
Qiang et al. Journal of Inequalities and Applications        (2020) 2020:191 
https://doi.org/10.1186/s13660-020-02457-y

R E S E A R C H Open Access

New generalized fractional versions of
Hadamard and Fejér inequalities for
harmonically convex functions
Xiaoli Qiang1, Ghulam Farid2*†, Muhammad Yussouf3†, Khuram Ali Khan3† and Atiq Ur Rahman2†

*Correspondence:
faridphdsms@hotmail.com
2Department of Mathematics,
COMSATS University Islamabad,
Attock Campus, Attock, Pakistan
Full list of author information is
available at the end of the article
†Equal contributors

Abstract
The aim of this paper is to establish new generalized fractional versions of the
Hadamard and the Fejér–Hadamard integral inequalities for harmonically convex
functions. Fractional integral operators involving an extended generalized
Mittag-Leffler function which are further generalized via a monotone increasing
function are utilized to get these generalized fractional versions. The results of this
paper give several consequent fractional inequalities for harmonically convex
functions for known fractional integral operators deducible from utilized generalized
fractional integral operators.
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1 Introduction
Fractional integral inequalities are generalizations of classical integral inequalities.
Hadamard and Fejér–Hadamard inequalities are the inequalities which have been stud-
ied extensively for different fractional integral/derivative operators, see [1, 4–6, 8–
10, 14, 16, 17, 23, 25, 27, 30, 33, 34, 36–38, 42, 44]. The main objective of this paper is
to prove some new fractional generalizations of Hadamard and the Fejér–Hadamard in-
equalities for harmonically convex functions. We begin with fractional integral operators
defined by Salim and Faraj in [35] containing generalized Mittag-Leffler function in their
kernels as follows:

Definition 1 ([35]) Let σ , τ , k, r, ρ be positive real numbers and ω ∈ R. Then the gen-
eralized fractional integral operators containing Mittag-Leffler function for a real-valued
continuous function f are defined by

(
ε

ρ,r,k
σ ,τ ,δ,ω,a+ f

)
(x) =

∫ x

a
(x – t)τ–1Eρ,r,k

σ ,τ ,δ
(
ω(x – t)σ

)
f (t) dt, (1.1)

(
ε

ρ,r,k
σ ,τ ,δ,ω,b–

f
)
(x) =

∫ b

x
(t – x)τ–1Eρ,r,k

σ ,τ ,δ
(
ω(t – x)σ

)
f (t) dt, (1.2)
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where Eρ,r,k
σ ,τ ,δ(t) is the generalized Mittag-Leffler function defined as

Eρ,r,k
σ ,τ ,δ(t) =

∞∑

n=0

(ρ)kntn

Γ (σn + τ )(r)δn
. (1.3)

The connection of Mittag-Leffler function with fractional calculus is very useful and
well-established. Its alliance with fractional integral operators as a kernel plays a vital role
in the development of the theory and applications of fractional calculus in various sub-
jects of science and engineering [12, 13, 18–22, 24, 28, 29, 31, 35, 39, 43]. In [2] Andrić et
al. defined the following fractional integral operators containing an extended generalized
Mittag-Leffler function in their kernels:

Definition 2 ([2]) Let ω, τ , δ,ρ, c ∈ C, �(τ ),�(δ) > 0, �(c) > �(ρ) > 0, with p ≥ 0, σ , r > 0
and 0 < k ≤ r + σ . Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional integral
operators ε

ρ,r,k,c
σ ,τ ,δ,ω,a+ f and ε

ρ,r,k,c
σ ,τ ,δ,ω,b– f are defined by

(
ε

ρ,r,k,c
σ ,τ ,δ,ω,a+ f

)
(x; p) =

∫ x

a
(x – t)τ–1Eρ,r,k,c

σ ,τ ,δ
(
ω(x – t)σ ; p

)
f (t) dt, (1.4)

(
ε

ρ,r,k,c
σ ,τ ,δ,ω,b– f

)
(x; p) =

∫ b

x
(t – x)τ–1Eρ,r,k,c

σ ,τ ,δ
(
ω(t – x)σ ; p

)
f (t) dt, (1.5)

where

Eρ,r,k,c
σ ,τ ,δ (t; p) =

∞∑

n=0

βp(ρ + nk, c – ρ)(c)nktn

β(ρ, c – ρ)Γ (σn + τ )(δ)nr
(1.6)

is the extended generalized Mittag-Leffler function.

In [7] (see, also [26]) Farid elegantly defined a unified integral operator as follows:

Definition 3 Let f , g : [a, b] →R, 0 < a < b be functions such that f is positive, f ∈ L1[a, b],
and g is differentiable and strictly increasing. Also let φ

x be an increasing function on [a,∞)
and ω, τ , δ,ρ, c ∈ C, �(τ ),�(δ) > 0, �(c) > �(ρ) > 0, with p ≥ 0, σ , r > 0 and 0 < k ≤ r + σ .
Then for x ∈ [a, b] the integral operators (gFφ,ρ,r,k,c

σ ,τ ,δ,ω,a+ f ) and (gFφ,ρ,r,k,c
σ ,τ ,δ,ω,b– f ) are defined by

(
gFφ,ρ,r,k,c

σ ,τ ,δ,ω,a+ f
)
(x; p) =

∫ x

a

φ(g(x) – g(t))
g(x) – g(t)

Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(x) – g(t)

)σ ; p
)
f (t) d

(
g(t)

)
, (1.7)

(
gFφ,ρ,r,k,c

σ ,τ ,δ,ω,b– f
)
(x; p) =

∫ b

x

φ(g(t) – g(x))
g(t) – g(x)

Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(t) – g(x)

)σ ; p
)
f (t) d

(
g(t)

)
. (1.8)

A generalization of integral operators defined in (1.4), (1.5) can be deduced from the
above definition by taking φ(t) = tτ as follows:

Definition 4 Let f , g : [a, b] →R, 0 < a < b be functions such that f is positive, f ∈ L1[a, b],
and g is differentiable and strictly increasing. Also let ω, τ , δ,ρ, c ∈C, �(τ ),�(δ) > 0, �(c) >
�(ρ) > 0, with p ≥ 0, σ , r > 0, and 0 < k ≤ r + σ . Then for x ∈ [a, b] the integral operators
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are defined by

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,a+ f

)
(x; p) =

∫ x

a

(
g(x) – g(t)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(x) – g(t)

)σ ; p
)
f (t) d

(
g(t)

)
, (1.9)

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,b– f

)
(x; p) =

∫ b

x

(
g(t) – g(x)

)τ–1Eρ,r,k,c
σ ,τ ,δ

(
ω

(
g(t) – g(x)

)σ ; p
)
f (t) d

(
g(t)

)
. (1.10)

Fractional integral operators (1.9), (1.10) produce some already known integral opera-
tors, see [33, Remark 1].

We are interested in utilizing fractional integral operators (1.9), (1.10) for the establish-
ment of Hadamard and Fejér–Hadamard inequalities for harmonically convex functions.
The classical Hadamard inequality is an elegant geometric interpretation of convex func-
tions.

Definition 5 ([41]) A function f : [a, b] → R is said to be convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y)

holds for all x, y ∈ [a, b] and t ∈ [0, 1].

Hadamard inequality is stated in the following theorem:

Theorem 1.1 Let f : [a, b] →R, a < b, be a convex function. Then the following inequality
holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1.11)

Fejér–Hadamard inequality is a weighted version of Hadamard inequality proved by Fe-
jér in [11] which is stated in the following theorem:

Theorem 1.2 Let f : [a, b] → R be a convex function and g : [a, b] → R be a nonnegative,
integrable, and symmetric about a+b

2 . Then the following inequality holds:

f
(

a + b
2

)∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ f (a) + f (b)

2

∫ b

a
g(x) dx. (1.12)

Next we give the definition of harmonically convex functions [14].

Definition 6 Let I be an interval of nonzero real numbers. Then a function f : I → R is
said to be harmonically convex if

f
(

ab
ta + (1 – t)b

)
≤ tf (b) + (1 – t)f (a) (1.13)

holds for all a, b ∈ I and t ∈ [0, 1]. If the reversed inequality holds in (1.13), then f is called
a harmonically concave function.

Example 1.3 ([14]) Let f : (0,∞) → R, f (x) = x, and g : (–∞, 0) → R, g(x) = x. Then f is a
harmonically convex function and g is a harmonically concave function.
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The above example gives following result.

Proposition 1.4 ([14]) Let I ⊂R \ {0} be a real interval and f : I →R is a function.
(i) If I ⊂ (0,∞) and f is convex and nondecreasing function, then is harmonically

convex.
(ii) If I ⊂ (0,∞) and f is harmonically convex and nonincreasing function, then f is

convex.
(iii) If I ⊂ (–∞, 0) and f is harmonically convex and nondecreasing function, then f is

convex.
(iv) If I ⊂ (–∞, 0) and f is convex and nonincreasing function, then f is a harmonically

convex.

Definition 7 ([25]) A function ϕ : [a, b] ⊂ R \ {0} → R is said to be harmonically sym-
metric about a+b

2ab if

ϕ

(
1
x

)
= ϕ

(
1

1
a + 1

b – x

)
, x ∈ [a, b].

For some recent work on harmonically convex functions, we refer readers to [1, 3, 9, 14,
25, 30] and references therein. In this paper, we extend the work of Abbas et al. [1] and
Farid et al. [9] for Hadamard and Fejér–Hadamard-type inequalities by using (1.9) and
(1.10).

In Sect. 3, we prove two fractional versions of Hadamard and two fractional versions of
Fejér–Hadamard-type inequalities for harmonically convex functions by using fractional
integral operators (1.9) and (1.10). Furthermore, the associated published results are ob-
tained which are identified in remarks, some corollaries are also given.

2 Main results
Theorem 2.1 Let f , g : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is
positive, f ∈ L1[a, b], and g is differentiable and strictly increasing. If f is a harmonically
convex function on [a, b], then for fractional integral operators (1.9) and (1.10) we have

f
(

2g(a)g(b)
g(a) + g(b)

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– 1
)(

g–1
(

1
g(b)

)
; p

)

≤ 1
2

((
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– f ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

))

≤ f (g(a)) + f (g(b))
2

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ 1
)(

g–1
(

1
g(a)

)
; p

)
, (2.1)

where ψ(t) = 1
g(t) for all t ∈ [ 1

b , 1
a ] and ω′ = ω( g(a)(b)

g(b)–g(a) )σ .

Proof Since f is harmonically convex on [a, b], for x, y ∈ [a, b], the following inequality
holds:

f
(

2g(x)g(y)
g(x) + g(y)

)
≤ f (g(x)) + f (g(y))

2
. (2.2)
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By taking g(x) = g(a)g(b)
tg(b)+(1–t)g(a) and g(y) = g(a)g(b)

tg(a)+(1–t)g(b) in (2.2), we have

2f
(

2g(a)g(b)
g(a) + g(b)

)
≤ f

(
g(a)g(b)

tg(b) + (1 – t)g(a)

)
+ f

(
g(a)g(b)

tg(a) + (1 – t)g(b)

)
. (2.3)

Multiplying (2.3) by tτ–1Eρ,r,k,c
σ ,τ ,δ (ω(tσ ); p) and integrating over [0, 1], we get

2f
(

2g(a)g(b)
g(a) + g(b)

)∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
dt

≤
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
dt. (2.4)

By setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) and g(y) = tg(a)+(1–t)g(b)

g(a)g(b) in (2.4) and using (1.9), (1.10), the first
inequality of (2.1) can be obtained. On the other hand, using harmonic convexity of f , we
have

f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
+ f

(
g(a)g(b)

tg(a) + (1 – t)g(b)

)
≤ f

(
g(a)

)
+ f

(
g(b)

)
. (2.5)

Multiplying (2.5) by tτ–1Eρ,r,k,c
σ ,τ ,δ (ω(tσ ); p) and then integrating over [0, 1], we get

∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
dt

≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
dt. (2.6)

By setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) and g(y) = tg(a)+(1–t)g(b)

g(a)g(b) in (2.6), and using (1.9), (1.10), the
second inequality of (2.1) can be obtained. �

Remark 2.2
(i) By setting p = 0 and g = I , [1, Theorem 3.1] is obtained.

(ii) By setting g = I , [9, Theorem 2.1] is obtained.
(iii) By setting ω = p = 0, g = I , [15, Theorem 4] is obtained.

Corollary 2.3 If we take ψ(x) = x in Theorem 2.1, then we get the following inequalities:

f
(

2
a + b

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,( 1

a )– 1
)(1

b
; p

)

≤ 1
2

((
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,( 1

a )– f
)(1

b
; p

)
+

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,( 1

b )+ f
)(1

a
; p

))

≤ f ( 1
a ) + f ( 1

b )
2

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,( 1

b )+ 1
)
(

1
a

; p
)

,

where g is the reciprocal function.
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The following lemma is useful to give the next result.

Lemma 2.4 Let f , g : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is pos-
itive, f ∈ L1[a, b], and g is differentiable and strictly increasing. If f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

),

then for operators (1.9) and (1.10) we have:

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)(

g–1
(

1
g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(a) ))– f ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)

=
1
2

(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(a) ))– f ◦ ψ
)
(

g–1
(

1
g(b)

)
; p

))
, (2.7)

where ψ(t) = 1
g(t) for all t ∈ [ 1

b , 1
a ].

Proof For operators (1.9) and (1.10), we can write

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

=
∫ g–1( 1

g(a) )

g–1( 1
g(b) )

(
1

g(a)
– g(t)

)τ–1

Eρ,r,k,c
σ ,τ ,δ

(
ω

(
1

g(a)
– g(t)

)σ

; p
)

f
(

1
g(t)

)
d
(
g(t)

)
. (2.8)

Replacing g(t) by 1
g(a) + 1

g(b) – g(x) in equation (2.8) and then using f ( 1
g(x) ) = f ( 1

1
g(a) + 1

g(b) –g(x)
),

we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(a) ))– f ◦ ψ
)
(

g–1
(

1
g(b)

)
; p

)
. (2.9)

By adding (gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ)(g–1( 1
g(a) ); p) on both sides of (2.9), we have

2
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(b) ))+ f ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)
(2.10)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( 1

g(a) ))– f ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)
. (2.11)

Equations (2.9) and (2.11) give required result. �

Theorem 2.5 Let f , g, h : [a, b] → R, 0 < a < b, Range(g), Range(h) ⊂ [a, b], be functions
such that f is positive, f ∈ L1[a, b], g is differentiable, strictly increasing, and h is non-
negative and integrable. If f is harmonically convex and f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), then for
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fractional integral operators (1.9) and (1.10) we have:

f
(

2g(a)g(b)
g(a) + g(b)

)(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ h ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– h ◦ ψ
)
(

g–1
(

1
g(b)

)
; p

))

≤ (
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ fh ◦ ψ
)(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– fh ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)

≤ f (g(a)) + f (g(b))
2

(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ h ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– h ◦ ψ
)
(

g–1
(

1
g(b)

)
; p

))
, (2.12)

where ψ(t) = 1
g(t) for all t ∈ [ 1

b , 1
a ], fh ◦ ψ = (f ◦ ψ)(h ◦ ψ) and ω′ = ω( g(a)g(b)

g(b)–g(a) )σ .

Proof Multiplying (2.3) by tτ–1Eρ,r,k,c
σ ,τ ,δ (ωtσ ; p)h( g(a)g(b)

tg(b)+(1–t)g(a) ), then integrating over [0, 1] we
get

2f
(

2g(a)g(b)
g(a) + g(b)

)∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

≤
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt. (2.13)

By setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) in (2.13) and using (1.9), (1.10), as well as the condition

f ( 1
g(x) ) = f ( 1

1
g(a) + 1

g(b) –g(x)
), we have

2f
(

2g(a)g(b)
g(a) + g(b)

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– h ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)

≤ (
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ fh ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– fh ◦ ψ
)
(

g–1
(

1
g(b)

)
; p

)
. (2.14)

By using Lemma 2.4 in the above inequality, one can get the first inequality of (2.12). For
the second inequality of (2.12), multiplying (2.5) by tτ–1Eρ,r,k,c

σ ,τ ,δ (ωtσ ; p)h( g(a)g(b)
tg(b)+(1–t)g(a) ), then

integrating over [0, 1], we get

∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt
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≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt. (2.15)

Setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) in (2.15) and using (1.9), (1.10), as well as the condition f ( 1

g(x) ) =
f ( 1

1
g(a) + 1

g(b) –g(x)
), we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ fh ◦ ψ
)(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(a) ))– fh ◦ ψ
)(

g–1
(

1
g(b)

)
; p

)

≤ (
f
(
g(a)

)
+ f

(
g(b)

))(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( 1

g(b) ))+ h ◦ ψ
)
(

g–1
(

1
g(a)

)
; p

)
. (2.16)

Again using Lemma 2.4 in (2.16), one can get the second inequality of (2.12). �

Remark 2.6
(i) By setting p = 0, h(x) = 1 and g = I , [1, Theorem 3.1] is obtained.

(ii) By setting g = I and h(x) = 1, [9, Theorem 2.1] is obtained.
(iii) By setting ω = p = 0, h(x) = 1 and g = I , [15, Theorem 4] is obtained.
(iv) By setting ω = p = 0, τ = 1 and g = I , [3, Theorem 8] is obtained.
(v) By setting ω = p = 0, τ = 1, h(x) = 1 and g = I , [25, Theorem 2.4] is obtained.

Theorem 2.7 Let f , g : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f
is positive, f ∈ L1[a, b], and g is differentiable and strictly increasing. If f is harmonically
convex on [a, b] and f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), then for operators (1.9) and (1.10) we have:

f
(

2g(a)g(b)
g(a) + g(b)

)(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))
– 1

)(
g–1

(
1

g(b)

)
; p

)

≤ 1
2

(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))
+ f ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))
– f ◦ ψ

)(
g–1

(
1

g(b)

)
; p

))

≤ f (g(a)) + f (g(b))
2

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))
+ 1

)
(

g–1
(

1
g(a)

)
; p

)
, (2.17)

where ψ(t) = 1
g(t) for t ∈ [ 1

b , 1
a ] and ω′ = ω( g(a)g(b)

g(b)–g(a) )σ .

Proof Multiplying (2.3) by 2tτ–1Eρ,r,k,c
σ ,τ ,δ (ωtσ ; p) then integrating over [0, 1

2 ], we have

2f
(

2g(a)g(b)
g(a) + g(b)

)∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
dt

≤
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
dt

+
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt. (2.18)
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Setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) in (2.18) and using f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), as well as (1.9) and

(1.10), the first inequality of (2.17) can be obtained.
For the second inequality, multiplying (2.5) by tτ–1Eρ,r,k,c

σ ,τ ,δ (ωtσ ; p) then integrating over
[0, 1

2 ], we get

∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
dt

≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
dt. (2.19)

Setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) in (2.19) and using f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), as well as (1.9) and

(1.10), the second inequality of (2.17) can be obtained. �

Remark 2.8
(i) By setting p = 0 and g = I , [1, Theorem 3.3] is obtained.

(ii) By setting g = I , [9, Theorem 2.3] is obtained.
(iii) By setting ω = p = 0 and g = I , [25, Theorem 4] is obtained.

To prove the next result, we will use the following lemma:

Lemma 2.9 Let f , g : [a, b] → R, 0 < a < b, Range(g) ⊂ [a, b], be functions such that f is
positive, f ∈ L1[a, b], and g is differentiable and strictly increasing. If f is harmonically
convex and f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), then for fractional integral operators (1.9) and (1.10)

we have:

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))–
f ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

)

=
1
2

(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))–
f ◦ ψ

)(
g–1

(
1

g(b)

)
; p

))
,

ψ(t) =
1

g(t)
, t ∈

[
1
b

,
1
a

]
. (2.20)

Proof By using Definition 4, we can write

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

=
∫ g–1( 1

g(a) )

g–1( g(a)+g(b)
2g(a)g(b) )

(
1

g(a)
– g(t)

)τ–1

Eρ,r,k,c
σ ,τ ,δ

(
ω

(
1

g(a)
– g(t)

)σ

; p
)

f
(

1
g(t)

)
d
(
g(t)

)
. (2.21)
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By replacing g(t) with 1
g(a) + 1

g(b) – g(x) in equation (2.21) and using the condition f ( 1
g(x) ) =

f ( 1
1

g(a) + 1
g(b) –g(x)

), we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))–
f ◦ ψ

)(
g–1

(
1

g(b)

)
; p

)
. (2.22)

By adding (gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ)(g–1( 1

g(a) ); p) on both sides of (2.22), we have

2
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)(
g–1

(
1

g(a)

)
; p

)

=
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))+
f ◦ ψ

)(
g–1

(
1

g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω,(g–1( g(a)+g(b)

2g(a)g(b) ))–
f ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

)
(2.23)

Equations (2.22) and (2.23) give the required result. �

Theorem 2.10 Let f , g, h : [a, b] → R, 0 < a < b, Range(g), Range(h) ⊂ [a, b], be functions
such that f is positive, f ∈ L1[a, b], g is differentiable, strictly increasing, and h is non-
negative and integrable. If f is harmonically convex and f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

), then for

fractional integral operators (1.9) and (1.10) we have

f
(

2g(a)g(b)
g(a) + g(b)

)(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
h ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
h ◦ ψ

)(
g–1

(
1

g(b)

)
; p

))

≤ (
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
fh ◦ ψ

)(
g–1

(
1

g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
fh ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

)

≤ f (g(a)) + f (g(b))
2

(
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
h ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
h ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

))
, (2.24)

where ψ(t) = 1
g(t) for t ∈ [ 1

b , 1
a ], fh ◦ ψ = (f ◦ ψ)(h ◦ ψ) and ω′ = ω( g(a)g(b)

g(b)–g(a) )σ .

Proof Multiplying (2.3) by tτ–1Eρ,r,k,c
σ ,τ ,δ (ωtσ ; p)h( g(a)g(b)

tg(b)+(1–t)g(a) ) then integrating over [0, 1
2 ], we

have

2f
(

2g(a)g(b)
g(a) + g(b)

)∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt
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≤
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt. (2.25)

By choosing g(x) = tg(b)+(1–t)g(a)
g(a)g(b) and using the condition f ( 1

g(x) ) = f ( 1
1

g(a) + 1
g(b) –g(x)

) in (2.25),

we have

2f
(

2g(a)g(b)
g(a) + g(b)

)
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
h ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

)

≤ (
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
fh ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
fh ◦ ψ

)(
g–1

(
1

g(b)

)
; p

)
. (2.26)

Using Lemma 2.9 in the above inequality, one can get the first inequality of (2.24). For the
second part of inequality of (2.24), multiplying (2.5) by tτ–1Eρ,r,k,c

σ ,τ ,δ (ωtσ ; p)h( g(a)g(b)
tg(b)+(1–t)g(a) )

then integrating over [0, 1
2 ], we have

∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

+
∫ 1

2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
f
(

g(a)g(b)
tg(a) + (1 – t)g(b)

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt

≤ (
f
(
g(a)

)
+ f

(
g(b)

))∫ 1
2

0
tτ–1Eρ,r,k,c

σ ,τ ,δ
(
ωtσ ; p

)
h
(

g(a)g(b)
tg(b) + (1 – t)g(a)

)
dt. (2.27)

Setting g(x) = tg(b)+(1–t)g(a)
g(a)g(b) in (2.27) and using (1.9), (1.10), as well as the condition f ( 1

g(x) ) =
f ( 1

1
g(a) + 1

g(b) –g(x)
), we have

(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
fh ◦ ψ

)(
g–1

(
1

g(a)

)
; p

)

+
(

gΥ
ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))–
fh ◦ ψ

)
(

g–1
(

1
g(b)

)
; p

)

≤ (
f
(
g(a)

)
+ f

(
g(b)

))(
gΥ

ρ,r,k,c
σ ,τ ,δ,ω′ ,(g–1( g(a)+g(b)

2g(a)g(b) ))+
h ◦ ψ

)
(

g–1
(

1
g(a)

)
; p

)
. (2.28)

Again using Lemma 2.9 in (2.28), the second inequality of (2.24) can be obtained. �

Remark 2.11
(i) By setting p = 0 and g = I , [1, Theorem 3.6] is obtained.

(ii) By setting g = I , [9, Theorem 2.6] is obtained.
(iii) By setting ω = p = 0, g = I and τ = 1, [3, Theorem 8], is obtained.
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Corollary 2.12 Setting ω = p = 0 and g = I in Theorem 2.10, we get the following inequal-
ities via Riemann–Liouville fractional integrals:

f
(

2ab
a + b

)(
(
Iτ

a+b
2ab

+ h ◦ ψ
)
(

1
a

)
+

(
Iτ

a+b
2ab

– h ◦ ψ
)
(

1
b

))

≤ (
Iτ

a+b
2ab

+ fh ◦ ψ
)(1

a

)
+

(
Iτ

a+b
2ab

– fh ◦ ψ
)(1

b

)

≤ f (a) + f (b)
2

((
Iτ

a+b
2ab

+ h ◦ ψ
)(1

a

)
+

(
Iτ

a+b
2ab

– h ◦ ψ
)(1

b

))
.

3 Concluding remarks
This paper investigates generalized fractional integral inequalities of Hadamard and
Fejér–Hadamard-type for harmonically convex functions. Presented results are general-
izations of several inequalities given in [1, 3, 9, 15, 25]. The results of this paper also hold
for fractional integral operators defined in [2, 31, 32, 35, 40] and are deducible from the
generalized fractional integral operators given in (1.9) and (1.10), see [33, Remark 1].
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