – tn‖ + ‖tn – Tyn‖ → 0. Hence

‖xn – Sxn‖ ≤ ‖xn – zn‖ + ‖zn – Szn‖ + ‖Szn – Sxn‖
≤ ‖xn – zn‖ + ‖zn – Szn‖ + ‖zn – xn‖ → 0

and

‖xn – Txn‖ ≤ ‖xn – yn‖ + ‖yn – Tyn‖ + ‖Tyn – Txn‖
≤ ‖xn – yn‖ + ‖yn – Tyn‖ + ‖yn – xn‖ → 0,

which implies

lim
n→∞‖xn – Txn‖ = lim

n→∞‖xn – Sxn‖ = 0. (19)

Now we show that limsupn→∞〈f (q) – q, xn – q〉 ≤ 0, where q = PΩ f (q). The existence of q
is justified since PΩ is nonexpansive and f is a contraction. Hence PΩ ◦ f is a contraction
and so has a fixed point. We can choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈
f (q) – q, xn – q

〉
= lim

i→∞
〈
f (q) – q, xni – q

〉
. (20)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} that converges weakly

to v. Without loss of generality, we can assume that xni ⇀ v. Since ‖xn – yn‖ → 0 and
‖xn – zn‖ → 0, we find yni ⇀ v and yni ⇀ v. Since {yni} and {zni} lie in C and C is closed
and convex, we obtain v ∈ C. It is easy to check that v ∈ F(T) and v ∈ F(S). By using (19) and
Lemma 2.3 we get v ∈ F(T) ∩ F(S). Now we show v ∈ GEP(F). Since yn = Trn (xn – rnAxn),
we obtain

F(yn, y) + 〈Axn, y – yn〉 +
1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C).

From (A2) we get 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ F(y, yn) for all y ∈ C. Hence

〈Axni , y – yni〉 +
〈

y – yni ,
yni – xni

rni

〉

≥ F(y, yni ) (21)
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for all y ∈ C. For 0 < t ≤ 1 and y ∈ C, put yt = ty + (1 – t)v. Since y ∈ C and v ∈ C, we obtain
yt ∈ C. From (21) we conclude that

〈yt – yni , Ayt〉 ≥ 〈yt – yni , Ayt〉 – 〈yt – yni , Axni〉

–
〈

yt – yni ,
yni – xni

rni

〉

+ F(yt , yni )

= 〈yt – yni , Ayt – Ayni〉 + 〈yt – yni , Ayni – Axni〉

–
〈

yt – yni ,
yni – xni

rni

〉

+ F(yt , yni ).

Since ‖yni –xni‖ → 0, we have ‖Ayni –Axni‖ → 0. Further, from the inverse-strongly mono-
tonicity of A we have 〈yt – yni , Ayt – Ayni〉 ≥ 0. By using (A4), yni –xni

rni
→ 0, and yni ⇀ v we

get 〈yt – v, Ayt〉 ≥ F(yt , v). From (A1)–(A4) we have

0 = F(yt , yt) = tF(yt , y) + (1 – t)F(yt , v)

≤ tF(yt , y) + (1 – t)〈yt – v, Ayt〉
= tF(yt , y) + (1 – t)t〈y – v, Ayt〉,

and so 0 ≤ F(yt , y) + (1 – t)〈y – v, Ayt〉. Thus F(v, y) + (1 – t)〈y – v, Av〉 ≥ 0 for all y ∈ C.
This implies that v ∈ GEP(F , A). Finally, we show v ∈ (M + B)–1(0). Choose a subsequence
{λnij

} of {λni} such that λnij
→ λ̃ ∈ [c, d]. Without loss of generality, assume that λni → λ̃.

By using Lemma 2.6 we obtain

∥
∥yni – JB

λ̃
(I – λ̃M)yni

∥
∥ ≤ ‖yni – zni‖ +

∥
∥zni –

(
μni xni + (1 – μni )J

B
λ̃

(I – λ̃M)yni

)∥
∥

+
∥
∥
(
μni xni + (1 – μni )J

B
λ̃

(I – λ̃M)yni

)
– JB

λ̃
(I – λ̃M)yni

∥
∥

≤ ‖yni – zni‖ + (1 – μni )
∥
∥JB

λni
(I – λni M)yni – JB

λ̃
(I – λ̃M)yni )

∥
∥

+ μni

∥
∥xni – JB

λ̃
(I – λ̃M)yni

∥
∥

≤ ‖yni – zni‖ + (1 – μni )
[∥
∥JB

λni
(I – λni M)yni – JB

λni
(I – λ̃M)yni

∥
∥

+
∥
∥JB

λni
(I – λ̃M)yni – JB

λ̃
(I – λ̃M)yni

∥
∥
]

+ μni

∥
∥xni – JB

λ̃
(I – λ̃M)yni

∥
∥

≤ ‖yni – zni‖ + (1 – μni )|λni – λ̃|‖Myni‖

+ (1 – μni )
∣
∣
∣
∣
λni – λ̃

λ̃

∣
∣
∣
∣

∥
∥JB

λ̃
(I – λ̃M)yni – (I – λ̃M)yni

∥
∥

+ μni

[‖xni – yni‖ +
∥
∥yni – JB

λ̃
(I – λ̃M)yni

∥
∥
]
.

Thus

(1 – μni )
∥
∥yni – JB

λ̃
(I – λ̃M)yni

∥
∥ ≤ ‖yni – zni‖ + (1 – μni )|λni – λ̃|‖Myni‖

+ (1 – μni )
∣
∣
∣
∣
λni – λ̃

λ̃

∣
∣
∣
∣

∥
∥JB

λ̃
(I – λ̃M)yni – (I – λ̃M)yni

∥
∥

+ μni‖xni – yni‖.
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This implies that limk→∞ ‖yni – JB
λ̃

(I – λ̃M)yni‖ = 0. Since JB
λ̃

(I – λ̃M) is nonexpansive, it is
demiclosed, and so v ∈ F(JB

λ̃
(I – λ̃M)), that is, v ∈ (M + B)–1(0). This implies v ∈ Ω . By using

(20) we get limsupn→∞〈f (q) – q, xn – q〉 = limi→∞〈f (q) – q, xni – q〉 = 〈f (q) – q, v – q〉 ≤ 0.
Now we show that xn → q. From(8) and (9) we have

‖tn – q‖ =
∥
∥
(
anSzn + (1 – an)Tyn

)
– q

∥
∥

≤ an‖Szn – q‖ + (1 – an)‖Tyn – q‖
≤ an‖zn – q‖ + (1 – an)‖yn – q‖ ≤ ‖xn – q‖.

Set vn = bnf (xn) + (1 – bn)tn for all n ≥ 1. By using (6) and the property of metric projection
we obtain

‖xn+1 – q‖2 =
〈
PC(vn) – vn, PC(vn) – q

〉
+ 〈vn – q, xn+1 – q〉

≤ 〈(
bnf (xn) + (1 – bn)tn

)
– q, xn+1 – q

〉

= bn
〈
f (xn) – q, xn+1 – q

〉
+ (1 – bn)〈tn – q, xn+1 – q〉

≤ bn
〈
f (xn) – f (q), xn+1 – q

〉
+ bn

〈
f (q) – q, xn+1 – q

〉

+ (1 – bn)‖tn – q‖‖xn+1 – q‖
≤ bnρ‖xn – q‖‖xn+1 – q‖ + bn

〈
f (q) – q, xn+1 – q

〉

+ (1 – bn)‖xn – q‖‖xn+1 – q‖
≤ (

1 – bn(1 – ρ)
)‖xn – q‖‖xn+1 – q‖ + bn

〈
f (q) – q, xn+1 – q

〉

≤ (1 – bn(1 – ρ))
2

(‖xn – q‖2 + ‖xn+1 – q‖2) + bn
〈
f (q) – q, xn+1 – q

〉
,

which implies that ‖xn+1 – q‖2 ≤ (1 – bn(1 – ρ))‖xn – q‖2 + 2bn〈f (q) – q, xn+1 – q〉. Now by
using (d3) and Lemma 2.4 we get limn→∞ ‖xn – q‖ = 0. This completes the proof. �

Let u ∈ C and f (x) = u ∈ C for all x. By using Theorem 3.1 we obtain the following result.

Corollary 3.2 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from C
into H , let M be a β-inverse strongly monotone map from C into H , and let B be a maximal
monotone operator on H with domain contained in C. Assume that S, T : C → C are two
nonexpansive mappings such that Ω = F(T)∩F(S)∩ (M +B)–1(0)∩GEP(F , A) 
= ∅. Suppose
that {bn}, {an}, and {μn} are some sequences in (0, 1) and that {xn}, {yn}, and {zn} are the
sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

zn = μnxn + (1 – μn)JB
λn (yn – λnMyn),

xn+1 = PC[bnu + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold, then the sequence {xn} converges strongly to a point q ∈ Ω , which is the
unique solution to the variational inequality 〈q – u, x – q〉 ≥ 0 for all x ∈ Ω .
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Corollary 3.3 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from C
into H , let M be a β-inverse strongly monotone map from C into H , and let B be a maximal
monotone operator on H with domain contained in C. Assume that S, T : C → C are two
nonexpansive mappings such that Ω = F(T)∩F(S)∩ (M +B)–1(0)∩GEP(F , A) 
= ∅. Suppose
that {bn}, {an}, and {μn} are some sequences in (0, 1) and that {xn}, {yn}, and {zn} are the
sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

zn = μnxn + (1 – μn)JB
λn (yn – λnMyn),

xn+1 = PC[(1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold, then the sequence {xn} converges strongly to a point q = PΩ (0), which is
the minimum norm element in Ω .

Proof In Theorem 3.1, put f (x) = 0 for all x. Note that xn → q = PΩ (0) and PΩ (0) is the
minimum norm element in Ω . Since 〈(I – f )q, x – q〉 ≥ 0, we get 〈q, q – x〉 ≤ 0 for all x ∈ Ω ,
that is, ‖q‖2 ≤ 〈q, x〉 ≤ ‖x‖‖q‖ for all x ∈ Ω . Thus, the point q is the unique solution to the
quadratic minimization problem q = argminx∈Ω ‖x‖2. �

Let IC be the indicator function of C defined by IC(x) = 0 for x ∈ C and IC(x) = ∞ other-
wise. Recall that the subdifferential ∂IC is a maximal monotone operator. Note that IC is a
proper lower semicontinuous convex function on H . The resolvent J∂IC

r of ∂IC for r is PC ,
and VI (C, M) = (M + ∂IC)–1(0), where M is an inverse strongly monotone mapping from
C into H [35].

Theorem 3.4 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from C
into H , let M be a β-inverse strongly monotone map from C into H , and let B be a maximal
monotone operator on H with domain contained in C. Assume that S, T : C → C are two
nonexpansive mappings such that Ω = F(T)∩F(S)∩VI (C, M)∩GEP(F , A) 
= ∅ and f : C →
C is a contraction map with the constant ρ ∈ (0, 1). Suppose that {bn}, {an}, and {μn} are
some sequences in (0, 1) and that {xn}, {yn}, and {zn} are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

zn = μnxn + (1 – μn)PC(yn – λnMyn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold, then {xn} converges strongly to a point p ∈ Ω , which is the unique solution
to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .

Proof If B = ∂IC in Theorem 3.1, then Jλn = PC for all λn > 0. This completes the proof. �

Note that Theorem 3.4 reduces the results of [1, 36].
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Theorem 3.5 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from C
into H , let M be a β-inverse strongly monotone map from C into H , and let B be a maximal
monotone operator on H with domain contained in C. Assume that S, T : C → C are two
nonexpansive mappings such that Ω = F(T)∩F(S)∩VI (C, M) 
= ∅. Suppose that {bn}, {an},
and {μn} are some sequences in (0, 1) and that {xn} and {zn} are some sequences generated
by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

zn = μnxn + (1 – μn)PC(xn – λnMxn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Txn)] (∀n ≥ 1).

If (d1)–(d4) hold, then {xn} converges strongly to a point p ∈ Ω , which is the unique solution
to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .

Proof Put F = A = 0, B = ∂IC , and rn = 1 for all n in Theorem 3.1. Since Jλn = PC for all
λn > 0, we obtain the desired result. �

We can see that Theorem 3.5 extends Theorem 11 in [37]. The next result reduces the
related result of [38].

Theorem 3.6 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C ×C toR satisfying (A1)–(A4), let M be a β-inverse strongly monotone map from C into H ,
and let B be a maximal monotone operator on H with domain contained in C. Assume that
S : C → C is a nonexpansive mapping such that Ω = F(S) ∩ VI (C, M) 
= ∅ and f : C → C
is a contraction map with the constant ρ ∈ (0, 1). Suppose that {bn} and {μn} are some
sequences in (0, 1) and that {xn} and {zn} are the sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

zn = μnxn + (1 – μn)PC(xn – λnMxn),

xn+1 = PC[bnf (xn) + (1 – bn)Szn] (∀n ≥ 1).

If (d1)–(d4) hold, then {xn} converges strongly to a point p ∈ Ω , which is the unique solution
to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .

Proof Put F = A = 0, B = ∂IC , T = I , and rn = 1 for all n in Theorem 3.1. Since Jλn = PC for
all λn > 0, we obtain the desired result. �

Theorem 3.7 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from
C into H , and let ψ : C → C be a β-strict pseudo-contraction. Assume that S, T : C → C
are two nonexpansive mappings such that Ω = F(T) ∩ F(S) ∩ F(ψ) 
= ∅, and f : C → C is
a contraction map with the constant ρ ∈ (0, 1). Suppose that {bn}, {an} and {μn} are some
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sequences in (0, 1) and that {xn} and {zn} are the sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

zn = μnxn + (1 – μn)((1 – λn)xn + λnψxn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Txn)] (∀n ≥ 1).

If (d1)–(d4) hold and 0 < c < λn < d < 1 – β for all n, then {xn} converges strongly to a point
p ∈ Ω , which is the unique solution to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all
x ∈ Ω .

Proof Put F = A = 0, rn = 1, and M = I – ψ . Then M is 1–β

2 -inverse-strongly monotone
map, F(ψ) = VI(C, M), and PC(xn – λnMxn) = (1 – λn)xn + λnψxn for all n. Now by using
Theorem 3.5 we obtain the desired result. �

Note that Theorem 3.7 reduces the result of [39].

Theorem 3.8 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let A be an α-inverse strongly monotone mapping from
C into H , and let ψ : C → C be a β-strict pseudo-contraction. Assume that S, T : C → C
are two nonexpansive mappings such that Ω = F(T) ∩ F(S) ∩ F(ψ) ∩ GEP(F , A) 
= ∅ and
f : C → C is a contraction map with the constant ρ ∈ (0, 1). Suppose that {bn}, {an}, and
{μn} are some sequences in (0, 1) and that {xn}, {yn}, and {zn} are the sequences generated
by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

zn = μnxn + (1 – μn)((1 – λn)yn + λnψyn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold and 0 < c < λn < d < 1 – β for all n, then {xn} converges strongly to a point
p ∈ Ω , which is the unique solution to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all
x ∈ Ω .

Proof Put M = I – ψ . Then M is 1–β

2 -inverse-strongly monotone mapping, F(ψ) =
VI(C, M), and PC(yn – λnMyn) = (1 – λn)yn + λnψyn for all n. By using Theorem 3.1 we
obtain the desired result. �

We can check that Theorem 3.8 reduces the result of [40].

Theorem 3.9 Let C be a nonempty closed convex subset of H , let M be a β-inverse strongly
monotone map from C into H , and let B be a maximal monotone operator on H with do-
main contained in C. Assume that S, T : C → C are two nonexpansive mappings such that
Ω = F(T) ∩ F(S) ∩ (M + B)–1(0) 
= ∅. Suppose that {bn}, {an}, and {μn} are some sequences
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in (0, 1) and that {xn} and {zn} are the sequences generated by

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

zn = μnxn + (1 – μn)JB
λn (xn – λnMxn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Txn)] (∀n ≥ 1).

If (d1)–(d4) hold, then {xn} converges strongly to a point p ∈ Ω , which is the unique solution
to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all x ∈ Ω .

Proof It is sufficient put F = A = 0 and rn = 1 for all n in Theorem 3.1. �

We can see that Theorem 3.9 reduces the result of [31]. Let g : H → R ∪ {+∞} be
a convex lower semicontinuous proper function. Put B = ∂g , where ∂ denotes subdif-
ferential of g . Then B is a maximal monotone operator, and 0 ∈ ∂f (x) is equivalent to
g(x′) = minx∈C g(x) [24, 26]. Recall that the subdifferential of g at x is defined by

∂g(x) :=
{

v ∈ H : g(y) ≥ g(x) + 〈v, y – x〉 for all y ∈ H
}

.

Theorem 3.10 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C ×C to R satisfying (A1)–(A4), A be an α-inverse strongly monotone mapping from C into
H , and let g : H → (–∞, +∞] be a proper convex lower semicontinuous function. Assume
that S, T : C → C are two nonexpansive mappings such that Ω = F(T) ∩ F(S) ∩ (∂f )–1(0) ∩
GEP(F , A) 
= ∅. Suppose that {bn}, {an}, and {μn} be sequences in (0, 1) and that {xn}, {yn},
{un}, and {zn} are the sequences generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 〈Axn, y – yn〉 + 1
rn

〈y – yn, yn – xn〉 ≥ 0 (∀y ∈ C),

un = argminw∈H{g(w) + ‖w–yn‖2

2λn
},

zn = μnxn + (1 – μn)un,

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold and 0 < c < λn < d < ∞ for all n, then {xn} converges strongly to a point
p ∈ Ω , which is the unique solution to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all
x ∈ Ω .

Proof Put M = 0. Then by Theorem 3.1 the desired result immediately follows. �

Put A = 0 in Theorem 3.1. Then we obtain next theorem, which reduces the result of
[41].

Theorem 3.11 Let C be a nonempty closed convex subset of H , let F be a bifunction from
C × C to R satisfying (A1)–(A4), let M be a β-inverse strongly monotone map from C into
H , and let B be a maximal monotone operator on H with domain contained in C. As-
sume that S, T : C → C are two nonexpansive mappings such that Ω = F(T) ∩ F(S) ∩ (M +
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B)–1(0) ∩ GEP(F) 
= ∅ and f : C → C is a contraction map with the constant ρ ∈ (0, 1). Sup-
pose that {bn}, {an}, and {μn} are some sequences in (0, 1) and that {xn}, {yn}, and {zn} are
the sequences generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ C,

F(yn, y) + 1
rn

〈y – yn, yn – xn〉 ≥ 0 ∀y ∈ C,

zn = μnxn + (1 – μn)JB
λn (yn – λnMyn),

xn+1 = PC[bnf (xn) + (1 – bn)(anSzn + (1 – an)Tyn)] (∀n ≥ 1).

If (d1)–(d4) hold and 0 < c < λn < d < ∞ for all n, then {xn} converges strongly to a point
p ∈ Ω , which is the unique solution to the variational inequality 〈(I – f )p, x – p〉 ≥ 0 for all
x ∈ Ω .

Here we provide an example to illustrate Theorem 3.1.

Example 3.1 Let H = R with Euclidean norm and usual Euclidean inner product. Put C :=
[–1,∞), Sx = x

2 , Tx = x
3 , Bx = log(x+1), Mx = 4x, β = 1

4 , F(x, y) = y–x, α = 1
3 , and Ax = 3x–1

for all x. It is clear that S and T are nonexpansive, M is a β-inverse strongly monotone
mapping, B is a maximal monotone operator, F is a bifunction from C × C to R satisfying
(A1)–(A4), A is an α-inverse strongly monotone mapping, and 0 ∈ Ω = F(T) ∩ F(S) ∩ (M +
B)–1(0) ∩ GEP(F , A). Now by using Theorem 3.1 the sequence {xn} converges strongly to a
point q ∈ Ω , which is the unique solution to the variational inequality 〈(I – f )q, x – q〉 ≥ 0
for all x ∈ Ω .
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