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1 Introduction
In recent years, wavelets have found their way into many different fields of science and
engineering; particularly, wavelets are very successfully used in signal analysis for wave-
form representation and segmentation, time-frequency analysis, and fast algorithms for
easy implementation. Wavelets allow an accurate representation of variety of functions
and operators.

The wavelet approximation technique is a recent tool to detect and analyze abrupt
change in seismic signal processing. The wavelet approximation of a function by Haar
wavelet has been determined by Devore [2], Debnath [1], Meyer [7], Morlet [11], and Lal
and Kumar [4].

Chebyshev polynomials have become increasingly crucial in approximation theory. It is
well known that there are four kinds of Chebyshev polynomials, and they all are particu-
lar cases of the more widely known class of Jacobi polynomials. The first and second kind
Chebyshev polynomials are particular cases of symmetric Jacobi polynomials (i.e., ultras-
pherical polynomials), whereas third and fourth kinds of Chebyshev polynomials are par-
ticular cases of the nonsymmetric Jacobi polynomials (see Mastroianni and Milovanović
[6, pp. 131–140]).

Note that a good amount of work on Chebyshev polynomials of the first kind Tn(x) and
the second kind Un(x) and their applications has already been done. But a very few re-
search work has appeared on the Chebyshev polynomials of third and fourth kinds. We
see that the Chebyshev polynomials of third kind Vn(x) and fourth kind Wn(x) and their
applications are highly important in many areas, including wavelet approximation of cer-
tain functions.
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It is important to note that Vn(x) and Wn(x) can be useful in situations in which singu-
larities occur at one end point (+1 or – 1) but not at the other.

The Chebyshev wavelet approximation method provides the best approximation of a
certain function belonging to an approximate class. This motivates us to consider the
Chebyshev wavelets of third and fourth kinds to estimate the error of approximation of a
function.

Therefore, in this paper, we obtain the best wavelet approximation of a function f by
shifted Chebyshev wavelets. In fact, we prove four theorems. In the first two theorems,
we obtain the approximation of a function f having bounded second-order derivative and
bounded mth derivative using shifted third kind Chebyshev wavelets. In the other two
theorems, we obtain the best wavelet approximation of a function f having second-order
derivative and bounded mth derivative using shifted fourth kind Chebyshev wavelets. It
is important to note that the estimate of a function having more bounded derivatives is
better and sharper than the estimate having less bounded derivatives, so comparison of
estimated approximation has a significant importance in wavelet analysis.

The outline of the paper is as follows. In Sect. 2, we describe the Chebyshev polynomials
and shifted Chebyshev polynomials of third and fourth kinds. In this section, we also de-
fine the functional approximation, projection, and wavelet approximation. Four our main
theorems are given in Sect. 3. In Sect. 4, we present their proofs. Two corollaries are de-
duced in Sec. 5. In the last Sect. 6, we conclude our results.

2 Definitions
2.1 Chebyshev polynomials of third and fourth kinds
The Chebyshev polynomial of third kind is a polynomial of degree n given by

Vn(x) =
cos(m + 1

2 )θ
cos( θ

2 )
, (1)

and the Chebyshev polynomial of fourth kind is a polynomial of degree n given by

Wn(x) =
sin(m + 1

2 )θ
sin( θ

2 )
, (2)

where x = cos θ .

Examples of Chebyshev polynomials of third and fourth kinds
Using (1), we get

V0(x) = 1, V1(x) = 2x – 1, V2(x) = 4x2 – 2x – 1,

V3(x) = 8x3 – 4x2 – 4x + 1, etc.

and using (2), we get

W0(x) = 1, W1(x) = 2x + 1, W2(x) = 4x2 + 2x – 1,

W3(x) = 8x3 + 4x2 – 4x – 1, etc.
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Remark 1 The polynomials Vn(x) and Wn(x) are, in fact, rescalings of two particular Jacobi
polynomials Pα,β

n (x) with α = – 1
2 and β = 1

2 and vice versa. Explicitly,

(
2n
n

)
Vn(x) = 22nP(– 1

2 , 1
2 )

n (x);

(
2n
n

)
Wn(x) = 22nP( 1

2 ,– 1
2 )

n (x).

These polynomials also may be efficiently generated by using the recurrence relation
Wn(x) = (–1)nVn(–x) (see [3, 8, 10] for application in numerical integration).

Since

cos

(
n +

1
2

)
θ + cos

(
n – 2 +

1
2

)
θ = 2 cos θ cos

(
n – 1 +

1
2

)
θ (3)

and

sin

(
n +

1
2

)
θ + sin

(
n – 2 +

1
2

)
θ = 2 sin θ cos

(
n – 1 +

1
2

)
θ , (4)

it immediately follows that

Vn(x) = 2xVn–1 – Vn–2(x), n = 2, 3, . . . , (5)

with

V0(x) = 1, V1(x) = 2x – 1,

and

Wn(x) = 2xWn–1 – Wn–2(x), n = 2, 3, . . . , (6)

with

W0(x) = 1, W1(x) = 2x + 1.

It is clear from (5) and (6) that both Vn(x) and Wn(x) are polynomials of degree n in x, in
which all powers of x are present, and in which the leading coefficients (of x) are equal to
2n.

The polynomials Vn(x) and Wn(x) are orthogonal on (–1, 1), that is,

∫ 1

–1
w1(x)Vk(x)Vj(x) dx =

∫ 1

–1
w2(x)Wk(x)Wj(x) dx (7)

=

⎧⎨
⎩π if k = j,

0 otherwise,
(8)
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where

w1(x) =
√

1 + x
1 – x

, w2(x) =
√

1 – x
1 + x

. (9)

2.2 Shifted Chebyshev polynomials of third and fourth kinds
The shifted polynomials V ∗

n and W ∗
n of third and fourth kinds, respectively, are defined as

V ∗
n (x) = Vn(2x – 1), (10)

W ∗
n (x) = Wn(2x – 1). (11)

The orthogonal relations of V ∗
n (t) and W ∗

n (t) on [0, 1] are given by

∫ 1

0
w∗

1V ∗
n (t)V ∗

m(t) dx =
∫ 1

0
w∗

2W ∗
n (t)W ∗

m(t) dx =

⎧⎨
⎩

π
2 if m = n,

0 if m �= n,
(12)

where

w∗
1 =

√
t

1 – t
, w∗

2 =
√

1 – t
t

(see [5] and [9]). (13)

According to (10) and (11) and the relation Wn(x) = (–1)nVn(–x), we can conclude that

W ∗
n (x) = (–1)nVn(1 – x),

so that the orthogonal polynomials with respect to w∗
2 can be obtained from those orthog-

onal with respect to w∗
1 by the previous simple substitution x := 1 – x and the factor (–1)n

(in order to get all positive leading coefficients). Therefore it suffices to consider only one
of these weights, say, w∗

1.
The polynomials V ∗

n (x) satisfy the following three-term recurrence relation:

V ∗
n (x) = 2(2x – 1)V ∗

n–1(x) – V ∗
n–2(x), n = 2, 3, . . . ,

with V ∗
0 (x) = 1 and V ∗

1 (x) = 4x – 3. The next polynomials are

V ∗
2 (x) = 16x2 – 20x + 5,

V ∗
3 (x) = 64x3 – 112x2 + 56x – 7,

V ∗
4 (x) = 256x4 – 576x3 + 432x2 – 120x + 9,

V ∗
5 (x) = 1024x5 – 2816x4 + 2816x3 – 1232x2 + 220x – 11,

and so on.

2.3 Shifted Chebyshev wavelets of third and fourth kind
When the dilation parameter a and the translation parameter b vary continuously, then
we have the following family of continuous wavelets:

ψa,b(t) = |a|– 1
2 ψ

(
t – b

a

)
, a, b ∈R, a �= 0. (14)
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Each of the third and fourth kind of Chebyshev wavelets ψn,m(t) := ψ(k, n, m, t) has four
arguments with k, n ∈ N, m is the order of the polynomial V ∗

m(t) or W ∗
m(t), and t is the

normalized time. The Chebyshev wavelets of third and fourth kinds are defined explicitly
on the interval [0, 1] by

ψm,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
k+1

2√
π

V ∗
m(2kt – n̂), where t ∈ [ n̂–1

2k–1 , n̂
2k–1 ],

1 ≤ n̂ ≤ 2k–1, k = 1, 2, . . . , n̂, n̂ = 2n – 1, 0 ≤ m ≤ M,

0 otherwise,

and

ψm,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
k+1

2√
π

W ∗
m(2kt – n̂), where t ∈ [ n̂–1

2k–1 , n̂
2k–1 ],

1 ≤ n̂ ≤ 2k–1, k = 1, 2, . . . , n̂, n̂ = 2n – 1, 0 ≤ m ≤ M,

0 otherwise,

respectively.

2.4 Functional approximation
A function f ∈ L2(R) defined over [0, 1] is expanded in terms of Chebyshev wavelet series
as

f (t) =
∞∑

n=0

∞∑
m=0

cn,mψn,m(t), (15)

where

cn,m =
〈
f (t),ψn,m(t)

〉
w∗

i

=
∫ 1

0
w∗

i f (t)ψn,m(t) dt, (16)

with weights w∗
i , i = 1, 2, defined in (13). If an infinite series in (15) is truncated, then it can

be written as

S2k ,M(t) =
2k∑

n=1

M–1∑
m=0

cn,mψn,m(t) = CTΨ (t),

where C and Ψ (t) are two 2kM × 1 matrices given by

C = [c1,0, c1,1, . . . , c1,M–1, c2,0, . . . , c2,M–1, . . . , c2k ,1, . . . , c2k ,M–1]

and

Ψ (t) = [ψ1,0, . . . ,ψ1,M–1,ψ2,0, . . . ,ψ2,M–1, . . . ,ψ2k ,0, . . . ,ψ2k ,M–1].
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2.5 Multiresolution analysis
A sequence of closed subspaces Vj of L2(R), j ∈ Z, is called a multiresolution in L2(R) if it
satisfies the following conditions:

(i) Vj ⊂ Vj+1;
(ii) f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1;

(iii) f (x) ∈ V0 ⇔ f (x + 1) ∈ V0;
(iv)

⋃∞
–∞ Vj is dense in L2(R), and

⋂∞
–∞ Vj = 0;

(v) There exists a function ϕ ∈ V0 such that the collection {ϕ(x – k) : k ∈ Z} is a Riesz
basis of V0 ([1]).

2.6 Projection Pn(f )
Let Pn(f ) be the orthogonal projection of L2(R) onto Vn. Then

Pnf =
∞∑

–∞
an,kφn,k , n = 1, 2, 3, . . . ,

an,k = 〈f ,φn,k〉.

Thus

Pn(f ) =
∞∑

–∞
〈f ,φn,k〉φn,k , n = 1, 2, 3, . . . ([12]).

2.7 Wavelet approximation
The wavelet approximation under the supremum norm is defined by

En(f ) = ‖f – Pnf ‖∞ = sup
x

∥∥(
f (x) – Pnf (x)

)∥∥∞ ([13]),

‖f ‖r =
{

1
2π

∫ 2π

0

∣∣f (x)
∣∣r dx

} 1
r

, 1 ≤ r < ∞.

The degree of wavelet approximation En(f ) of f by Pnf under the norm ‖ · ‖r is given by

En(f ) = min
Pnf

‖f – Pnf ‖r ([13]).

Remark 2 If En(f ) → 0 as n → ∞, then En(f ) is called the best approximation of f [13].

3 Main theorems
In this paper, we prove the following theorems.

Theorem 3.1 If a continuous function f ∈ L2
w∗

1
[0, 1], w∗

1 =
√

t
1–t , such that |f ′′(t)| ≤ P < ∞

is expanded as an infinite series of third kind Chebyshev wavelet series

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t), where cm,n = 〈f ,ψm,n〉w∗
1
,
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then the Chebyshev wavelet approximation E2k–1,M(t) of f by (2k–2, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

1
[0, 1] is given by

E2k–1,M(f ) = ‖f – S2k–2,M‖2

=

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
22k(M – 1) 3

2

)
, M > 1.

Theorem 3.2 If a continuous function f ∈ L2
w∗

1
[0, 1], w∗

1 =
√

t
1–t , is such that

supt∈[0,1] |f M(t)| < ∞, then the Chebyshev wavelet approximation of E2k–1,M(t) of f by
(2k–1, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

1
[0, 1] is given by

E2k–1,M(f ) = ‖f – S2k–2,M‖2 =

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
M!2M(k+1)

)
.

Theorem 3.3 If a continuous function f ∈ L2
w∗

2
[0, 1], w∗

2 =
√

1–t
t , is such that |f ′′(t)| ≤ P < ∞

can be expanded as an infinite series of fourth kind Chebyshev wavelet series

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t), where cm,n = 〈f ,ψm,n〉w∗
2
,

then the Chebyshev wavelet approximation E2k–1,M(t) of f by (2k–2, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

2
[0, 1] is given by

E2k–1,M(f ) =
∥∥(f – S2k–2,M)

∥∥
2

=

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
22k(M – 1) 3

2

)
, M > 1.

Theorem 3.4 If a continuous function f ∈ L2
w∗

2
[0, 1], w∗

2 =
√

1–t
t , is such that

supt∈[0,1] |f M(t)| < ∞, then the Chebyshev wavelet approximation of E2k–1,M(t) of f by
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(2k–1, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

2
[0, 1] is given by

E2k–1,M(f ) = ‖f – S2k–2,M‖2 =

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
M!2M(k+1)

)
.

4 Proof of the main theorems
Proof of Theorem 3.1 Chebyshev wavelet series f ∈ L2

w∗
1
[0, 1] is given by

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t)

=
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t) +
2k–2∑
n=1

∞∑
m=M

cn,mψn,m(t)

+
∞∑

n=2k–2+1

M–1∑
m=0

cn,mψn,m(t) +
∞∑

n=2k–2+1

∞∑
m=M

cn,mψn,m(t)

= S2k–2,M +
2k–2∑
n=1

∞∑
m=M

cn,mψn,m(t)

+
∞∑

n=2k–2+1

M–1∑
m=0

cn,mψn,m(t) +
∞∑

n=2k–2+1

∞∑
m=M

cn,mψn,m(t), (17)

where

ψm,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
k+1

2√
π

V ∗
m(2kt – n̂), where t ∈ [ n̂–1

2k–1 , n̂
2k–1 ],

1 ≤ n̂ ≤ 2k–1, 0 ≤ m ≤ M, n̂ = 2n – 1,

0 otherwise.

(18)

From Chebyshev wavelet we have

n̂ – 1
2k–1 ≤ t ≤ n̂

2k–1 ⇒ 2n – 2
2k–1 ≤ t ≤ 2n – 1

2k–1 since n̂ = 2n – 1. (19)

Let n = 2k–2 + 1. Then (19) becomes

2(2k–2 + 1) – 2
2k–1 ≤ t ≤ 2(2k–2 + 1) – 1

2k–1 ⇒ 1 ≤ t < 1 +
1

2k–1 for all k.

Since ψn,m vanishes outside the interval [0, 1], the third and fourth terms of (17) become 0.
Thus (17) becomes

f = S2k–2,M +
2k–2∑
n=1

∞∑
m=M

cn,mψn,m. (20)
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Now (20) can be written as

‖f – S2k–2,M‖2
2

=

∥∥∥∥∥
2k–2∑
n=1

∞∑
m=M

cn,mψn,m

∥∥∥∥∥
2

2

=

〈2k–2∑
n=1

∞∑
m=M

cn,mψn,m,
2k–2∑
n=1

∞∑
m=M

cn,mψn,m

〉

=
2k–2∑
n=1

∞∑
m=M

|cn,m|2‖ψn,m‖2
2

(other terms vanish due to the orthogonality of ψn,m). (21)

Now

‖ψn,m‖2
2 =

∫ ∞

–∞
‖ψn,m‖2 dt =

∫ n̂
2k

n̂–1
2k

(
2 k+1

2√
π

)2

V ∗
m
(
2kt – n̂

)
V ∗

m
(
2kt – n̂

)
w∗

1 dt

=
2k+1

π

∫ n̂
2k

n̂–1
2k

V ∗
m
(
2kt – n̂

)
V ∗

m
(
2kt – n̂

)
w∗

1 dt. (22)

Let 2kt – n̂ = u. Then (22) becomes

‖ψn,m‖2
2 =

2k+1

π

∫ 1

0

∣∣V ∗
m(u)

∣∣2w∗
1

du
2k .

Using (7), we get

‖ψn,m‖2
2 =

2k+1

π
× 1

2k × π

2
= 1. (23)

From (21) and (23) we get

‖f – S2k–2,M‖2
2 =

2k–2∑
n=1

∞∑
m=M

|cn,m|2. (24)

Now we have

cn,m =
(

2 k+1
2√
π

)∫ n̂
2k–1

n̂–1
2k–1

f (t)V ∗
m
(
2kt – n̂

)
w∗

1
(
2kt – n̂

)
dt. (25)

Considering 2kt – n̂ = cos θ , we get

cn,m =
(

2 k+1
2√

π2k

)∫ π

0
f
(

cos θ + n
2k

)
cos(m + 1

2 )θ
cos( θ

2 )

√
1 + cos θ

1 – cos θ
× sin θ dθ

=
(

2 k+1
2√

π2k

)∫ π

0
f
(

cos θ + n
2k

)
cos(m + 1

2 )θ
cos( θ

2 )

√
2 cos2 θ

2

2 sin2 θ
2

× 2 sin
θ

2
cos

θ

2
dθ



Nigam et al. Journal of Inequalities and Applications        (2020) 2020:187 Page 10 of 14

=
(

2 k+1
2√

π2k

)∫ π

0
f
(

cos θ + n
2k

)
2 cos

(
m +

1
2

)
θ cos

(
θ

2

)
dθ

=
(

2 –k+1
2√
π

)∫ π

0
f
(

cos θ + n
2k

){
cos(m + 1)θ + cos(mθ )

}
dθ . (26)

Integrating (26) by parts, we get

=
(

2 –k+1
2√
π

)[
f
(

cos θ + n
2k

)(
sin(m + 1)θ

m + 1
+

sin mθ

m

)]π

0

–
(

2 –k+1
2√
π

)∫ π

0
f ′

(
cos θ + n

2k

)(
– sin θ

2k

)(
sin(m + 1)θ

m + 1
+

sin mθ

m

)
dθ

=
(

2 –k+1
2√

π2k

)[∫ π

0
f ′

(
cos θ + n

2k

){
2 sin θ sin(m + 1)θ

2(m + 1)
+

2 sin θ sin mθ

2m

}
dθ

]

=
(

1
√

π × 2 3k+1
2

)∫ π

0

[
f ′

(
cos θ + n

2k

){
cos(mθ ) – cos(m + 2)θ

(m + 1)

+
cos(m – 1)θ – cos(m + 1)θ

m

}]
dθ . (27)

Now integrating (27) by parts, we get

cm,n =
(

1
√

π × 2 5k+1
2

)∫ π

0

[
f ′′

(
cos θ + n

2k

)
(– sin θ )

{
1

m + 1

(
sin(m)θ

m
–

sin(m + 2)θ
m + 2

)

+
1
m

(
sin(m – 1)θ

m – 1
–

sin(m + 1)θ
m + 1

)}]
dθ . (28)

Applying the given condition f ′′(x) ≤ P in (28), we get

|cm,n| ≤
∣∣∣∣
(

P
√

π × 2 5k+1
2

)∫ π

0

[
sin θ

{
1

m + 1

(
sin mθ

m
–

sin(m + 2)θ
m + 2

)

+
1
m

(
sin(m – 1)θ

m – 1
–

sin(m + 1)θ
m + 1

)}]
dθ

∣∣∣∣
≤

(
P

√
π × 2 5k+1

2

)∣∣∣∣
∫ π

0

[
sin θ

{
1

m + 1

(
sin mθ

m
–

sin(m + 2)θ
m + 2

)

+
1
m

(
sin(m – 1)θ

m – 1
–

sin(m + 1)θ
m + 1

)}]
dθ

∣∣∣∣
≤ Pπ

√
π × 2 5k+1

2

{
1

m + 1

(
1
m

+
1

m + 2

)
+

1
m

(
1

m – 1
+

1
m + 1

)}

≤ P
√

2π

2 5k
2

{
1

m(m + 2)
+

1
(m – 1)(m + 1)

}

≤ P
√

2π

2 5k
2

{
4

(m – 1)(m + 1)

}

≤ P
√

2π

2 5k
2

{
4

m(m – 1)

}
;
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|cn,m|2 ≤
(

4P
√

2π

2 5k
2 m(m – 1)

)2

=
32P2π

25km2(m – 1)2

≤ 32P2π

25k(m – 1)4 , m > 1. (29)

From (24) and (29) we get

∥∥(f – S2k–2,M)
∥∥2

2 ≤
2k–2∑
n=1

∞∑
m=M

32P2π

25k(m – 1)4

≤ 32P2π

24k+1(M – 1)3 , M > 1.

Hence

∥∥(f – S2k–2,M)
∥∥

2 = O
(

1
22k(M – 1) 3

2

)
, M > 1.

This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2 Since a function f is M times differentiable, by Taylor’s expansion
we have

f (a + h) = fM+1 = f (a) +
h
1!

f ′(a) + · · · +
hM–1

(M – 1)!
f M–1(a) +

hM

M!
f M(aθ + h),

fM+1 = fM +
hM

M!
f M(a + θh), where 0 < θ < 1,

where

fM = f (a) +
h
1!

f ′(a) + · · · +
hM–1

(M – 1)!
f M–1(a).

Now we write

fM+1 – fM =
hM

M!
f M(a + θh), where 0 < θ < 1. (30)

Using (30) and dividing the interval [0, 1] into subintervals [ l
2k–1 , l+1

2k–1 ], we get

‖f – S2k–2,M‖2
2 =

∫ 1

0

∣∣∣∣∣f (x) –
2k–2∑
l=1

M–1∑
m=0

cn,mψn,m

∣∣∣∣∣
2

dx

=
2k–1–1∑

l=0

∫ l+1
2k–1

l
2k–1

∣∣∣∣∣f (x) –
2k–2∑
l=1

M–1∑
m=0

cn,mψn,m

∣∣∣∣∣
2

dx
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≤
∫ l+1

2k–1

l
2k–1

(
1

M!

(
1

2k–1

)M

sup
x∈[0,1]

∣∣f M(x)
∣∣)2

dx

=
∫ 1

0

(
1

M!

)2( 1
2M(k–1)

)2

sup
x∈[0,1]

∣∣f M(x)
∣∣2 dx.

Now

‖f – S2k–2,M‖2
2 =

(
1

M!

)2( 1
2M(k–1)

)2

sup
x∈[0,1]

∣∣f M(x)
∣∣2.

Hence

‖f – S2k–2,M‖2 ≤
(

1
M!

)(
1

2M(k–1)

)
sup

x∈[0,1]

∣∣f M(x)
∣∣.

Thus

E2k–1,M(f ) = ‖f – S2k–2,M‖2

≤
(

1
M!

)(
1

2M(k–1)

)
sup

x∈[0,1]

∣∣f M(x)
∣∣

= O
(

1
M!2M(k–1)

)
.

This completes the proof of Theorem 3.2. �

Proof of Theorem 3.3 Theorem 3.3 can be proved along the lines of the proof of Theo-
rem 3.1. �

Proof of Theorem 3.4 Theorem 3.4 can be proved along the lines of the proof of Theo-
rem 3.2. �

5 Corollaries
Corollary 5.1 If a continuous function f ∈ L2

w∗
2
[0, 1], w∗

2 =
√

1–t
t , such that |f ′′(t)| ≤ P < ∞

can be expanded as an infinite series of fourth kind Chebyshev wavelet series

f (t) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(t), where cm,n = 〈f ,ψm,n〉w∗
2
,

then the Chebyshev wavelet approximation E2k–1,M(t) of f by (2k–2, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

2
[0, 1] is given by

E2k–1,M(f ) =
∥∥(f – S2k–2,M)

∥∥
2

=

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
22k(M – 1) 3

2

)
, M > 1.
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Proof Replacing V ∗
n by W ∗

n and ω∗
1 by ω∗

2 in Theorem 3.1, we obtain Corollary 5.1. �

Corollary 5.2 If a continuous function f ∈ L2
w∗

2
[0, 1], w∗

2 =
√

1–t
t , is such that

supt∈[0,1] |f M(t)| < ∞, then the Chebyshev wavelet approximation of E2k–1,M(t) of f by
(2k–1, M)th partial sums

S2k–2,M =
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

of its Chebyshev wavelet series in L2
w∗

2
[0, 1] is given by

E2k–1,M(f ) = ‖f – S2k–2,M‖2 =

∥∥∥∥∥f –
2k–2∑
n=1

M–1∑
m=0

cn,mψn,m(t)

∥∥∥∥∥
2

= O
(

1
M!2M(k+1)

)
.

Proof Replacing V ∗
n by W ∗

n and ω∗
1 by ω∗

2 in Theorem 3.2, we obtain Corollary 5.2. �

6 Conclusion
1. In our results, the estimate of wavelet approximation of a function having more

bounded derivatives is sharper than the estimate of wavelet approximation of a
function having less bounded derivatives.

2. In view of Remark 2, our results are best possible.
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