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solution of n-dimensional stochastic delay integro-differential equations (SDIDEs)
with Poisson jump, as well for the split-step 8-Milstein (SSTM) scheme implemented
of the proposed model. First, by virtue of Lyapunov function and continuous
semi-martingale convergence theorem, we prove that the considered model has the
property of exponential mean-square stability. Moreover, it is shown that the SSTM
scheme can inherit the exponential mean-square stability by using the delayed
difference inequality established in the paper. Eventually, three numerical examples
are provided to show the effectiveness of the theoretical results.
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1 Introduction

In special cases, stochastic delay differential equations (SDDEs) and stochastic delay
integro-differential equations (SDIDEs) are a type of stochastic differential equations
(SDEs), which has been discussed in a variety of sciences such as the mathematical model
[1], economy [2], infectious diseases [3], and population dynamics [4]. With the develop-
ment of science and technology;, it is found that Markov chain and jump-diffusion systems
are more suitable for describing the sudden disturbances in many physical, financial and
dynamical systems, such as the sudden fluctuations in the financial markets (see [5-8] and
[9]). Actually, the stochastic integral with respect to the Wiener process and the one with
respect to the Poisson random measure differs greatly. Clearly, nearly all sample paths of
the Wiener process are continuous, but the Poisson random measure N(dt, dv) is a jump
process with their sample paths only being right-continuous and having left limits. Hence,
it is more significant to consider SDIDEs with Poisson jump.

Due to the fact that most of these equations cannot be solved explicitly, stability the-
ory of numerical solutions is one of central problems in numerical analysis. Therefore the
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stability of numerical schemes becomes also one of the main tools to examine the stabil-
ity solution of these equations (see [10—15] and [16]). For SDIDEs, most of the related
existing literature focused on the linear models. As for SDIDEs, Ding et al. [17] stud-
ied the stability of the semi-implicit Euler method for linear SDIDEs. Rathinasamy and
Balachandran [18] studied the mean-square stability of the Milstein method for linear
SDIDEs. Liu et al. [19] proposed the split-step theta method for SDIDEs by the Lagrange
interpolation technique and investigated the exponential mean-square stability of the pro-
posed method. Meanwhile, Li and Gan investigated the exponential mean-square stability
of theta method for nonlinear SDIDEs by the technique with the Barbalat lemma in the
literature [20]. Moreover, the convergence and mean-square stability analysis of Euler, Mil-
stein as well the higher order of stochastic Runge—Kutta methods can be implemented to
address stochastic ordinary differential equations (SODEs) (see [21, 22] and [23]).

For SDDEs with jumps, the existing literature concerns mainly stability analysis of nu-
merical schemes. For example, Mo et al. [24] discuss the exponential mean-square sta-
bility of the 6-method for neutral stochastic delay differential equations with jumps. Tan
and Wang [25] investigated the mean-square stability of the explicit Euler method for lin-
ear SDDEs with jumps. Li and Gun [26] discuss the almost sure exponential stability of
numerical solutions for SDDEs with jumps. Zhang et al. [27] derived some criteria on
pth moment stability and almost sure stability with general decay rates of stochastic dif-
ferential delay equations with Poisson jumps and Markovian switching. Li and Zhu [28]
investigated the pth moment exponential stability and almost surely exponential stability
of stochastic delay differential equations with Poisson jump. Zhao and Liu [29] modified
the split-step backward Euler method for nonlinear stochastic delay differential equations
with jumps, while Jiang et al. [30] considered the stability of the split-step backward Euler
method for linear SDIDEs with Markovian switching.

The Lyapunov method was applied by many authors to deal with stochastic property.
For example, Zhu in [31] modified the well-known Razumikhin-type theorem for a class
of stochastic functional differential equations with Lévy noise and Markov switching, also
in the literature [32] one discusses the pth moment exponential stability of stochastic de-
lay differential equations with Lévy noise. Deng et al. [33] investigated the truncated EM
method for stochastic differential equations with Poisson jumps. In [34], Ren and Tian
investigated the convergence and stability region properties of the 6-Milstein method for
stochastic differential equations with Poisson jump.

Nevertheless, the SSTM scheme has never been applied to n-dimensional SDIDEs with
Poisson jump, at least to the best of our knowledge. In the present paper, in order to fill
this gap, we introduce the SSTM scheme for n-dimensional SDIDEs with Poisson jump
by some numerical integration technique and perform a stability analysis of the proposed
scheme.

The remainder of the paper is organized as follows. Section 2 presents some necessary
notations and preliminary results. Section 3 investigates the exponential mean-square sta-
bility of the continuous model by defining the appropriate Lyapunov function. Section 4
introduces the SSTM scheme for SDIDEs with Poisson jump and establishes a delayed dif-
ference inequality to discuss its exponential mean-square stability. Section 5 performs the
theoretical analysis about the mean-square stability of the SSTM scheme. Finally, three nu-
merical experiments are reported to illustrate the stability results of the proposed scheme
in Sect. 6.
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2 Preliminary results

All over this paper, unless otherwise specified, we will use | - | to denote the Euclidean norm
in R”, and (x,y) = xTy for all x,y € R". a v b denotes the maximum value between a and b,
while a A b denotes the minimum value. We suppose that the presented analysis is done on
the base of a completed filtered probability space (£2, F, F;, P) with a filtration {F}},>¢ sat-
isfying the usual conditions, that is, it is right-continuous and increasing while F, contains
all P-null sets. Let W(£) = (W4(£), Wa(),..., Wa(t))T be an d-dimensional Brownian mo-
tion defined on the probability space. For a given delay 7 > 0, denote by L_27_—0 ([-7,0];R") the
family of all Fy-measurable and C([-7, 0]; R")-valued random variables & (¢) for ¢ € [-7,0],

equipped with the supremum norm as follows:

]E( sup }sT(t)s(t)D < +00, 1)
—7<t<0

and B(R") denotes the Borel algebra in R”. Let p = {p(t), t > 0} be a stationary F;-adapted

and R”-valued Poisson point process. For A € B(R" — {0}), we define the Poisson counting

measure N associated with p by

N((0,6] x A) =#{0<s < t,p(s) €A} = Y Ia(p(s)), 2)

to<s<t

where # denotes the cardinality of set {-}. For simplicity, we denote N (¢, A) := N((0, ] x A).
It is well known that there exists a o -finite Lévy measure 7 such that
_exp(=tm(A))(w (A)r)"

P(N(t,A)=n) = - , 3)

E(N(tA)) = (A)t. (4)

Let N(¢t,v) is a F;-adapted Poisson random measure on [0, +c0) X R” with a o -finite in-

tensity measure 7 (dv), and then the compensator martingale measure N(¢, A) satisfies
N(t,A)=N(tA) + N(t,A), t>0. ()

Here N(¢t,A) is called the compensated Poisson random measure and Nt A) = (At is
called the compensator (see [35] and [36]). Also we assume that N, (¢, v) is Poisson ran-
dom measure (independent of Brownian motion W (¢)) with jump intensity 1. Let f : R, x
R” x R” ><R”»—)IR”,g:IE&><R”><IR”><IF€”|—>]R”X"",h:R+ XR?"xR"xR" x Z+— R"”
and K : R, x R" > R” are locally Lipschitz continuous with f(¢,0,0,0) = 0, g(¢,0,0,0) = 0
and K(¢,0) = 0. In this paper, for Z € B(R"” — {0}) we consider n-dimensional SDIDEs with
Poisson jump as follows:

dy(t) :f<t,y(t),y(t - r),/ K(s,y(s)) ds) dt
+g(t,y(t),y(t - r),/ K(s,y(s)) ds) dw (t)

+ / h<t,y(t),y(t— 7:),/[ K(s,y(s)) ds, v>Nx(dt,dv), t>0, (6)
VA t-t
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with initial data
y(&)=£&(), -T1=<t=0, (7)

where & isa C([-7,0]; R”)-valued random variable and delay t > 0 is a constant. An impor-
tant contribution of this paper is to avoid the use of non-anticipative stochastic calculus
for diffusion function (see [37] and [38]):

g(t,y(t),y(t - 1), ,/, K(s,y(s)) ds) =g (t,y(t), ,/7 K(s,y(s)) ds)
+0 (t,y(t - ‘E),/ K(s,y(s)) ds). (8)

Lemma 2.1 (Continuous semi-martingale convergence theorem, see [39]) Let A(t) and
U(t) be two F;-adapted increasing processes on t > 0 with A(0) = U(0) = 0 a.s. Let M(t) be
a real-valued local martingale with M(0) =0 a.s. Let { be a nonnegative Fo-measurable

random variable such that E(¢) < co. Assume that y(t) is nonnegative and define

y(t) =¢ +A@) - U@) + M(t), t=>0. 9)
Iflim,_, oo A(2) < 00,

tl_igloy(t) <00, or tli)rg U(t) < oo, (10)

that is, both y(t) and U(t) converge to finite random variables.

Assumption 2.1 The coefficient functions f, g and / satisfy the local Lipschitz condition

such that, for each integer j > 1, there exists a positive constant C; such that

I (t,52,55,52) = (6,310,550 V gt 52, 55,52) - gt 71,5050
<Gy -0 + 17, -3 1* + 132 - 1?), (11)
/Z V1t 253,52 9) — Bt 0, 71,50, ) ()
<Gy -0l + 17, =31 +132 - 31?), (12)
for all (¢,y:,7,%:) € Ry x R" x R” x R” = R” with |y;| V [y,| V [3:] <j (i=1,2).

Obviously, it follows from Assumption 2.1 that there exists a unique maximal local so-
lution to SDIDEs with jump (6).

Assumption 2.2 There exist a symmetric, positive definite # x # matrix Q and nonneg-

ative constants L, k, o, Bi, 0i, li» 03, 6; and y;, i = 1,2, 3, such that

¥y Qf(t,5,0,0) < —a1y7 Qy, (13)

Lf(t,y,y,)?) A 070)’ <yl + aslyl, (14)

Page 4 of 33
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i 6y.5.9)Q (6555 <L Qy+7 Qy+3"Qj), (15)
25 (69,5,9)Q¢e(t,%,5,5) < B1y" Qy + B2y" Q¥ + B357 Q3 (16)
ngT(t,y;y;j’)Qng(txy,y;)A’) < 771)’TQJ’ + nZyTQy + 7735/TQ5)’ (17)
Lg% (6,9,%,9) QL g(t,y,5,5) < ny” Qy + iiy" Qy + 135" Q, (18)
Lt </ W (t, 9,99, v)rr(dv)) QL! </ h(t,y,%,9, v)n(dv))
Z Z

<01y"Qy + 02y Qy + 0357 QJ, (19)

L </ nl(t,,%,9, v)n(dv)> QL™! (/ h(t,y,5,9,v)m (dV)>
Z Z

<6197 Qy + 625" Qy + 5397 QY (20)

/ hT(t,9,%,5,v)Qh(t,y,%,5,v) (dv) < 1y' Qy + vy’ Q¥ + v39” Q9 (21)
Z

K (t,9)| < klyl, (22)

for all (,7,%) € R” x R” x R" and ¢ > 0 with the property:

- 1 — A -
o1 > ay + o3kt + E('Bl + By + ,ngzrz) + E(yl +y0 + y3k212), (23)

where A is the intensity of the Poisson process N, (¢), and

g(tn; Kns Xn—m>s Q_Cn)v,é(tm Xns X Xn)s j=1
LV by %1y X For) = | Vb Ko+ 1t %o K1 For ) Ks Fo) (24)
- V(tmxn1xn—m:9_cn); ] =-1.
3 Exponential stability of the global solution of SFDEs with jump
In this section, we will discuss the exponential stability of the global solution of stochastic
functional differential equations (SFDEs) with Poisson jump. Liu et al. discuss the expo-

nential stability of the solution of the general SFDEs in the literature [19]. Let us consider
the following SFDEs with jump [40]:

dy(t) = F(t,y,) dt + G(t,y,) AW (¢) + f H(t,y;, V)N, (dt,dv), t>0, (25)
z

with initial data

W0 =£@) e 1% (-7, 0L R"), p>0, (26)
where y(t) € R”, and the segment y, is defined as follows:

Y = {y(t+6):—r <6 50}, (27)

which is regarded as a C([-7, 0]; R”)-valued stochastic process. Besides, F : R, x C([-t,0];
R") — R", G: R, x C([-1,0];R") - R™%and H : R, x C([-7,0];R") x Z — R” are local
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Lipschitz continuous functionals. We require that F(¢,0) = 0 € R”, G(£,0) = 0 € R"*¢ and
H(t,0) = 0 € R”, this implying that the SFDEs with jump (25) admits a trivial (null) solu-
tion y(£) = 0. Furthermore, we assume that V(¢,y(¢)) € C*(R,,R, x R") is a Lyapunov
function.

Define the differential operators LV : R, x R” - Rand HV : R, x R” — R associated
with SFDEs with jump (25) as follows:

LV (t,y(t), ) = Vi(t,y(1)) + Vy(£,5(8))F(£,9) + %trace[GT(t,qo)Vyy(t, y(®))G(t )]
+ /;[V(t,y(t) +H(t, ¢, v)) - V(t,y(t))]n(dv), (28)

’HV(t,y(t),go) = Vy(t,y(t))G(t,go) + /;[V(t,y(t) +H(t, ¢, v)) - V(t,y(t))]ﬂ[k(dv), (29)

where
o T (W i)
2V (L, y(t))
Vi (6:3(0)) = (Tai) )

Then we have the It6 formula as follows (see [40]):
AV (6,y(8)) = LV (£,3(0),y¢) dt + HV (£, 5(8), y¢) dW (). (30)

The following lemma ensures that the global solution of SFDEs with jump (25) is expo-

nentially mean-square stable.

Lemma 3.1 Assume that there exists a Lyapunov function V(t,y(t)) € C*(R,, R, x R"),
such that

QO] < V(ty®) <oy (ly®)]) and ¥ (|y@)|) < csi (Qly(®)]°, (31)

where 0 < ¢1 < €3, ¢3 > 0, Anin(Q) and Amax(Q) denote the smallest and largest eigenvalue of

Q, respectively. For t > 0, the Lyapunov function V (t,y(t)) satisfies

m 0
LV (t,0(09) < -1y (9 (O)) + Z@w(\a—m\) " / v (o)) do
i=1 T
vii [ w(o@rian), (32)

where (1) > 0 is an arbitrary function with 0 < t; <t and |, i, [Li, fL; are nonnegative
constants with the property

m

Z(Mi + [T + ﬂi/zﬂ(dv)) < (33)

i=1
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Then there exists a global solution y(t) to SEDEs with jump (25) for any initial data &(t).

Also we have the exponential estimate as follows:
E(ly0)f) <CE®)e™, Vve=0, (34)

where C(£(t)) is a positive constant, depending on the initial data &(t) and r >0 is the

unique positive solution of the following equation:

Cor + Z(ul + [T + [ / n(dv)) e = . (35)
z

i=1

Proof Let us define the time varying Lyapunov function
5(6) = 'V (£,5(0)), (36)
then we can easily get

L3(t) =" (rV (6 y(@®) + LV (t,¥(2),y¢))
< (cary (|y®]) + LV (6 5(8),:))

m

< —csA2 Qe (1 — cor)[y@®) | + c32, (Q Z( eyt - )|
i=1
0
cive [ o)l do e [ yte- ol x(an). 37)
=T VA
Let us also define
t

M(t) = / e HV (s, 5(s),y5) AW (s), (38)

0

therefore, one can verify it to be a local martingale under the given condition. If we de-
fine the stopping time T; = inf{k|y(¢) > [} for [ = 1,2,..., then we have E(M(¢ A T;)) = 0 for

each /. Now, define the Lyapunov functional:
t
U(t,8(t)) = 8(2) + c3r2, (Q) Z(M, / y(s)|" d
t-1;

t
+ /Z,-e""/ ‘y(u)|p duds + ;lie”i/ /|y(s) ’pn(dv)ds), (39)
t-1; Js t-1; JZ

which implies §(¢t) < U(t, 5(¢)). Therefore, by the necessary condition

e3Max (Q) ((M —cyr)e’ - Z(/’Lt + [T + L /Z N(dV)> e’”) >0. (40)

i=1

Page 7 of 33
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By implementation of the operator defined in (28) on Eq. (39) and using the integration
by parts as well as the notation defined in (27), we can derive that

LU(t,8(t))

m

=L5() + C(c;,a)»f’nax(Q)Z(Mierri/ ‘|y(s)|p ds

i=1

t t t
+ ,&,'e”"/ |y(u)|p duds + ,tlie""/ /|y(s) |pn(dv)ds)>
t-1; Js -1, JZ

- £5(0) + 10 (Q) Z(me’”(
i=1

y®[" = |yt -)[)
0

+ e wly@ = | (3@ do ) + e ([y®) - |yt - 1)) | 7(dv)
X Z

<- (cy\{’nax(Q) ((M —cor)e” - Z(ul + LT + L /Z ﬂ(dV)) e”")) ()"
i=1

<0, (41)

where the first and second inequalities are driven by Egs. (37) and (40), respectively. At
the same time, we have

HU(5,8(2)) = HS(t) = e HV (£,5(0), 7). (42)
Based on Eq. (42), by the It6 formula we can obtain
au(t,8(t)) = LU(t,8(2)) dt + HU(t,8(2)) AW (2), (43)

and E(M(¢ A T;)) = 0, where M(¢) is defined in (38). Furthermore, for any positive constant
C(£(t)) we can obtain

E(U(t ATL8(EAT)))) <EU(0,800)) < C(6(2)). (44)

We now assert the global existence of the solution. Assume that this assertion were false,
then there is a finite explosion time. Now, according to Eq. (44), we have

aE(y (¢t ATyt A T)) < C(E()). (45)
By using the familiar Fatou lemma, we can obtain

aE(! (@)y(@) = lim infaiE(y" (¢ AT)y(E AT) < C(6(0)), (46)
that is, 2 < ¢c;!CE(||Uy||P), which leads to a contradiction due to the arbitrariness of the

integer [. This means the correctness of the assertion, namely the solution y(¢) exists glob-
ally. Further, by using the Fatou lemma again, one can derive that

E(U(t8(1)) < C(£(®)). (47)

Page 8 of 33
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By the definitions for 8(¢) and U(z,5(¢)) of Egs. (36) and (39), we finally get

'E(V(6x(0)) <E(U(: () < C(£(0), (48)
namely,

E(V(6y®)) <C(E®)e™, or E(jy0)|") < C(E®)e™, (49)
where C(£(£)) = c;'C(£(2)) as required. O

Consequently, by applying Lemma 3.1 to SDIDEs with jump (6) with m =1, and
V() = u”u, we directly get the following stability criterion.

Theorem 3.1 Under Assumption 2.2, the global solution y(t) to SDIDEs with jump (6) is
said to be exponentially mean-square stable if there exist a positive constant r and a positive
constant C(£(t)), depending on the initial data &(t), such that

E(y" (t)y(t)) < C(£(®))e™, VE=0, (50)

where r is a positive constant. In particular, r is the unique positive solution of the following
equation:

r+ (a2 + B+ Aya + (ozk + ,33%21 + Aygﬁzr)r)e” =20, — g —askt — 1 — Ay, (51)

4 The SSTM scheme with Poisson jump

In this section, we present the split-step theta Milstein (SSTM) approximation with jump.
Let us choose a discretization time-step At € R such that At = = for a integer m. Let us
consider the time discretization levels ¢, = nAt, n = -m,-m + 1,...,0,1,....

A discrete approximate solution {x,},>0 can be obtained as follows: set
xy =y, =EmAL), n=-m,...,-1,0, xo = £(0). (52)

Then, compute the approximation {y,},>0 according to the following scheme:

% = Y+ Of (b Xty Xy Bn) AL + (1 = O)f (b, Vs Yo V) AL,

V1 = %+ &b X Xris Bn) AWy + [ 1ty Ko X1y By V) ANy (V)
+ %ng(t,,,xn,xn_m,%n)(S,, — A + L7 g(t, %y Xy %) D)y (53)
+ LY [ h(ts %> Xgns B V) AN i (dV) (AW, AN, — D)
+ 2L [ (s %o Xons Fons V)AN, ,(dv)(P, - AN,,), n=0,1,2,...,

where 6 € [0,1] is a parameter, and y, is an approximation to the state y(¢,).

AW, = W(tyn) — W(t,), S = (A Wn)z» (54)

AN, (@dv) = Ny (0,8 ], dv) = Nu (0,80, dv), Py i= (AN, .(dv)), (55)
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N)L(trul) ty+l
Dyi= Y [W(r®)-wW()]-2 W (s)ds + AW (£,) AL, (56)
=N (tn)+1 in

where I'(i) is the instant of the ith jump of the Poisson process.
In addition, %, and ¥, approach the integral terms. In this paper, we choose a composite
trapezoidal rule as the tool of the disperse integral to solve this case. Therefore, we have

At =

Xy = 7(1<(xn—m) + I((xn)) + AthI:I((x”*m*i)’ (57)

) At m-1

In = 7(1(()/,,,,”) + K(yn)) + AtZK(y”’mﬂ)’ 9
j=1

the integral term in SDIDEs with jump (6) is approximated with the trapezoidal rule, which
makes use of the piecewise Lagrange interpolation technique. Finally, we assume that the
derivatives of the function g needed in (24) are well-defined.

Lemma 4.1 (Delayed difference inequality, see [19]) Let m > 1 be an integer, mo = —1 or
mg = 0. Denote

DV,=Vy1-V, neN. (59)

Assume that {V,},en, {%n}nen and {y,}nen are nonnegative sequences with cix, <V, <
Coxn, 0 < €1 < o If {Viu}uen satisfies the delayed difference inequality

m m
DVn = —AXp-my t Z AiXp—i — byn+1 + Zbiyn—i: ne N: (60)

i=mo+1 i=0

where a, b, a; and b; are nonnegative constants with ) " a; <aand ) " b; < b, then we
have the estimate

%n < Mlxolle™™, (61)

where M > 1 is a constant, ||xo|| = max_y,<i<ol|x1l, ¥ =InC, and C > 1 is the largest positive
number satisfying the algebraic inequality system

Y aCt < (a-c(C-1)C™", and Y hiC*' <b. (62)
i=my+1 i=0

5 Exponential mean-square stability of the numerical scheme
This section concludes with some criteria for exponential mean-square stability of the
SSTM approximation {y,},>¢ with jump.

Definition 5.1 The numerical scheme (53) is said to be exponentially mean-square stable
if there exist two positive constants r and C such that for any initial data &(¢) the following
relation holds:

E(wh) VE(yyn) < Ce ™ -E( sup |7 050

—T<t<

, VYn>0. (63)
)
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Remark 5.1 Let us define Lyapunov function V (¢, y(¢)) = y* (£)Qy(t), by using (22) and the
Cauchy—Schwartz inequality, we have

2

t
<Kt / yT(s)Qy(s)ds, t>0. (64)

/t K(s,y(s)) ds

To establish the results on the exponential mean-square stability, and we present the
following theorem.

Theorem 5.1 Let 6 € [0,1], and let Assumption 2.2 hold. Then, for any initial data & (t),
there exists an upper stepsize bound.:

(2(1 -0)L + (m +1p+ 773%2#) + (ﬁl + 1+ ﬁ?jzrz))(%ﬁm*z + At*)
_ 1 =2 4 A 2 5
= — a2+a3kt+§(ﬁ1+ﬁ2+,33k T )+§(y1+7/2+y3k T )
A =2 9 . . L2
—5(01+02+03kr +01+63 +03k T°) ), (65)
depending on 0, such that for any At € (0, At*) we have an exponential estimate:
E(x] Qer) VE(L Qun) < CED)e ", n=1,2,..., (66)

where C(£(t)) is a positive constant, ra(0) =InPa, and Px > 1 satisfies the algebraic in-
equality system:

Pp—-1+ QAt(ozz + B+ A1 +291) + By + 20y + kasT
— — At
+ (B3 + 2ky3)k2t2 — kas T)PXHI
— — At
<OAt 2041—a2—k0431:—k0137 . (67)
Proof According to the first of the scheme (53), we have

Xn — ef(tn;xmxn—mr%n)At =Ynt (1 - e)f(tmymyn—m:yn)At- (68)

Using this, with the elementary inequality a* < 2ab + (a — b)?, we can obtain

xZan =< y,nyn +2(1- Q)J’ZQf(tn’ymyn—m’yn)At

+ Zex,{Qf(tm Xy Xn—m» &n)At

+ (1 =0 F T (bs Yir Vs ¥,) QF Eots Vs Vs ¥, ) (AL (69)

Now, by using (22) and (57), we can derive that

= [ At 7 At
a‘cfQ%n <kt <7x5manm + At anTijan,mﬂf + TxZQx,q), (70)

j=1
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and also by using the inequality (}_" a;)* < m) ", a?, we can obtain
_ [ At
ZxZQx,, <k (7 (x;m QX + fox,,)

l At
+A (Z xf,m+,an_m+; + xZan> + 7fox,,>

j=1

_ At = At
< k((mAt + 7)963;an + Athmeﬂan,mﬂ» + Txmexnm)

Jj=1

IA

_ At vl At
k((r + 7)xZan + Athffmﬂan,mﬂ« + Tmeanm) (71)

j-1

where t = mAt. Therefore, by using conditions (13), (14) and Eq. (71), we get

2267 Qf (tns Xr1s Xon Xn)
= ZxZQf(t,,,x,,, 0,0) + 2x5Q(f(tn,x,,,x,,_m,%,,) —f(ty, %4,0, 0))
< =201, Quty + 2%, Q(2 %l + 3%, )

T T T T e
< 201x, Qx, + ay (xn Qx, + xnmexn_m) + 203x,, Qx,

_ — At - At
< <—2a1 +ay + kast + kas T)foxn + (az + ko3 T)meanm

m-1

+ koig Athf_mﬁQx,,_mﬁ. (72)
j=1

For evaluating yX Qf (t4, Y Yu—m»¥,,), the procedure is the same as Eq. (72). Taking the ex-
pectation on both sides of (69) using (15), (71) and (72) gives

]E(xf Qx,1)

<E(y, Q) +(1- 9)((—2041 + oy + kasT + Fa3%>E(y5Q)’n)

_ At _ m-1
+ (WZ + k(ll?, 7>]E(y5mQynm) + ka?’AtzE(yZmﬁQynm*j)) At

Jj=1

_ —_ At - At
+6 ((—20[1 +ay + kosT + ko T)E(xZan) + <oz2 + kas 7>]E(xmexn_m)

m-1

0 %agAtZE(x,{m+jan_m+j)> At+(1-60)L ((1 ik %)E(yz Qy»)
j=1

m-1

+ (1 + EZr%)E(yZmQynm) ¥ EZrAtZE(yZW,Qynm+,~))<m>2. (73)

Jj=1
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On the other hand, it is easy to deduce from the second of the scheme (53) that

T T T.T - =
yn+1Qyn+1 =X, an + Sng (tn,xmxn—m,xn)Qg(tmxmxn—mrxn)

where

(8 AL (60 %0 0 B) QL g s (S, — A
+ /Z B (b s s 0) Qs G s s )P

+ DFL7g" (b %15 %11 %on) QL™ G (b Xty Xr1mis %) D
+(AW,AN,,, - D,)TL! /Z BT b0y %> X B V) AN, (d 1) Q

x Lt /Z H(Eyis s Xt By V) AN (dV) (AW, AN, — D,y)

+ (Pn - ANA,n)TL71/hT(tnrxn:xn—mrxn: V)ANA,n(dV)Q
Z

I

X Lil/‘h(tmxn;xn—mx%m V)ANA,n(dV)(Pn - ANA,M)
VA

+ 2AWL g7 (b, X0 %> %)) QLT g (b %0, Xy %) Dy + 115,

mly = 2665 Qg Xns Xns Tn) AWy + xF QL g(E1 %y Xoyns %) (S — AL)

+2x1Q / ity X1y Xy iy Fopy V) AN (AV) + 267 QL™ @by Xty Xor s %) Doy
Z

+ ZxZQLl f h(tmxn»xn—m)xn: V)ANA,n(dv)(A WMANA,n _Dn)
Z

exl QL /Z Wb % % s V) AN (V) (P = AN;)

+ AW gt (%, X %) QL @ Lty Xy Koty %) (S — AE)

+2A WnTgT(tn,x,,,xn_m,o_c,,)Q/Zh(t,,,x,,,xn_m,in, U)ANM(d\))
+ 2A W, g" (ts Xis Koo %) Q

1! /Z It % 5 B V) AN (@V) (AW, AN = D)

+ AW gt (b, %0, Xy %) Q

X L71 f h(tnxxn;xn—mxﬁm V)ANA,n(dv)(Pn - ANA,M)
Z

+(Sp = AL g (1, %0 % %) Q f ity X1y Xy %oy V) AN (dV)
Z

+ (Sn - At)TngT(tmxn:xn—m:%H)Qlflg(tn:xmxn—m:xn)Dn

+(Sy - At)TngT(tnrxn»xn—m>9_Cn)Q

L' / (b o onms B V) AR (d0) (A W, AN, — D)
Z

(74)
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Note that

1 _
+ E(Sn - At)TngT(tn;xmxn—m;xn)Q

XL f It % G B V) ARG (@) (P — AN )
Z

+2 / 1T (b % Xn-s %o V) ANy (AV) QL™ g (61 %, X1 %) Doy
Z

+ Z/ZhT(tn,xmxn_m,?_CmV)AN,\,n(dV)Q

x L /Z H(Eis %y gt By V) AN, (dV) (AW, AN, — D)
. /Z HT (b iy B ) ARG (d0)Q

1! /Z Wt o s By V) ARG (V) (P, — AN,
+2D5 L' g" (ts Xns %n-nr %) Q

x L fz (s %y Kt By V) AN, (dV) (AW, AN, — D)
+DEL 7 g (%0 % %) Q

1! fz b o s By V) ARG (V) (P, — AN

+ (AWnANA,n _Dn)TLI/hT(tmxnrxn—mrxm V)ANA,n(dV)Q
Z

X L71 f h(tnxxn;xn—mxﬁm V)ANA,n(dv)(Pn - ANA,M)‘
Z

E(AW,) =0,  E(S.)=At  E((Sy)?) =3(Ar),

E(AN;.(dv)) =0,  E(P,) =An(dv)At,

E((Py)*) = AAL(1 + 3L AT (dv).

(75)

(76)

By taking the expectation at both sides of (75), by using (76) and the fact that AW,,, AN, ,
and AN, , are independent on x,, x,,_,, and x,,, we obtain

Therefore we have

]E(yZHQynH)

= E(xZan) + E(SngT(tnrxmxn—m¢Q_Cn)Qg(tmxmxn—myxn))

1 _ _
+ EE((SVI - At)ngT(tmxn:xn—m:xn)Qng(tnrxn:xn—m:xn)(sn - At))

+ E(/hT(tmxn,xn_m,?cm V)Qh(tn,xn,xn_m,%n,V)Pn>
Z

(77)
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+ E(DWL_lgT(tm Xn» xn—mxa_cn)QL_lg(tn’xm Xn—m> xn)Dn)
+ E((AWHANA,VI _Dn)TLl/‘hT(tmxmxn—m)&m V)ANA,n(dV)Q
V4
X Ll/h(tmxmxn—mvj_cm V)ANA,n(dU)(A WnANA,n - Dn))
Z
1 -
+ 1E<(Pn - AN}L,n)L_l/hT(tmxmxn—m:?Cm V)AN)»,n(dV)Q
VA

X L_I/h(tn1xnrxn—mrxn: V)ANA,n(dV)(Pn - ANA,n))
VA

+ 2E(A W, g" (bs Xts X %) QL™ g (b %> Xr» %) D). (78)
Since x,,, %,_, and X,, are all F,,-measurable, we can easily obtain

E(Sng” (s %ns s> %n) QG (s %> Xrsss %))
= AtE(gT(tmxmxn—m»xn)Qg(tn:xn’xn—m»xn))» (79)
]E((Sn - At)TngT(tmxmxn—m:Q_Cn)Qng(tn:xn:xn—mrycn)(sn - At))

= Z(At)zE(ngT(tm KXnsKXn—m>» ﬁn)Qng(tm KXnsKXn—m>» xn))r (80)

E(/hT(tn,xn,xnm,ﬁmv)Qh(tmxmxnm,a_cn,V)Pn>
Z

~ At f E(H (b s Frs ) Qs s s oo ) () (81)
Z

E(Dy L™ g" (s %> Xrss %n) QL™ g E11s %ins Xrsis %in) D)

= C(At)ZE(L_lgT(tm Xns Xn—m> XH)QL_lg(tm X Xn—m> xn))r (82)

]E((AWHANA,H -D,)TL! /Z 1T (ty Xy X By V) AN (d 1) Q
x Lt /Z (s %y Xoris Koy V) AN, (dV) (AW, AN, —D,,))
< C(At)ZE(LI/ZhT(tn,xn,xn_m,a_c,,, v)AZ([A,y,(dv)Q
x L! /Z h(t,,,x,,,xnm,a_c,,,v)AN,\,n(dv)>, (83)
E((Pn - AN,)TL /Z HE (b s s V) ARGy (d)Q
x L7t /Z H(tss %otr Xops s V) AN i (V) (P — ANA,n))
=2 A1 + AAt)E(L‘I/ZhT(tn,xn,xn_m,%n, v)AN)\,,,(dv)Q

x L7t / h(tmxnrxnm)xn:V)ANA,n(d‘))>¢ (84)
zZ

E(AW, " (s %ns %> %) QL™ (bss Xon» Xrn-m> %) D)
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N)L(lrul) 1
:< Z (F(i)—t,,)+§(At)2)

i=N, (tn)+1

N,
X ]E(gT(tm KXns Xn—m>s Q_Cn)QL_lg(tm KXns Xn—m> Q_Cn)) (85)

Now by using the elementary inequality 2a”h < a® + b%, and by substitution of (79)—(85)
into (78)

]E(J’ZH Qyml)
<E(x] Q) + ALE(g” (tns Xns K-> %) QG (bns X K-> )
b S (AOPE(LE (0 o B) QL 5101 )
+ )LAt/ZE(hT(tn,x,,,xn_m,a_c,,, V) Qs %15 X Xy v) ) 77 (V)
+ CALE(L™ g™ (ts X Xrs—m» %) QL™ Gt Ko X X))

+ C(At)2E<L1/hT(tn,xn;xnm,a_cnr U)ANA,H(dU)Q
Z
x Ll/h(tn,xn,xn_m,?cmV)ANA,n(dv))
z

+20AEH(1 + xAt)E(L-I/hT(tn,xn,xn_m,a—cn, V)AN;,,(dv)Q
Z

X L_I/h(tnfxnrxn—mrxn: V)ANA,n(dV)>
VA

N, (tn+1)
1
+< > (T -t)+ 5(At)2)E(gT(tmxn,xn_m,a_cn)Qg(tn,xmxn_chn)

i=N (t;)+1

+ L7 g" (b %0 Xy %) QL™ g by %0 Ko %)) (86)

So we have E(x! Qx,)) < E(yI,,Qyy..1). Subsequently, by using (16)—(21), we can obtain

E(J’}{+1Qyﬂ+1)

N)\,(t}’l+1)
<E(x) Qw,) + (At + Z (IG) - ) + %(At)z)

i=Nj (tn)+1

x (B1E (%) Qx) + B2E (%, Qo) + B3E(X), QX))
- (At)z(%mE(foxn) - %an(xf,mmem) - %ngE(%fQ?cn))

+ AAL (M E(x) Quy) + 1B (%), Qunm) + v3E(%, Q%))

Ny (tn+1) 1
+ (C(At)2 + Z (F@)—tn) + E(At)z)

i=N) (ty)+1

x (ME(x] Q) + E(xl,, Qxym) + 7E (% QX))
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+ C(At)? (GlE(anQx,,) + ozE(xZ_mQx,,_m) + agE(a_cZQ%n))

+ 20 AL+ AAL) (1 E(x] Q) + 5B (%], Q) + 63E (%) QX)) (87)
By Eq. (70), it follows that

]E(yZHQynH)

At
<E(x] Qw,) + At|:<(1 +C)B1 + Ay1 + Cijy + 2161 + 7((1 +C)Bs+Ays
+ Cijs + 2153)%%)1@(&{ Q) + <(1 + C)By + hys + Ciig + 2069
At - N2 T
+ 7((1 +C)Bs+Ays + Cijz + 2Aog)k T E(xn_man_m)

m-1
+ At((l +C)B3 + Ay + Cijz + 2A63)E2r Z]E(xf_m+jan_m+j):|
j=1

+(At)? lﬁ +1 +1+C) +C +2k2~+At 1,3 +1 + 1+C n
- - o G4 — | = - Z
2P 2771 m 1 1F 57\ 9hs 2773 2 N3

_ 1 1
+Cos + 2A2&3>k2r)E(xZQx,,) + (5,32 + 5772 + (1 + O)fiy + Coy + 2226,

At

1 1 1 _
+ <§ﬂ3 + =13+ (5 + C) fis + Cos + 2A2&3>k21>E(mean_m)

2

1.1 1 i .- \-2
+ At =Bs+=m3+ | =+C |3+ Coz+21°63 )k T
2 2 2
m—1
X ZE(xf_mﬂQx,,_mﬂ')]. (88)

j=1

We conclude

E(y. Qyn)

At
<E(x);Qxy1) + At|:((1 +C)B1 + Ayr + Cijyp + 2061 + 7((1 +C)B3 + Ays
+Cfjz + 2)»63)E2r>]E(xZ_1an1) + ((1 +C)Ba + Ayy + Cily + 245
n-m-1

+ %((1 +C)B3 + Ay + Cijz + 2)»53)%21:)E(xT Qx,,_m_l)

m-1
+ At((l + C),33 + }L)/g + CF]3 + 2)\6’3)%21' Z]E(xz_m+j_len_m+j_1):|
j=1

1 1 At (1 1 1
+(At)2 —,31+—n1+(1+C)f;1+C01+2k2&1+— —,33+—773+ —+C ﬁg
2 2 2 \2 2 2

_ 1 1
+ CGg + 2)\25'3)k2T)E(x51an_1) + <§ﬂ2 + 57’)2 + (1 + C)f]z + CO‘Z + 2)\2&2
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At(1 1 1 _
22 (2Bt onst (2 +C)iis + Cos + 22265 )t B, Qtorms)
2 (2772 2
1 1 i L\
+ At 5/33+—T)3+ §+C fis + Cos + 20%53 |kt

m-1
X Z E (%) i1 Qx,,_m+,-_1):| . (89)

j=1

Now, applying (89) to the first term of the right side of (73), we can obtain

E(x] Qxy) — E(x)_ 1 Qxy1)

— - At
<(1 —9)|:(—2oz1 + 0y + kazT +ka37 + 1+ C)By +Ay1 + Ciy + 2007

At — 1 1
+ 7((1 +C)B3 + Ays + Cijz + 2A53)k21 + At(EﬁI tom+ 1+ CO)ijy + Coy
At (1 1 1 _
+20261+ — | =Bs+ =n3+ [ = + C )il + Cos + 21253 k2r ]E(y,{Qy,,)
2 \2 2 2
— At - - At
+ o+ ka37 +(1+C)By+ Ays + Cijg + 2155 + 7((1 +C)Bs+Ays

— 1 1
+Cis + 2)\.5’3)](21' + At<§ﬂ2 tomt (1 + C)ijg + Coyp + 2126,

At (1 1 1 _
o (5/33 o (5 + C) fis + Cos + 2%263)k21>)E(y5_mQyn_m)

_ — 1 1
+ (k(XgAt + At((l +C)Bs +Ays + Cnz + 2A63)k21 + At(iﬁg + 5173

m-1

1 N ~ \2
+ (5 + C> ns + Cos + 2)\-203>k T> ZE(yZ—mﬂ'Qyn—m*/)

Jj=1

- 9)LAt(<1 + ?r%)E(yZQyn) + (1 e %)E(yZmQyn_m)

m-1
N Z E(yfm+/Qyn_m+,)>:| At +6 |:<—2a1 +ay

j=1

+ kasT + kas %)E(xZan) + (az + kas %)E(xmexnm)

m-1

+ EagAtZ]E(xZ_mﬁan_mﬂ») + ((1 + C)B1 + Ay + Cijy + 2A61
1
At

+ 7((1 +C)B3 + Ay + Cijz + 2A63)EZI>E(x;_1Qx,,_1) + ((1 +C)By+ Ay,

At —
+ Cﬁz + 2)\6’2 + 7((1 + C)/33 + )L]/g + Cﬁg + 2)\6’3)/(21')E(x;_m_len_m_l)

m-1

+At((1+C)Bs +Ays + Cijs + 2)\&3)?1 Z]E(xffmﬁlexn,mﬂ,l)
=1
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At 1,3 1 (1+ C)fjy + Coy + 2226 At 1,3 1 1 Cli
+ =B+ = + +Cor + o1+ —\|=B+=-m+|=
5 1 2’71+ m 1 1 5 \3 3 2773 2+ N3

— 1 1
+ CGg + 2)»263)k21)E(x51an_1) + <§ﬂ2 + 57)2 + (1 + C)f]z +Coy + 2)\2&2

At (1 1 1 _
+ - (5/33 + 57)3 + (E + C) N3 + Cos + 2A263>k21)E(x5_m_1anm1)

11 1\, L -2
+ At §ﬁ3+—n3+ §+C fis + Cos + 2163 )k T

2
m-1
X Z E(x;{_mﬂ‘_l an—m+j—1)) j| At, (90)
j=1
where
— 3
a=a0=9<—2a1 +a2+ka3(r+§At>), (91)

_ At
a; = 9(koc3At +(1+C)Br+Ay1 + Cijy + 2467 + 7((1 +C)B3 +Ays

~ - T2 1 1 - 2~
+C773+2)\.O'3)k T+ At 5,31 + Em + 1+ C)ij1 + Coy + 20761

Aty 1 L1 C)iis + Cos + 2226 | E (92)
+— | =Bs+=n3+|=+ + Cos + 207G ),
5\ 3 3 2773 5 n3 3 3

At
Ao = 9((1 +C)By + Ayy + Cijy + 2065 + 7((1 +C)B3 +Ays

— 1 1
+Cijs + 2)»5’3)](2'( + (5,32 +om (1 + C)fjy + Coy + 2126

Arfly 1 L1 C)iis + Cos + 222, |
+— =B+ -3+ | =+ + Cos + Lo} T)),
5 \3 3 2773 5 ns 3 3

1- _
Ay = 9(042 + EkagAt +((1+C)Bs+Ays +Cijz + 2A&3)k27:

11 1\, .- \-2
+ At 5,33+§773+ §+C 73 + Cos +2)0%63 |k T |, (93)

b=0, (94)

- 1
bo=(1 —9)(—2a1 + o + ka3<r + EAt> + 1+ C)By + Ay + Cijy + 21001

At - N2 1 1 -
+ 7((1 +C)Bs + Ays + Cij3 + 20G3)k T + At(E,Bl Fom 1+ O

b, At(1 1 1 i b \2
+ Coy +2X 01+7 5/33+§773+ §+C N3+ Cos + 2063 |k

_ — 1 1
+ kas At + At((l +C)B3 +Ays + Cijz + 2)»5’3)](2'( + At(E,Bg + 57’}3

1 _ _
+ <§ + C) fis + Cos + 2A2&3>k2t + Atk2t>, (95)
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— — 1 1
by =(1- 9)<ka3At +At((1+ C)Bs + Ays + Cijz + 2)»5’3)/(21’ + At<§,33 + 5
1 - 9~ \72 -2
+ §+C N3+ Cos + 2063 |k T + Atk T ), (96)
- At At
b,=(1 —6)(0:2 +ka37 +(1+C)By + Ay + Cijy + 2455 + 7((1 +C)B3
~ ~\T2 1 1 ~ 2~
+ Ay + Cijz + 20G3)k T + At Eﬂz o (1 + Q)ijy + Coy + 2026,
At(l, 1 L Vit Cona 025 )2
+— | =Bs+=m+|=+ + + T
7\t 5 n3 5 n3 03 03 |K
- At
+(1—9)LAt<1+k2t7)). (97)
Applying Lemma 4.1 to (90), we have the estimation
E(x] Qu,) < C(&())e @A, (98)
Finally, with (89), we get
E(y; Qn) < C(6(0))e 22, (99)
This completes the proof of Theorem 5.1. g
6 Numerical illustrations
This section is devoted to presenting some examples to illustrate our numerical stability
results for the SSTM approximation {y,},>0 with jump. Also, we compare the proposed

scheme with the stability analysis of the split-step 6-Euler scheme.

Example 6.1 Let us consider the following nonlinear SDIDE with jump:

dy(t) = (—Sy(t) +sin(y(t - 1)) - /t sin® y(s) ds) dt
-1
+ (% + sin(y(t - 1)) + ./t_1 sin® y(s) ds) dw(t)
+ / (0.01vy(t) +0.3/vy(t-1) - O.Z/t sin® y(s) ds)Nk(dt, dv),
z -1

t>0, (100)

with initial data £(¢) = 1 for ¢ € [-1,0]. For any 3,7,y € R, ¢ > 0 and for any positive number

Q we have
¥y Qf(t,5,0,0) < -8y Qy, (101)
If (6:9,5,3) —f(£:9,0,0)| < 5] + 31, (102)

L (t,9.9.9)Qf (t,.5,5) < 80(y" Qy + 3 Qy + 57 Qj). (103)
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Moreover, similar arguments yield

25 (t,9,5,9)Qg(t,7,5,7)

T T
o y y o
_(1+y2) Q<1+y2>+2(1+y2> Qsin®)

y
1+92

T
(i) Qsing) +57 Q5+ 2( 125 ) @3+ 2(sn) Q3

<30"Q+7' Q@ +37Qj),

where we used the fact that | 1+y7

In addition, according to (24) and by using the fact that | cos(y)| < 1, we have

L'g(t,9,5,3)
Ny s .
= (1 2 + sin(y) +y) (m +cos(y) + 1)
=3(+y+J)
so that

L'g"(t,5,7,9)QL'g(t,y,5,5) < 48(y" Qy +¥" Q¥ + 7 Qj).
Also we have

Dy k@) [
L g(t,y,5,9) = 1+(y+fzhrr(dv))2 +sm<y+Lhn(dv)>

+5/+/Zh7r(dv)— (lfyz +sin@)+j/>

< 1.09y + 1.47y + 1.697,

L7g"(,9,5,5)QL ' g(t,7,,5) < 4.6325y" Qy + 6.2482y" Qy + 7.18327" Q).

(104)

| <y, |sin(y)| < |y| and the Cauchy—Schwartz inequality.

(105)

(106)

107)

(108)

Let N, (dt,dv) be a Poisson random measure given by 7 (dv)dt = Ah(v) dv dt, with A =2,

and let
~ 1 (Inv)?
h(v) = e 2, 0<v<oo
W 2mv

(109)

be the density function of a log-normal random variable. Moreover, by the property of the

log-normal distributed h(v),

o 1 (]|1v)2
h(t,y,y,y,v)m(dv =/ 0.01vy + 0.34/vy — 0.2y e 2 dv
/Z(yyy)()o( y +0.34/vy y)\/zn—v

= 0.03y + 0.495 — 0.23)

(110)
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and

/ 1T (£,7,3,5, v)Qh(t,9,5, 3, v} (dv)
Z

o0
= f (0.01vy + 0.34/vy — 0.29)7Q(0.01vy + 0.3/ vy — 0.29)
0

<0.0614y" Qy + 0.7966y” Qy + 0.30087” Qj.

Also based on Eq. (24), we have

L (/Z h(t,y,%,9, v)rr(dv)) = 0.29(1 -i)yz + sin(y) +j/>

<0290y +y+3%),

! ( / W (6,9,3,5, v)n(dv)) oL ( f H(t,9,53, v)n(dv>)
Z Z

<087(y"Qy+y QG +37 @),

L ( / h(t,y,7,9)m (du)) <0.0097y + 0.151y — 0.06537,
Z

I ( / W (63505, v)n(du>) oL ( / Wt,.5,5, v)n(dv)>
Z Z

< 0.002y7 Qy + 0.034y” Qy + 0.014857 Q3.

111

(112)

(113)

(114)

(115)

Thus, Assumption 2.2 holds with Q=1, a; =8, ap=as=1, k=1, By =po=ps=3,
N=n2=nN3= 48, 77}1 = 46325, f]z = 62482, ﬁg = 71832, 01 =09 =03 = 087, 5’1 = 0002,
&5 = 0.034, 53 = 0.0148, L = 80, y; = 0.0614, y, = 0.7966 and y3 = 0.3008. Obviously these

parameters satisfy inequality (23):
_ 1 =2 5 1 =2 5
8=wa1>ay +azkt + 5(,31 + By + B3k T ) + Ek(yl +v+ysk T ) =7.6588.
Substituting the proposed values in (65) yields

(160(1 - 0) + 162.0639) At** + (160(1 — 6) + 162.0639) At* — 3.002 = 0.

(116)

117)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE

with jump (100) is performed using both 6 = 0.1 and 6 = 0.8.

Therefore, according to Theorem 5.1, if 6 = 0.1, the SSTM scheme is stable for time-
steps At < 277. However, the mean-square stability is lost if At > 27, If§ = 0.8, the SSTM

scheme is stable for time-steps At < 27%, but it is not if At > 27>,

The results obtained are reported in Fig. 1. As we see in Fig. 2, if 0 = 0.1, the split-step

0-Euler scheme is stable for time-steps At < 2-%. However, the mean-square stability is
lost if At > 278, If9 = 0.8, the split-step 6-Euler scheme is stable for time-steps At < 28,

but it is not if At >27".
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S
/aa

* ‘ A
0 2 4 6 8 10 12 14 16 18 20
t

Figure 2 Unstable and stable numerical solutions for the split-step O-Euler scheme with different values of 6
and At

Example 6.2 Let us consider the following two-dimensional SDIDE with jump:
t
dy(t) = Vy(t) dt +g<t,y(t),y(t - r),/ K(s,y(s)) ds) dw (t)
t-1
t
+ / h<t,y(t),y(t - r),/ K(s,y(s)) ds, v>Nx(dt, dv), t>0, (118)
zZ t-t
with initial data

£ = (86, 50)" = (1,17 € C([-1,0;R?), (119)

where V is the following matrix:

-3 1
V:(_1 _2>. (120)
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Let y(t) = (1(0), 72(0)7, 5(®) = (1(£ — 1), y2(¢ = 1)7, 3(t) = (G1.(2), 3(£))T and
F&3,5,9) = V(o) = (=371(8) + 32(0), =31 () - 295(8)) ",

N 1 _ L N
g(t,y,5,9) = (5 ln(l +y%(t)) + / siny;(s) cos y1(s) ds,
-1

T

1 t
5 sin®y, () — / sin ¥ (s) cos y1 (s) ds) ,
-1

t
h(t,y,%,5,v) = (0.011)y1(t) - O.4f siny1(s) cos y1(s) ds,
-1

T

t
0.3v/vy,(¢) + 0.1/ sin,(s) cos 71 (s) ds> .
-1

We are going to show that Assumption 2.2 holds if we choose, for example, the following

symmetric positive definite matrix Q:

2 1
Q:(l 2). (121)

In fact, for any y,%,7 € R? and ¢ > 0, we can obtain

2 1\ (-3 1)\ (»n
ot (2 )0

= (‘7)’1 -5y, —33/2> (ﬁ)

19, 11, 11

SN S——l %, (122)
T =3y1+)2
&y y0Qf (6,,5,9) = (—5y1 — 4y, —y1—6y2>
—J1- 292
47 31
SN+ §_2|| (123)
Moreover, similar arguments yield
¢ (62.5,9)Q¢(t,%,5,)
2 1\ (im@+7)+ i
(1101 +72) + 25 lsiny ) 2 U3
(3 sbe 331 Jsin'5,- 15, 1 2)\ Lsin’y, - 15,
1
=In*(1+7) + 51 + 5 sin* () - _yz 3 <2, (124)

where we used the fact that In*(1 + %) < |y|%, | sin()|* < |y|> and the Cauchy—Schwartz
inequality. In addition, according to (24), we have

o1 L
ngT(t,y,y,y) =5 ( 7 In(1 +J’1) + 2)’1 sm?’y2 COS Yy — %y2)

(y1 +1 29, —5/2> , (125)

»-Plr—‘

Page 24 of 33



Ahmadian and Farkhondeh Rouz Journal of Inequalities and Applications (2020) 2020:186

so that

. 7 6.
L'¢"(t,9,7.9)QL'g(t,5,%,9) < Rlyl2 + Elylz. (126)

Also we have

L7'g(t,5,5,)

~ %ln(l + (), + [hr(dv))?) + ftil sin(yy + [, h(dv)) cos( + [, h (dv)) ds
- %sinz(i2 + [, hm(dv)) - f;l sin(yy + [, hw(dv)) cos( + [, h (dv)) ds

~ TIn(1+7}) + ftt_1 sin 1 (s) cos 71 (s) ds
1sin®y, - ftt—l sin 1 (s) cos 7, (s) ds

T
= (0.462y1 +0.2266y; —0.2473y, — 0.05665/1) ) (127)

LT (t,9,%,9)QL  g(t,,%,9) < 0.4957|y|> + 0.0199[3|* + 0.2385|7|*. (128)

A simple calculation shows that

/ HT (6,9, v) (@v)
Z

< ( [,0.01vy; —045)m(dv)  [,(033/v7, + 0.15/2)71(0[1)))

- (0.0308y1 0.4532);, 0.49467, + 0.1 133&1) (129)

and

' (t,9,5,5,v)Qh(t,9,5,5,v)

A B .\ (2 1\ [0.01lvy; -045,
=(0.01vy; —0.49; 0.3 0.1 )
< vy1 Y1 ﬁyz + 0.1y, (1 2) (o,gﬁyz + 0.15/2)

=0.0001v2|y; |* + 0.004v|y1 | |71 + 0.04]91* + 0.09v |y, |*

00397, 1721 + 0.0025[3, 2, (130)

therefore, by using the property of the log-normal distributed /(v) defined in Eq. (109),

we can obtain

/ W (6,9,5,5, V) Qh(t,7,5, 5, ) (dv)
7z

[o¢]
- / (0.0001v°|y1|* + 0.004v|y1 ||71] + 0.04|31 > + 0.09v]y,|*
0

N n I _mw?
_0.03ﬁ|y2||y2|+0.0025|y2|2)me 7 dy

<0.0085]y|* + 0.3019]y|* + 0.0515||>. (131)
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Also based on Eq. (24), we have

L' </ hT(t,yJ»JA” v)”(d‘)))
VA

< (021125, - 042245 ~021125, + 0.422491) , (132)
o ( [# s v)n(du>) QL' ( [ 155 v)n(dw)
zZ zZ
<0.223|y| +0.357|3|%, (133)

L! (/ W (t,9,%,9 v)n(dv))
z

< (0.0178y1 ~0.2617);  0.49467, + 0.0035y, — 0.1625/1>

- (0.3080y1 04532, 0.49467, + 0.1 133&1)

= (—0.2902y1 +0.19159;  0.0035y; — 0.275391) , (134)
L (/ n(t,9,5.5, v)n(dV)> QL™ (/ h(t,y,5,5,v)m (dV)>
zZ zZ
<0.134]y|> + 0.087|5|% (135)

Thus, Assumption 2.2 holds with Q as in (121), A=2, o; =5.5, ax =a3=0, k=1,
Bi =B =0, B3=2 L=235 1 =0, ny=04375, n3 = 0.375, 7, = 0.4957, 7, = 0.0199,
n3 = 0.2385, 01 = 0, 03 = 0.223, 03 = 0.357, 61 = 0.134, 6, =0, 63 = 0.087, y1 = 0.0085, y, =
0.3019 and y3 = 0.0515. Obviously these parameters satisfy inequality (23):

- 1 — 1 —
55=01>0p + O(gk‘[' + E('Bl + ,32 + ,33/(21'2) + 5)»()/1 + )+ )/3/(21'2) =1.36109. (136)
Substituting the proposed values in (65) yields
(47(1-0) + 1.567) At** + (47(1 - 0) + 1.567) At* — 4.9388 = 0. (137)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE
with jump (118) is performed using both 6 = 0.1 and 6 = 0.8. Therefore, according to The-
orem 5.1, if 8 = 0.1, the SSTM scheme is stable for time-steps At < 27%. However, the
mean-square stability is lost if At > 273, If§ = 0.8, the SSTM scheme is stable for all time-
steps At < 272, The results obtained are reported in Fig. 3.

As we see in Fig. 4, if 0 = 0.1, the split-step 6-Euler scheme is stable for time-steps
At < 27°, However, the mean-square stability is lost if At > 27%. If § = 0.8, the split-step
6-Euler scheme is stable for time-steps At < 273, but it is not if Az > 272,

Example 6.3 Let us consider the following three-dimensional SDIDE with jump:
t
dy(t) = Uy(t) dt +g(t,y(t),y(t - r),/ K(s,y(s)) ds) dw (t)
-7

+/h<t,y(t),y(t—7:),/r K(s,y(s)) ds, v>Nx(dt,dv), t>0, (138)
V4 t-1
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~ / —A=272 =273 - - A=27* == A=275, 6=0.1
g 10°¢ :

. /\AAW
T il T ™ h'd b

‘ S N
0 2 4 6 8 1t0 12 14 16 18 20

Figure 4 Unstable and stable numerical solutions for the split-step -Euler scheme with different values of
and At

with the initial data

£(1) = (610,00, 60) " = (1,117 € C([-1,05R?), (139)

where U is the following matrix:

-7 1 -3
u=|-3 -2 -1]1. (140)
-2 -1 -2

Let y(£) = (y1(8),72(2), y3() T, 7(8) = (1.(¢ — 1), y2(¢ = 1), y3(t = )T, 5(2) = 51 (2), 52(8), 33(2)) T
and

f(&y,5,9) = Uy(t)
= (=7y1(8) + y2(8) = 3y3(8), =3y1(2) — 292(2) — y3(2), =291 (£) — y2(2) — 2y3(2)) ‘

. 1., 1, 1
g(t’y’y)y) = <§ Sln2y1(t) - Eyl (t)) E ln(l +J’§(t)),
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¢ T
In(1 +y3(2)) —/ 1 sin® (5(s)) ds) ,

. 1_ Eo3(s) L (s
h(t,y,9,9,v) = (— (t)+0.1/ ——ds,0.01v (t)—0.4-/ ——ds,
»ry Nk -1 1+73(s) ” -1 1+73(s)
ozf‘(t)+o5/t Y(s) d)T
2 ) - s) .

s 1 1+73(s)

t

We are going to show that Assumption 2.2 holds if we choose, for example, the following

symmetric positive definite matrix Q:

2 1 0
Q=11 2 1 (141)
01 2
In fact, for any y,%,7 € R3 and ¢ > 0, we can obtain

2 1 0\ (-7 1 =3\ (n

yTQf(t,y, 0,0) = (yl Y2 yg,) 1 2 1 -3 -2 -1 Y2

01 2)\2 -1 2/ \y,
=7y1+y2—3y3
= <2y1 +2y2 y1+2y2+Y3 Y2+ 2y3> =31 —-2y2—-y3
=2y1-Y2—2y3

2 2 35, 2
=-3ly; —17y; - 73/3 <-17yI, (142)
16339 (6.3.5,)
= (—13)’1 —8y,—5y3 —8y;1 -8y, —6y3 —5y1 -4y - 5}’3)
-7 -3
Rl W T U
X\ =3 =2n-ys | = o2+ o
-2y1-y2—2y3
151
= b (143)
Moreover, similar arguments yield
g (6.5:9)Qg(6:%,5,9)
% In(1+y3()) In(1 +7§(t)) - /:-1 sin3@3(s)) ds) (144)

- (% sin®y,(2) — 191(8)

210 Lsin®(3,(8)) - 391(0)
x|1 2 1 3 In(1 +y3(2))
0 1 2) \In(Q+5%0) - [, sin®(F;(s)) ds

= 1sin‘*@ ) — §5/2 + 1ln2(1 +y2) + §ln2(1 +72) + E /t sins(y (s)) ds :
4 Vg7t 79 L) 72\, 3
Lo 3.0 5on

< - - = 2y|%, 145
= Sl 7+ 21 (145)
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where we used the fact that In*(1 +»?) < |y|?, |sin(¥)|* < |y|* and the Cauchy—Schwartz
inequality. In addition, according to (24), we have

L'g(t,5.5,5)

%sin3@1)cos@l) -1 sinz(i1 -1 5 sin(y;) cos(y)y1 + ‘—11511

= (1+y In(1 +y)

% In(1 +73) - In(1 +%3) — 23% " sin(3y(9)) ds + [ sin® (7,(s)) ds

1= 1A
it

~¥3
so that
N a3 1.
L'g"(t,y,5,9)QL'¢(£,%,5,5) < Elyl2 - §|y|2. (147)
Also we have
L'¢(t,2,5,9)

1sin*(, + [,hm(dv)) = 261 + [, b (dv))
In(1 + (y2 + [hm (dv))?)
In(1 + (y5 + fzhn(dv N?) - ft L Sin®(35(8) + [, (dv)) ds

12— 13
3 sin (yl)—§y1

- 1 ln(l + yz)
n(1 + y3 ft | sin ()’3
~0.0003;
< | 0.0154y, — 0.22669, |, (148)
0
L'¢"(5,9,5,9)QL ™ g(t,5,5,7) < 0.0065|y|* + 0.0957 |/, (149)

A simple calculation shows that

/ K (6,9,5,5 )7 (dv)
Z

< ( S (&5 + 00507 (V) [,(0.01vy, ~0.47)w(dv)  [,(0.2/v7 + 0.5513)71(du)>

= (yl +0.11339;  0.0308y, — 0.4532j, 0.3298, + 0.56655/3> (150)

and

hT(tnyy}A/, U)Qh(t’yyyyj\/y U)

- (%yl +0.157 0.01vys— 0455 0207, + 0.593)
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1 0 %yl +0.19;
2 1 0.0Il)yz - 045/2
1 2/ \0.2y/vy, +0.593

= (0.014/v = 0.0025v + 0.002v+/v + 0.0002v> + 0.0005)|y>|*

X
S = N

0.2 2
+ === +0.01/v + = ) |5, * + (=0.04/v + 0.04v)], |
Jv v

+(0.2614/v + 0.001v/V + 0.04v + 0.25)[y,]?

02 0.0005v — 0.0195 ) |31 04 0.008v — 0.08+/v + 0.08 ) |9
+|—=+0. v —0. + | ——= -0.008v - 0. v+0.

ﬁ yl ﬁ y2
+(0.005v + 0.1/v + 0.05)|93]%, (151)

therefore, by using the property of the log-normal distributed* /(v) defined in Eq. (109),

we can obtain

/ I (£,7,5,5, v)Qh(t,9,5, 3, v} (dv)
Z

o0
= / (0.014/v = 0.0025v + 0.002v+/v + 0.0002v> + 0.0005)|y>|*
0

1 (lnv)2
X e Y
2nv
/OO( 0.014/v )r Px e g
+ -——+ v+ X e v
0 N 2wy
o0

(In v)2
2

+ (—0.04/v + 0.04v)[3,|* x e

o0

(0.2614/v + 0.001v/v + 0.04v + 0.25)[y,]* x

_(n U)2

+ e 2 dv

c\o

1
2y
/(02 0.0005 00195>|A 2y LRy
+ — + U, VY — V. X e v
0 \/; yl \/27[\)

o 0.4 ~ 12 1 _(]nv)2
+ " 0.008v — 0.08+4/v + 0.08 ) ,|* x ez dv
0

v 2wy
+foo(0005v+01ﬁ+005)r 2w L,
A . . . y3 m
< 0.0286]y|* + 3.3246|7|> — 0.0642|9|°. (152)
Also based on Eq. (24), we have
L < / ' (t,y,,9, v)n(dv)) < (0.556671 —0.55669; —0.2112y, o), (153)
zZ

3 ( f W (63,5, v)n(du)) oL ( / W(t,7,3,3, v)n(dw)
Z VA

<0.0892]y|*> — 0.1175|y| + 0.11759|?, (154)
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L! (/Zh(t,y,ﬁi’, V)ﬂ(dv)>

2.1133, + 0.2416, ¥, +0.11339,
< | 0.0178y, + 0.0035y;, — 0.26179, | — | 0.0308y, — 0.4532},
062525, + 1.07433 032987, + 0.566593

1.1133, +0.12835,
~0.013y, +0.1915%, | , (155)
0.29545, + 0.507873

L ( / W (63,5,5, v)n(dv)) oL ( f h(t,9,5,5, ) (dv))
Z Z

< -0.031]y|*> + 2.9753|y|* + 0.8577|3|>. (156)

Thus, Assumption 2.2 holds with Qasin (141), A =3, a1 =17, =3 =0, k=1, B1=0.5,
Ba=2, B3 =-0.75L=755n,=0,n = 1.5, 13 = —0.125, 7i; = —0.0065, 75 = 0, 73 = 0.0957,
o1 =0.0892, 0, = -0.1175, 03 = 0.1175, 61 = —0.031, 65 = 2.9753, 63 = 0.8577, y; = 0.0286,
y2 = 3.3246 and y3 = —0.0642. Obviously these parameters satisfy inequality (23):

— 1 — 1 —
17 = oy > oy + a3kt + 5(/31 + B2+ ,83/(2‘52) + 5)»()/1 Y+ ygkzrz) =5.3085.  (157)
Substituting the proposed values in (65) yields
(75.5(1 - 0) + 1.4642) At** + (75.5(1 - 0) + 1.4642) At* — 17.5283 = 0. (158)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE
with jump (118) is performed using both 6 = 0.1 and 6 = 0.8. Therefore, according to The-
orem 5.1, if & = 0.1, the SSTM scheme is stable for time-steps At < 273. However, the
mean-square stability is lost if At > 272, If § = 0.8, the SSTM scheme is stable for time-
steps At < 271 but it is not if Az > 1. The results obtained are reported in Fig. 5.

T

Figure 5 Unstable and stable numerical solutions for the SSTM scheme with different values of 6 and At
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7 Conclusion

In this paper, we considered the general case of n-dimensional SDIDEs with Poisson jump.
We succeeded to define Lyapunov differential operators and obtained the exponential
mean-square stability of the proposed model solution. Also, by introducing the SSTM
scheme and by using the delayed difference inequality as well approximating the integro
part of the model by the simple trapezoidal rule, we obtain the same exponential mean-
square stability property for some restrictive stepsize At. Finally, in Figs. 1, 3 and 5, the
behavior of the exponential mean-square stability solution is consistent with the A values
for both different values of 6.
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