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Abstract
In this paper, we investigate the exponential mean-square stability for both the
solution of n-dimensional stochastic delay integro-differential equations (SDIDEs)
with Poisson jump, as well for the split-step θ -Milstein (SSTM) scheme implemented
of the proposed model. First, by virtue of Lyapunov function and continuous
semi-martingale convergence theorem, we prove that the considered model has the
property of exponential mean-square stability. Moreover, it is shown that the SSTM
scheme can inherit the exponential mean-square stability by using the delayed
difference inequality established in the paper. Eventually, three numerical examples
are provided to show the effectiveness of the theoretical results.
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1 Introduction
In special cases, stochastic delay differential equations (SDDEs) and stochastic delay
integro-differential equations (SDIDEs) are a type of stochastic differential equations
(SDEs), which has been discussed in a variety of sciences such as the mathematical model
[1], economy [2], infectious diseases [3], and population dynamics [4]. With the develop-
ment of science and technology, it is found that Markov chain and jump-diffusion systems
are more suitable for describing the sudden disturbances in many physical, financial and
dynamical systems, such as the sudden fluctuations in the financial markets (see [5–8] and
[9]). Actually, the stochastic integral with respect to the Wiener process and the one with
respect to the Poisson random measure differs greatly. Clearly, nearly all sample paths of
the Wiener process are continuous, but the Poisson random measure N(dt, dν) is a jump
process with their sample paths only being right-continuous and having left limits. Hence,
it is more significant to consider SDIDEs with Poisson jump.

Due to the fact that most of these equations cannot be solved explicitly, stability the-
ory of numerical solutions is one of central problems in numerical analysis. Therefore the
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stability of numerical schemes becomes also one of the main tools to examine the stabil-
ity solution of these equations (see [10–15] and [16]). For SDIDEs, most of the related
existing literature focused on the linear models. As for SDIDEs, Ding et al. [17] stud-
ied the stability of the semi-implicit Euler method for linear SDIDEs. Rathinasamy and
Balachandran [18] studied the mean-square stability of the Milstein method for linear
SDIDEs. Liu et al. [19] proposed the split-step theta method for SDIDEs by the Lagrange
interpolation technique and investigated the exponential mean-square stability of the pro-
posed method. Meanwhile, Li and Gan investigated the exponential mean-square stability
of theta method for nonlinear SDIDEs by the technique with the Barbalat lemma in the
literature [20]. Moreover, the convergence and mean-square stability analysis of Euler, Mil-
stein as well the higher order of stochastic Runge–Kutta methods can be implemented to
address stochastic ordinary differential equations (SODEs) (see [21, 22] and [23]).

For SDDEs with jumps, the existing literature concerns mainly stability analysis of nu-
merical schemes. For example, Mo et al. [24] discuss the exponential mean-square sta-
bility of the θ -method for neutral stochastic delay differential equations with jumps. Tan
and Wang [25] investigated the mean-square stability of the explicit Euler method for lin-
ear SDDEs with jumps. Li and Gun [26] discuss the almost sure exponential stability of
numerical solutions for SDDEs with jumps. Zhang et al. [27] derived some criteria on
pth moment stability and almost sure stability with general decay rates of stochastic dif-
ferential delay equations with Poisson jumps and Markovian switching. Li and Zhu [28]
investigated the pth moment exponential stability and almost surely exponential stability
of stochastic delay differential equations with Poisson jump. Zhao and Liu [29] modified
the split-step backward Euler method for nonlinear stochastic delay differential equations
with jumps, while Jiang et al. [30] considered the stability of the split-step backward Euler
method for linear SDIDEs with Markovian switching.

The Lyapunov method was applied by many authors to deal with stochastic property.
For example, Zhu in [31] modified the well-known Razumikhin-type theorem for a class
of stochastic functional differential equations with Lévy noise and Markov switching, also
in the literature [32] one discusses the pth moment exponential stability of stochastic de-
lay differential equations with Lévy noise. Deng et al. [33] investigated the truncated EM
method for stochastic differential equations with Poisson jumps. In [34], Ren and Tian
investigated the convergence and stability region properties of the θ -Milstein method for
stochastic differential equations with Poisson jump.

Nevertheless, the SSTM scheme has never been applied to n-dimensional SDIDEs with
Poisson jump, at least to the best of our knowledge. In the present paper, in order to fill
this gap, we introduce the SSTM scheme for n-dimensional SDIDEs with Poisson jump
by some numerical integration technique and perform a stability analysis of the proposed
scheme.

The remainder of the paper is organized as follows. Section 2 presents some necessary
notations and preliminary results. Section 3 investigates the exponential mean-square sta-
bility of the continuous model by defining the appropriate Lyapunov function. Section 4
introduces the SSTM scheme for SDIDEs with Poisson jump and establishes a delayed dif-
ference inequality to discuss its exponential mean-square stability. Section 5 performs the
theoretical analysis about the mean-square stability of the SSTM scheme. Finally, three nu-
merical experiments are reported to illustrate the stability results of the proposed scheme
in Sect. 6.
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2 Preliminary results
All over this paper, unless otherwise specified, we will use | · | to denote the Euclidean norm
in R

n, and 〈x, y〉 = xT y for all x, y ∈R
n. a ∨ b denotes the maximum value between a and b,

while a ∧ b denotes the minimum value. We suppose that the presented analysis is done on
the base of a completed filtered probability space (Ω ,F ,Ft , P) with a filtration {Ft}t≥0 sat-
isfying the usual conditions, that is, it is right-continuous and increasing whileF0 contains
all P-null sets. Let W (t) = (W1(t), W2(t), . . . , Wd(t))T be an d-dimensional Brownian mo-
tion defined on the probability space. For a given delay τ > 0, denote by L2

F0
([–τ , 0];Rn) the

family of all F0-measurable and C([–τ , 0];Rn)-valued random variables ξ (t) for t ∈ [–τ , 0],
equipped with the supremum norm as follows:

E

(
sup

–τ≤t≤0

∣∣ξT (t)ξ (t)
∣∣) < +∞, (1)

and B(Rn) denotes the Borel algebra in R
n. Let p = {p(t), t ≥ 0} be a stationary Ft-adapted

and R
n-valued Poisson point process. For A ∈ B(Rn – {0}), we define the Poisson counting

measure N associated with p by

N
(
(0, t] × A

)
:= #

{
0 < s ≤ t, p(s) ∈ A

}
=

∑
t0<s≤t

IA
(
p(s)

)
, (2)

where # denotes the cardinality of set {·}. For simplicity, we denote N(t, A) := N((0, t]×A).
It is well known that there exists a σ -finite Lévy measure π such that

P
(
N(t, A) = n

)
=

exp(–tπ (A))(π (A)t)n

n!
, (3)

E
(
N(t, A)

)
= π (A)t. (4)

Let N(t,ν) is a Ft-adapted Poisson random measure on [0, +∞) ×R
n with a σ -finite in-

tensity measure π (dν), and then the compensator martingale measure Ñ(t, A) satisfies

N(t, A) = Ñ(t, A) + N̂(t, A), t > 0. (5)

Here Ñ(t, A) is called the compensated Poisson random measure and N̂(t, A) = π (A)t is
called the compensator (see [35] and [36]). Also we assume that Nλ(t,ν) is Poisson ran-
dom measure (independent of Brownian motion W (t)) with jump intensity λ. Let f : R+ ×
R

n × R
n × R

n 
→ R
n, g : R+ ×R

n ×R
n ×R

n 
→R
n×d , h : R+ ×R

n ×R
n ×R

n × Z 
→R
n

and K : R+ ×R
n 
→R

n are locally Lipschitz continuous with f (t, 0, 0, 0) = 0, g(t, 0, 0, 0) = 0
and K(t, 0) = 0. In this paper, for Z ∈ B(Rn – {0}) we consider n-dimensional SDIDEs with
Poisson jump as follows:

dy(t) = f
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds

)
dt

+ g
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds

)
dW (t)

+
∫

Z
h
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds,ν

)
Nλ(dt, dν), t > 0, (6)
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with initial data

y(t) = ξ (t), –τ ≤ t ≤ 0, (7)

where ξ is a C([–τ , 0];Rn)-valued random variable and delay τ > 0 is a constant. An impor-
tant contribution of this paper is to avoid the use of non-anticipative stochastic calculus
for diffusion function (see [37] and [38]):

g
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds

)
= g1

(
t, y(t),

∫ t

t–τ

K
(
s, y(s)

)
ds

)

+ g2

(
t, y(t – τ ),

∫ t

t–τ

K
(
s, y(s)

)
ds

)
. (8)

Lemma 2.1 (Continuous semi-martingale convergence theorem, see [39]) Let A(t) and
U(t) be two Ft-adapted increasing processes on t ≥ 0 with A(0) = U(0) = 0 a.s. Let M(t) be
a real-valued local martingale with M(0) = 0 a.s. Let ζ be a nonnegative F0-measurable
random variable such that E(ζ ) < ∞. Assume that y(t) is nonnegative and define

y(t) = ζ + A(t) – U(t) + M(t), t ≥ 0. (9)

If limt→∞ A(t) < ∞,

lim
t→∞ y(t) < ∞, or lim

t→∞ U(t) < ∞, (10)

that is, both y(t) and U(t) converge to finite random variables.

Assumption 2.1 The coefficient functions f , g and h satisfy the local Lipschitz condition
such that, for each integer j ≥ 1, there exists a positive constant Cj such that

∣∣f (t, y2, y2, ŷ2) – f (t, y1, y1, ŷ1)
∣∣2 ∨ ∣∣g(t, y2, y2, ŷ2) – g(t, y1, y1, ŷ1)

∣∣2

≤ Cj
(|y2 – y1|2 + |y2 – y1|2 + |ŷ2 – ŷ1|2

)
, (11)

∫

Z

∣∣h(t, y2, y2, ŷ2,ν) – h(t, y1, y1, ŷ1,ν)
∣∣2

π (dν)

≤ Cj
(|y2 – y1|2 + |y2 – y1|2 + |ŷ2 – ŷ1|2

)
, (12)

for all (t, yi, yi, ŷi) ∈ R+ ×R
n ×R

n ×R
n 
→R

n with |yi| ∨ |yi| ∨ |ŷi| ≤ j (i = 1, 2).

Obviously, it follows from Assumption 2.1 that there exists a unique maximal local so-
lution to SDIDEs with jump (6).

Assumption 2.2 There exist a symmetric, positive definite n × n matrix Q and nonneg-
ative constants L, k, αi, βi, ηi, η̃i, σi, σ̃i and γi, i = 1, 2, 3, such that

yT Qf (t, y, 0, 0) ≤ –α1yT Qy, (13)
∣∣f (t, y, y, ŷ) – f (t, y, 0, 0)

∣∣ ≤ α2|y| + α3|ŷ|, (14)
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f T (t, y, y, ŷ)Qf (t, y, y, ŷ) ≤ L
(
yT Qy + yT Qy + ŷT Qŷ

)
, (15)

gT (t, y, y, ŷ)Qg(t, y, y, ŷ) ≤ β1yT Qy + β2yT Qy + β3ŷT Qŷ, (16)

L1gT (t, y, y, ŷ)QL1g(t, y, y, ŷ) ≤ η1yT Qy + η2yT Qy + η3ŷT Qŷ, (17)

L–1gT (t, y, y, ŷ)QL–1g(t, y, y, ŷ) ≤ η̃1yT Qy + η̃2yT Qy + η̃3ŷT Qŷ, (18)

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ σ1yT Qy + σ2yT Qy + σ3ŷT Qŷ, (19)

L–1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL–1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ σ̃1yT Qy + σ̃2yT Qy + σ̃3ŷT Qŷ, (20)
∫

Z
hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)π (dν) ≤ γ1yT Qy + γ2yT Qy + γ3ŷT Qŷ, (21)

∣∣K(t, y)
∣∣ ≤ k|y|, (22)

for all (y, y, ŷ) ∈R
n ×R

n ×R
n and t > 0 with the property:

α1 > α2 + α3kτ +
1
2
(
β1 + β2 + β3k2

τ 2) +
λ

2
(
γ1 + γ2 + γ3k2

τ 2), (23)

where λ is the intensity of the Poisson process Nλ(t), and

LjV (tn, xn, xn–m, xn) =

⎧⎪⎪⎨
⎪⎪⎩

g(tn, xn, xn–m, xn)V ′
x(tn, xn, xn–m, xn), j = 1,

V (tn, xn + h(tn, xn, xn–m, xn), xn–m, xn)

– V (tn, xn, xn–m, xn), j = –1.

(24)

3 Exponential stability of the global solution of SFDEs with jump
In this section, we will discuss the exponential stability of the global solution of stochastic
functional differential equations (SFDEs) with Poisson jump. Liu et al. discuss the expo-
nential stability of the solution of the general SFDEs in the literature [19]. Let us consider
the following SFDEs with jump [40]:

dy(t) = F(t, yt) dt + G(t, yt) dW (t) +
∫

Z
H(t, yt ,ν)Nλ(dt, dν), t > 0, (25)

with initial data

y(t) = ξ (t) ∈ Lp
F0

(
[–τ , 0];Rn), p > 0, (26)

where y(t) ∈R
n, and the segment yt is defined as follows:

yt =
{

y(t + θ ) : –τ ≤ θ ≤ 0
}

, (27)

which is regarded as a C([–τ , 0];Rn)-valued stochastic process. Besides, F : R+ ×C([–τ , 0];
R

n) →R
n, G : R+ × C([–τ , 0];Rn) →R

n×d and H : R+ ×C([–τ , 0];Rn) ×Z →R
n are local
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Lipschitz continuous functionals. We require that F(t, 0) = 0 ∈R
n, G(t, 0) = 0 ∈R

n×d and
H(t, 0) = 0 ∈R

n, this implying that the SFDEs with jump (25) admits a trivial (null) solu-
tion y(t) = 0. Furthermore, we assume that V (t, y(t)) ∈ C1,2(R+,R+ × R

n) is a Lyapunov
function.

Define the differential operators LV : R+ ×R
n →R and HV : R+ ×R

n →R associated
with SFDEs with jump (25) as follows:

LV
(
t, y(t),ϕ

)
= Vt

(
t, y(t)

)
+ Vy

(
t, y(t)

)
F(t,ϕ) +

1
2

trace
[
GT (t,ϕ)Vyy

(
t, y(t)

)
G(t,ϕ)

]

+
∫

Z

[
V

(
t, y(t) + H(t,ϕ,ν)

)
– V

(
t, y(t)

)]
π (dν), (28)

HV
(
t, y(t),ϕ

)
= Vy

(
t, y(t)

)
G(t,ϕ) +

∫

Z

[
V

(
t, y(t) + H(t,ϕ,ν)

)
– V

(
t, y(t)

)]
Ñλ(dν), (29)

where

Vt
(
t, y(t)

)
=

∂V (t, y(t))
∂t

, Vy
(
t, y(t)

)
=

(
∂V (t, y(t))

∂y1
, . . . ,

∂V (t, y(t))
∂yn

)
,

Vyy
(
t, y(t)

)
=

(
∂2V (t, y(t))

∂yi∂yj

)

n×n
.

Then we have the Itô formula as follows (see [40]):

dV
(
t, y(t)

)
= LV

(
t, y(t), yt

)
dt + HV

(
t, y(t), yt

)
dW (t). (30)

The following lemma ensures that the global solution of SFDEs with jump (25) is expo-
nentially mean-square stable.

Lemma 3.1 Assume that there exists a Lyapunov function V (t, y(t)) ∈ C1,2(R+,R+ ×R
n),

such that

c1λ
p
min(Q)

∣∣y(t)
∣∣p ≤ V

(
t, y(t)

) ≤ c2ψ
(∣∣y(t)

∣∣) and ψ
(∣∣y(t)

∣∣) ≤ c3λ
p
max(Q)

∣∣y(t)
∣∣p, (31)

where 0 < c1 ≤ c2, c3 ≥ 0, λmin(Q) and λmax(Q) denote the smallest and largest eigenvalue of
Q, respectively. For t > 0, the Lyapunov function V (t, y(t)) satisfies

LV
(
t,ϕ(0),ϕ

) ≤ –μψ
(∣∣ϕ(0)

∣∣) +
m∑

i=1

(
μiψ

(∣∣ϕ(–τi)
∣∣) + μ̂i

∫ 0

–τi

ψ
(∣∣ϕ(θ )

∣∣)dθ

+ μ̃i

∫

Z
ψ

(∣∣ϕ(θ )
∣∣)π (dν)

)
, (32)

where ψ(u) ≥ 0 is an arbitrary function with 0 ≤ τi ≤ τ and μ,μi, μ̂i, μ̃i are nonnegative
constants with the property

m∑
i=1

(
μi + μ̂iτi + μ̃i

∫

Z
π (dν)

)
< μ. (33)
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Then there exists a global solution y(t) to SFDEs with jump (25) for any initial data ξ (t).
Also we have the exponential estimate as follows:

E
(∣∣y(t)

∣∣p) ≤ C
(
ξ (t)

)
e–rt , ∀t ≥ 0, (34)

where C(ξ (t)) is a positive constant, depending on the initial data ξ (t) and r > 0 is the
unique positive solution of the following equation:

c2r +
m∑

i=1

(
μi + μ̂iτi + μ̃i

∫

Z
π (dν)

)
erτi = μ. (35)

Proof Let us define the time varying Lyapunov function

δ(t) = ertV
(
t, y(t)

)
, (36)

then we can easily get

Lδ(t) = ert(rV
(
t, y(t)

)
+ LV

(
t, y(t), yt

))

≤ ert(c2rψ
(∣∣y(t)

∣∣) + LV
(
t, y(t), yt

))

≤ –c3λ
p
max(Q)ert(μ – c2r)

∣∣y(t)
∣∣p + c3λ

p
max(Q)

m∑
i=1

(
μierτi

∣∣y(t – τi)
∣∣p

+ μ̂ierτi

∫ 0

–τi

∣∣yt(θ )
∣∣p dθ + μ̃ierτi

∫

Z

∣∣y(t – τi)
∣∣p

π (dν)
)

. (37)

Let us also define

M(t) =
∫ t

0
ersHV

(
s, y(s), ys

)
dW (s), (38)

therefore, one can verify it to be a local martingale under the given condition. If we de-
fine the stopping time τ l = inf{k|y(t) ≥ l} for l = 1, 2, . . . , then we have E(M(t ∧ τ l)) = 0 for
each l. Now, define the Lyapunov functional:

U
(
t, δ(t)

)
= δ(t) + c3λ

p
max(Q)

m∑
i=1

(
μierτi

∫ t

t–τi

∣∣y(s)
∣∣p ds

+ μ̂ierτi

∫ t

t–τi

∫ t

s

∣∣y(u)
∣∣p du ds + μ̃ierτi

∫ t

t–τi

∫

Z

∣∣y(s)
∣∣p

π (dν) ds
)

, (39)

which implies δ(t) ≤ U(t, δ(t)). Therefore, by the necessary condition

c3λ
p
max(Q)

(
(μ – c2r)ert –

m∑
i=1

(
μi + μ̂iτi + μ̃i

∫

Z
π (dν)

)
erτi

)
≥ 0. (40)
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By implementation of the operator defined in (28) on Eq. (39) and using the integration
by parts as well as the notation defined in (27), we can derive that

LU
(
t, δ(t)

)

= Lδ(t) + L
(

c3λ
p
max(Q)

m∑
i=1

(
μierτi

∫ t

t–τi

∣∣y(s)
∣∣p ds

+ μ̂ierτi

∫ t

t–τi

∫ t

s

∣∣y(u)
∣∣p du ds + μ̃ierτi

∫ t

t–τi

∫

Z

∣∣y(s)
∣∣p

π (dν) ds
))

= Lδ(t) + c3λ
p
max(Q)

m∑
i=1

(
μierτi

(∣∣y(t)
∣∣p –

∣∣y(t – τi)
∣∣p)

+ μ̂ierτi

(
τi

∣∣y(t)
∣∣p –

∫ 0

–τi

∣∣yt(θ )
∣∣p dθ

)
+ μ̃ierτi

(∣∣y(t)
∣∣p –

∣∣y(t – τi)
∣∣p)∫

Z
π (dν)

)

≤ –

(
c3λ

p
max(Q)

(
(μ – c2r)ert –

m∑
i=1

(
μi + μ̂iτi + μ̃i

∫

Z
π (dν)

)
erτi

))∣∣y(t)
∣∣p

≤ 0, (41)

where the first and second inequalities are driven by Eqs. (37) and (40), respectively. At
the same time, we have

HU
(
t, δ(t)

)
= Hδ(t) = ertHV

(
t, y(t), yt

)
. (42)

Based on Eq. (42), by the Itô formula we can obtain

dU
(
t, δ(t)

)
= LU

(
t, δ(t)

)
dt + HU

(
t, δ(t)

)
dW (t), (43)

and E(M(t ∧ τ l)) = 0, where M(t) is defined in (38). Furthermore, for any positive constant
C(ξ (t)) we can obtain

E
(
U

(
t ∧ τ l, δ(t ∧ τ l)

)) ≤ E(U
(
0, δ(0)

) ≤ C
(
ξ (t)

)
. (44)

We now assert the global existence of the solution. Assume that this assertion were false,
then there is a finite explosion time. Now, according to Eq. (44), we have

c1E
(
yT (t ∧ τ l)y(t ∧ τ l)

) ≤ C
(
ξ (t)

)
. (45)

By using the familiar Fatou lemma, we can obtain

c1E
(
yT (τ l)y(τ l)

)
= lim

t→∞ inf c1E
(
yT (t ∧ τ l)y(t ∧ τ l)

) ≤ C
(
ξ (t)

)
, (46)

that is, l2 ≤ c–1
1 CE(‖U0‖p), which leads to a contradiction due to the arbitrariness of the

integer l. This means the correctness of the assertion, namely the solution y(t) exists glob-
ally. Further, by using the Fatou lemma again, one can derive that

E
(
U

(
t, δ(t)

)) ≤ C
(
ξ (t)

)
. (47)
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By the definitions for δ(t) and U(t, δ(t)) of Eqs. (36) and (39), we finally get

ert
E

(
V

(
t, y(t)

)) ≤ E
(
U

(
t, δ(t)

)) ≤ C
(
ξ (t)

)
, (48)

namely,

E
(
V

(
t, y(t)

)) ≤ C
(
ξ (t)

)
e–rt , or E

(∣∣y(t)
∣∣p) ≤ C

(
ξ (t)

)
e–rt , (49)

where C(ξ (t)) = c–1
1 C(ξ (t)) as required. �

Consequently, by applying Lemma 3.1 to SDIDEs with jump (6) with m = 1, and
ψ(u) = uT u, we directly get the following stability criterion.

Theorem 3.1 Under Assumption 2.2, the global solution y(t) to SDIDEs with jump (6) is
said to be exponentially mean-square stable if there exist a positive constant r and a positive
constant C(ξ (t)), depending on the initial data ξ (t), such that

E
(
yT (t)y(t)

) ≤ C
(
ξ (t)

)
e–rt , ∀t ≥ 0, (50)

where r is a positive constant. In particular, r is the unique positive solution of the following
equation:

r +
(
α2 + β2 + λγ2 +

(
α3k + β3k2

τ + λγ3k2
τ
)
τ
)
erτ = 2α1 – α2 – α3kτ – β1 – λγ1. (51)

4 The SSTM scheme with Poisson jump
In this section, we present the split-step theta Milstein (SSTM) approximation with jump.
Let us choose a discretization time-step �t ∈R such that �t = τ

m for a integer m. Let us
consider the time discretization levels tn = n�t, n = –m, –m + 1, . . . , 0, 1, . . . .

A discrete approximate solution {xn}n≥0 can be obtained as follows: set

xn = yn = ξ (n�t), n = –m, . . . , –1, 0, x0 = ξ (0). (52)

Then, compute the approximation {yn}n≥0 according to the following scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn = yn + θ f (tn, xn, xn–m, xn)�t + (1 – θ )f (tn, yn, yn–m, yn)�t,

yn+1 = xn + g(tn, xn, xn–m, xn)�Wn +
∫

Zh(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

+ 1
2 L1g(tn, xn, xn–m, xn)(Sn – �t) + L–1g(tn, xn, xn–m, xn)Dn

+ L1∫
Zh(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+ 1
2 L–1∫

Zh(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n), n = 0, 1, 2, . . . ,

(53)

where θ ∈ [0, 1] is a parameter, and yn is an approximation to the state y(tn).

�Wn := W (tn+1) – W (tn), Sn := (�Wn)2, (54)

�Ñλ,n(dν) := Ñλ

(
(0, tn+1], dν

)
– Ñλ

(
(0, tn], dν

)
, Pn :=

(
�Ñλ,n(dν)

)2, (55)
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Dn :=
Nλ(tn+1)∑

i=Nλ(tn)+1

[
W

(
Γ (i)

)
– W (tn)

]
– λ

∫ tn+1

tn

W (s) ds + λW (tn)�t, (56)

where Γ (i) is the instant of the ith jump of the Poisson process.
In addition, xn and yn approach the integral terms. In this paper, we choose a composite

trapezoidal rule as the tool of the disperse integral to solve this case. Therefore, we have

xn =
�t
2

(
K(xn–m) + K(xn)

)
+ �t

m–1∑
j=1

K(xn–m+j), (57)

yn =
�t
2

(
K(yn–m) + K(yn)

)
+ �t

m–1∑
j=1

K(yn–m+j), (58)

the integral term in SDIDEs with jump (6) is approximated with the trapezoidal rule, which
makes use of the piecewise Lagrange interpolation technique. Finally, we assume that the
derivatives of the function g needed in (24) are well-defined.

Lemma 4.1 (Delayed difference inequality, see [19]) Let m ≥ 1 be an integer, m0 = –1 or
m0 = 0. Denote

DVn = Vn+1 – Vn, n ∈ N. (59)

Assume that {Vn}n∈N, {xn}n∈N and {yn}n∈N are nonnegative sequences with c1xn ≤ Vn ≤
c2xn, 0 < c1 ≤ c2. If {Vn}n∈N satisfies the delayed difference inequality

DVn ≤ –axn–m0 +
m∑

i=m0+1

aixn–i – byn+1 +
m∑

i=0

biyn–i, n ∈N, (60)

where a, b, ai and bi are nonnegative constants with
∑m

i=m0+1ai < a and
∑m

i=0bi < b, then we
have the estimate

xn ≤ M‖x0‖e–rn, (61)

where M ≥ 1 is a constant, ‖x0‖ = max–m≤l≤0|xl|, r = ln C, and C > 1 is the largest positive
number satisfying the algebraic inequality system

m∑
i=m0+1

aiCi+1 ≤ (
a – c2(C – 1)

)
Cm0+1, and

m∑
i=0

biCi+1 ≤ b. (62)

5 Exponential mean-square stability of the numerical scheme
This section concludes with some criteria for exponential mean-square stability of the
SSTM approximation {yn}n≥0 with jump.

Definition 5.1 The numerical scheme (53) is said to be exponentially mean-square stable
if there exist two positive constants r and C such that for any initial data ξ (t) the following
relation holds:

E
(
xT

n xn
) ∨E

(
yT

n yn
) ≤ Ce–rtn ·E

(
sup

–τ≤t≤0

∣∣ξT (t)ξ (t)
∣∣), ∀n ≥ 0. (63)
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Remark 5.1 Let us define Lyapunov function V (t, y(t)) = yT (t)Qy(t), by using (22) and the
Cauchy–Schwartz inequality, we have

∣∣∣∣
∫ t

t–τ

K
(
s, y(s)

)
ds

∣∣∣∣
2

≤ k2
τ

∫ t

t–τ

yT (s)Qy(s) ds, t > 0. (64)

To establish the results on the exponential mean-square stability, and we present the
following theorem.

Theorem 5.1 Let θ ∈ [0, 1], and let Assumption 2.2 hold. Then, for any initial data ξ (t),
there exists an upper stepsize bound:

(
2(1 – θ )L +

(
η1 + η2 + η3k2

τ 2) +
(
η̃1 + η̃2 + η̃3k2

τ 2))(kτ 2�t∗2 + �t∗)

= α1 –
(

α2 + α3kτ +
1
2
(
β1 + β2 + β3k2

τ 2) +
λ

2
(
γ1 + γ2 + γ3k2

τ 2)

–
λ

2
(
σ1 + σ2 + σ3k2

τ 2 + σ̃1 + σ̃2 + σ̃3k2
τ 2)

)
, (65)

depending on θ , such that for any �t ∈ (0,�t∗) we have an exponential estimate:

E
(
xT

n Qxn
) ∨E

(
yT

n Qyn
) ≤ C

(
ξ (t)

)
e–r�(θ )n�t , n = 1, 2, . . . , (66)

where C(ξ (t)) is a positive constant, r�(θ ) = ln P�, and P� > 1 satisfies the algebraic in-
equality system:

P� – 1 + θ�t
(

α2 + β1 + λ(1 + 2γ1) + β2 + 2λγ2 + kα3τ

+ (β3 + 2λγ3)k2
τ 2 – kα3

�t
2

)
Pm+1

�

≤ θ�t
(

2α1 – α2 – kα3τ – kα3
�t
2

)
. (67)

Proof According to the first of the scheme (53), we have

xn – θ f (tn, xn, xn–m, xn)�t = yn + (1 – θ )f (tn, yn, yn–m, yn)�t. (68)

Using this, with the elementary inequality a2 ≤ 2ab + (a – b)2, we can obtain

xT
n Qxn ≤ yT

n Qyn + 2(1 – θ )yT
n Qf (tn, yn, yn–m, yn)�t

+ 2θxT
n Qf (tn, xn, xn–m, xn)�t

+ (1 – θ )2f T (tn, yn, yn–m, yn)Qf (tn, yn, yn–m, yn)(�t)2. (69)

Now, by using (22) and (57), we can derive that

xT
n Qxn ≤ k2

τ

(
�t
2

xT
n–mQxn–m + �t

m–1∑
j=1

xT
n–m+jQxn–m+j +

�t
2

xT
n Qxn

)
, (70)



Ahmadian and Farkhondeh Rouz Journal of Inequalities and Applications        (2020) 2020:186 Page 12 of 33

and also by using the inequality (
∑m

i=1ai)2 ≤ m
∑m

i=1a2
i , we can obtain

2xT
n Qxn ≤ k

(
�t
2

(
xT

n–mQxn–m + xT
n Qxn

)

+ �

(m–1∑
j=1

xT
n–m+jQxn–m+j + xT

n Qxn

)
+

�t
2

xT
n Qxn

)

≤ k

((
m�t +

�t
2

)
xT

n Qxn + �t
m–1∑
j=1

xT
n–m+jQxn–m+j +

�t
2

xT
n–mQxn–m

)

≤ k

((
τ +

�t
2

)
xT

n Qxn + �t
m–1∑
j=1

xT
n–m+jQxn–m+j +

�t
2

xT
n–mQxn–m

)
, (71)

where τ = m�t. Therefore, by using conditions (13), (14) and Eq. (71), we get

2xT
n Qf (tn, xn, xn–m, xn)

= 2xT
n Qf (tn, xn, 0, 0) + 2xT

n Q
(
f (tn, xn, xn–m, xn) – f (tn, xn, 0, 0)

)

≤ –2α1xT
n Qxn + 2xT

n Q
(
α2|xn–m| + α3|xn|

)

≤ –2α1xT
n Qxn + α2

(
xT

n Qxn + xT
n–mQxn–m

)
+ 2α3xT

n Qxn

≤
(

–2α1 + α2 + kα3τ + kα3
�t
2

)
xT

n Qxn +
(

α2 + kα3
�t
2

)
xT

n–mQxn–m

+ kα3�t
m–1∑
j=1

xT
n–m+jQxn–m+j. (72)

For evaluating yT
n Qf (tn, yn, yn–m, yn), the procedure is the same as Eq. (72). Taking the ex-

pectation on both sides of (69) using (15), (71) and (72) gives

E
(
xT

n Qxn
)

≤ E
(
yT

n Qyn
)

+ (1 – θ )

((
–2α1 + α2 + kα3τ + kα3

�t
2

)
E

(
yT

n Qyn
)

+
(

α2 + kα3
�t
2

)
E

(
yT

n–mQyn–m
)

+ kα3�t
m–1∑
j=1

E
(
yT

n–m+jQyn–m+j
)
)

�t

+ θ

((
–2α1 + α2 + kα3τ + kα3

�t
2

)
E

(
xT

n Qxn
)

+
(

α2 + kα3
�t
2

)
E

(
xT

n–mQxn–m
)

+ kα3�t
m–1∑
j=1

E
(
xT

n–m+jQxn–m+j
))

�t + (1 – θ )2L

((
1 + k2

τ
�t
2

)
E

(
yT

n Qyn
)

+
(

1 + k2
τ

�t
2

)
E

(
yT

n–mQyn–m
)

+ k2
τ�t

m–1∑
j=1

E
(
yT

n–m+jQyn–m+j
)
)

(�t)2. (73)
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On the other hand, it is easy to deduce from the second of the scheme (53) that

yT
n+1Qyn+1 = xT

n Qxn + ST
n gT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

+
1
4

(Sn – �t)T L1gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)(Sn – �t)

+
∫

Z
hT (tn, xn, xn–m, xn,ν)Qh(tn, xn, xn–m, xn,ν)Pn

+ DT
n L–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn

+ (�Wn�Ñλ,n – Dn)T L1
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+
1
4

(Pn – �Nλ,n)T L–1
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ 2�W T
n gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn + m�

n , (74)

where

m�
n = 2xT

n Qg(tn, xn, xn–m, xn)�Wn + xT
n QL1g(tn, xn, xn–m, xn)(Sn – �t)

+ 2xT
n Q

∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν) + 2xT

n QL–1g(tn, xn, xn–m, xn)Dn

+ 2xT
n QL1

∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+ xT
n QL–1

∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ �W T
n gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)(Sn – �t)

+ 2�W T
n gT (tn, xn, xn–m, xn)Q

∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

+ 2�W T
n gT (tn, xn, xn–m, xn)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+ �W T
n gT (tn, xn, xn–m, xn)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ (Sn – �t)T L1gT (tn, xn, xn–m, xn)Q
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

+ (Sn – �t)T L1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn

+ (Sn – �t)T L1gT (tn, xn, xn–m, xn)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)
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+
1
2

(Sn – �t)T L1gT (tn, xn, xn–m, xn)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ 2
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)QL–1g(tn, xn, xn–m, xn)Dn

+ 2
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ 2DT
n L–1gT (tn, xn, xn–m, xn)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

+ DT
n L–1gT (tn, xn, xn–m, xn)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

+ (�Wn�Ñλ,n – Dn)T L1
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n). (75)

Note that

E(�Wn) = 0, E(Sn) = �t, E
(
(Sn)2) = 3(�t)2,

E
(
�Ñλ,n(dν)

)
= 0, E(Pn) = λπ (dν)�t,

E
(
(Pn)2) = λ�t(1 + 3λ�t)π (dν).

(76)

By taking the expectation at both sides of (75), by using (76) and the fact that �Wn, �Ñλ,n

and �Nλ,n are independent on xn, xn–m and xn, we obtain

E
(
m�

n
)

= 0. (77)

Therefore we have

E
(
yT

n+1Qyn+1
)

= E
(
xT

n Qxn
)

+ E
(
SngT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

)

+
1
4
E

(
(Sn – �t)L1gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)(Sn – �t)

)

+ E

(∫

Z
hT (tn, xn, xn–m, xn,ν)Qh(tn, xn, xn–m, xn,ν)Pn

)
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+ E
(
DnL–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn

)

+ E

(
(�Wn�Ñλ,n – Dn)T L1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

)

+
1
4
E

(
(Pn – �Nλ,n)L–1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

)

+ 2E
(
�W T

n gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn
)
. (78)

Since xn, xn–m and xn are all Ftn -measurable, we can easily obtain

E
(
SngT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

)

= �tE
(
gT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

)
, (79)

E
(
(Sn – �t)T L1gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)(Sn – �t)

)

= 2(�t)2
E

(
L1gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)

)
, (80)

E

(∫

Z
hT (tn, xn, xn–m, xn,ν)Qh(tn, xn, xn–m, xn,ν)Pn

)

= λ�t
∫

Z
E

(
hT (tn, xn, xn–m, xn,ν)Qh(tn, xn, xn–m, xn,ν)

)
π (dν), (81)

E
(
DT

n L–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn
)

≤ C(�t)2
E

(
L–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)

)
, (82)

E

(
(�Wn�Ñλ,n – Dn)T L1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(�Wn�Ñλ,n – Dn)

)

≤ C(�t)2
E

(
L1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

)
, (83)

E

(
(Pn – �Nλ,n)T L–1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)(Pn – �Nλ,n)

)

= 2λ�t(1 + λ�t)E
(

L–1
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

)
, (84)

E
(
�W T

n gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)Dn
)
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=

( Nλ(tn+1)∑
i=Nλ(tn)+1

(
Γ (i) – tn

)
+

1
2

(�t)2

)

×E
(
gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)

)
. (85)

Now by using the elementary inequality 2aT b ≤ a2 + b2, and by substitution of (79)–(85)
into (78)

E
(
yT

n+1Qyn+1
)

≤ E
(
xT

n Qxn
)

+ �tE
(
gT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

)

+
1
2

(�t)2
E

(
L1gT (tn, xn, xn–m, xn)QL1g(tn, xn, xn–m, xn)

)

+ λ�t
∫

Z
E

(
hT (tn, xn, xn–m, xn,ν)Qh(tn, xn, xn–m, xn,ν)

)
π (dν)

+ C(�t)2
E

(
L–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)

)

+ C(�t)2
E

(
L1

∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

)

+ 2λ�t(1 + λ�t)E
(

L–1
∫

Z
hT (tn, xn, xn–m, xn,ν)�Ñλ,n(dν)Q

× L–1
∫

Z
h(tn, xn, xn–m, xn,ν)�Ñλ,n(dν)

)

+

( Nλ(tn+1)∑
i=Nλ(tn)+1

(
Γ (i) – tn

)
+

1
2

(�t)2

)
E

(
gT (tn, xn, xn–m, xn)Qg(tn, xn, xn–m, xn)

+ L–1gT (tn, xn, xn–m, xn)QL–1g(tn, xn, xn–m, xn)
)
. (86)

So we have E(xT
n Qxn) ≤ E(yT

n+1Qyn+1). Subsequently, by using (16)–(21), we can obtain

E
(
yT

n+1Qyn+1
)

≤ E
(
xT

n Qxn
)

+

(
�t +

Nλ(tn+1)∑
i=Nλ(tn)+1

(
Γ (i) – tn

)
+

1
2

(�t)2

)

× (
β1E

(
xT

n Qxn
)

+ β2E
(
xT

n–mQxn–m
)

+ β3E
(
xT

n Qxn
))

+ (�t)2
(

1
2
η1E

(
xT

n Qxn
)

+
1
2
η2E

(
xT

n–mQxn–m
)

+
1
2
η3E

(
xT

n Qxn
))

+ λ�t
(
γ1E

(
xT

n Qxn
)

+ γ2E
(
xT

n–mQxn–m
)

+ γ3E
(
xT

n Qxn
))

+

(
C(�t)2 +

Nλ(tn+1)∑
i=Nλ(tn)+1

(
Γ (i) – tn

)
+

1
2

(�t)2

)

× (
η̃1E

(
xT

n Qxn
)

+ η̃2E
(
xT

n–mQxn–m
)

+ η̃3E
(
xT

n Qxn
))
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+ C(�t)2(σ1E
(
xT

n Qxn
)

+ σ2E
(
xT

n–mQxn–m
)

+ σ3E
(
xT

n Qxn
))

+ 2λ�t(1 + λ�t)
(
σ̃1E

(
xT

n Qxn
)

+ σ̃2E
(
xT

n–mQxn–m
)

+ σ̃3E
(
xT

n Qxn
))

. (87)

By Eq. (70), it follows that

E
(
yT

n+1Qyn+1
)

≤ E
(
xT

n Qxn
)

+ �t

[(
(1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1 +

�t
2

(
(1 + C)β3 + λγ3

+ Cη̃3 + 2λσ̃3
)
k2

τ

)
E

(
xT

n Qxn
)

+
(

(1 + C)β2 + λγ2 + Cη̃2 + 2λσ̃2

+
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

)
E

(
xT

n–mQxn–m
)

+ �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

m–1∑
j=1

E
(
xT

n–m+jQxn–m+j
)]

+ (�t)2

[(
1
2
β1 +

1
2
η1 + (1 + C)η̃1 + Cσ1 + 2λ2σ̃1 +

�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3

+ Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n Qxn
)

+
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n–mQxn–m
)

+ �t
(

1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

×
m–1∑
j=1

E
(
xT

n–m+jQxn–m+j
)]

. (88)

We conclude

E
(
yT

n Qyn
)

≤ E
(
xT

n–1Qxn–1
)

+ �t

[(
(1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1 +

�t
2

(
(1 + C)β3 + λγ3

+ Cη̃3 + 2λσ̃3
)
k2

τ

)
E

(
xT

n–1Qxn–1
)

+
(

(1 + C)β2 + λγ2 + Cη̃2 + 2λσ̃2

+
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

)
E

(
xT

n–m–1Qxn–m–1
)

+ �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

m–1∑
j=1

E
(
xT

n–m+j–1Qxn–m+j–1
)]

+ (�t)2

[(
1
2
β1 +

1
2
η1 + (1 + C)η̃1 + Cσ1 + 2λ2σ̃1 +

�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3

+ Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n–1Qxn–1
)

+
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2
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+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n–m–1Qxn–m–1
)

+ �t
(

1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

×
m–1∑
j=1

E
(
xT

n–m+j–1Qxn–m+j–1
)
]

. (89)

Now, applying (89) to the first term of the right side of (73), we can obtain

E
(
xT

n Qxn
)

– E
(
xT

n–1Qxn–1
)

≤ (1 – θ )

[(
–2α1 + α2 + kα3τ + kα3

�t
2

+ (1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1

+
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ + �t
(

1
2
β1 +

1
2
η1 + (1 + C)η̃1 + Cσ1

+ 2λ2σ̃1 +
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

))
E

(
yT

n Qyn
)

+
(

α2 + kα3
�t
2

+ (1 + C)β2 + λγ2 + Cη̃2 + 2λσ̃2 +
�t
2

(
(1 + C)β3 + λγ3

+ Cη̃3 + 2λσ̃3
)
k2

τ + �t
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

))
E

(
yT

n–mQyn–m
)

+
(

kα3�t + �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ + �t
(

1
2
β3 +

1
2
η3

+
(

1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

) m–1∑
j=1

E
(
yT

n–m+jQyn–m+j
)

+ (1 – θ )L�t

((
1 + k2

τ
�t
2

)
E

(
yT

n Qyn
)

+
(

1 + k2
τ

�t
2

)
E

(
yT

n–mQyn–m
)

+ �tk2
τ

m–1∑
j=1

E
(
yT

n–m+jQyn–m+j
))]

�t + θ

[(
–2α1 + α2

+ kα3τ + kα3
�t
2

)
E

(
xT

n Qxn
)

+
(

α2 + kα3
�t
2

)
E

(
xT

n–mQxn–m
)

+ kα3�t
m–1∑
j=1

E
(
xT

n–m+jQxn–m+j
)

+
(

(1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1

+
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

)
E

(
xT

n–1Qxn–1
)

+
(

(1 + C)β2 + λγ2

+ Cη̃2 + 2λσ̃2 +
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

)
E

(
xT

n–m–1Qxn–m–1
)

+ �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

m–1∑
j=1

E
(
xT

n–m+j–1Qxn–m+j–1
)
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+ �t

((
1
2
β1 +

1
2
η1 + (1 + C)η̃1 + Cσ1 + 2λ2σ̃1 +

�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3

+ Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n–1Qxn–1
)

+
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)
E

(
xT

n–m–1Qxn–m–1
)

+ �t
(

1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

×
m–1∑
j=1

E
(
xT

n–m+j–1Qxn–m+j–1
)
)]

�t, (90)

where

a = a0 = θ

(
–2α1 + α2 + kα3

(
τ +

3
2
�t

))
, (91)

a1 = θ

(
kα3�t + (1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1 +

�t
2

(
(1 + C)β3 + λγ3

+ Cη̃3 + 2λσ̃3
)
k2

τ + �t
(

1
2
β1 +

1
2
η1 + (1 + C)η̃1 + Cσ1 + 2λ2σ̃1

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

))
, (92)

am–1 = θ

(
(1 + C)β2 + λγ2 + Cη̃2 + 2λσ̃2 +

�t
2

(
(1 + C)β3 + λγ3

+ Cη̃3 + 2λσ̃3
)
k2

τ +
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

))
,

am = θ

(
α2 +

1
2

kα3�t +
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ

+ �t
(

1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)
, (93)

b = 0, (94)

b0 = (1 – θ )
(

–2α1 + α2 + kα3

(
τ +

1
2
�t

)
+ (1 + C)β1 + λγ1 + Cη̃1 + 2λσ̃1

+
�t
2

(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ + �t
(

1
2
β1 +

1
2
η1 + (1 + C)η̃1

+ Cσ1 + 2λ2σ̃1 +
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)

+ kα3�t + �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ + �t
(

1
2
β3 +

1
2
η3

+
(

1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ + �tk2
τ

)
, (95)
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b1 = (1 – θ )
(

kα3�t + �t
(
(1 + C)β3 + λγ3 + Cη̃3 + 2λσ̃3

)
k2

τ + �t
(

1
2
β3 +

1
2
η3

+
(

1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ + �tk2
τ

)
, (96)

bm = (1 – θ )
(

α2 + kα3
�t
2

+ (1 + C)β2 + λγ2 + Cη̃2 + 2λσ̃2 +
�t
2

(
(1 + C)β3

+ λγ3 + Cη̃3 + 2λσ̃3
)
k2

τ + �t
(

1
2
β2 +

1
2
η2 + (1 + C)η̃2 + Cσ2 + 2λ2σ̃2

+
�t
2

(
1
2
β3 +

1
2
η3 +

(
1
2

+ C
)

η̃3 + Cσ3 + 2λ2σ̃3

)
k2

τ

)

+ (1 – θ )L�t
(

1 + k2
τ

�t
2

))
. (97)

Applying Lemma 4.1 to (90), we have the estimation

E
(
xT

n Qxn
) ≤ C

(
ξ (t)

)
e–r�(θ )n�t . (98)

Finally, with (89), we get

E
(
yT

n Qyn
) ≤ C

(
ξ (t)

)
e–r�(θ )n�t . (99)

This completes the proof of Theorem 5.1. �

6 Numerical illustrations
This section is devoted to presenting some examples to illustrate our numerical stability
results for the SSTM approximation {yn}n≥0 with jump. Also, we compare the proposed
scheme with the stability analysis of the split-step θ -Euler scheme.

Example 6.1 Let us consider the following nonlinear SDIDE with jump:

dy(t) =
(

–8y(t) + sin
(
y(t – 1)

)
–

∫ t

t–1
sin3 y(s) ds

)
dt

+
(

y(t)
1 + y2(t)

+ sin
(
y(t – 1)

)
+

∫ t

t–1
sin3 y(s) ds

)
dW (t)

+
∫

Z

(
0.01νy(t) + 0.3

√
νy(t – 1) – 0.2

∫ t

t–1
sin3 y(s) ds

)
Nλ(dt, dν),

t > 0, (100)

with initial data ξ (t) = 1 for t ∈ [–1, 0]. For any y, y, ŷ ∈R, t > 0 and for any positive number
Q we have

yT Qf (t, y, 0, 0) ≤ –8yT Qy, (101)
∣∣f (t, y, y, ŷ) – f (t, y, 0, 0)

∣∣ ≤ |y| + |ŷ|, (102)

f T (t, y, y, ŷ)Qf (t, y, y, ŷ) ≤ 80
(
yT Qy + yT Qy + ŷT Qŷ

)
. (103)
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Moreover, similar arguments yield

gT (t, y, y, ŷ)Qg(t, y, y, ŷ)

=
(

y
1 + y2

)T

Q
(

y
1 + y2

)
+ 2

(
y

1 + y2

)T

Q sin(y)

+
(
sin(y)

)T Q sin(y) + ŷT Qŷ + 2
(

y
1 + y2

)T

Qŷ + 2
(
sin(y)

)T Qŷ

≤ 3
(
yT Qy + yT Qy + ŷT Qŷ

)
, (104)

where we used the fact that | y
1+y2 | ≤ y, | sin(y)| ≤ |y| and the Cauchy–Schwartz inequality.

In addition, according to (24) and by using the fact that | cos(y)| ≤ 1, we have

L1g(t, y, y, ŷ)

=
(

y
1 + y2 + sin(y) + ŷ

)(
1 – y2

(1 + y2)2 + cos(y) + 1
)

≤ 3(y + y + ŷ), (105)

so that

L1gT (t, y, y, ŷ)QL1g(t, y, y, ŷ) ≤ 48
(
yT Qy + yT Qy + ŷT Qŷ

)
. (106)

Also we have

L–1g(t, y, y, ŷ) =
y +

∫
Z hπ (dν)

1 + (y +
∫

Z hπ (dν))2 + sin

(
y +

∫

Z
hπ (dν)

)

+ ŷ +
∫

Z
hπ (dν) –

(
y

1 + y2 + sin(y) + ŷ
)

≤ 1.09y + 1.47y + 1.69ŷ, (107)

L–1gT (t, y, y, ŷ)QL–1g(t, y, y, ŷ) ≤ 4.6325yT Qy + 6.2482yT Qy + 7.1832ŷT Qŷ. (108)

Let Nλ(dt, dν) be a Poisson random measure given by π (dν) dt = λh̃(ν) dν dt, with λ = 2,
and let

h̃(ν) =
1√
2πν

e– (ln ν)2
2 , 0 ≤ ν < ∞, (109)

be the density function of a log-normal random variable. Moreover, by the property of the
log-normal distributed h̃(ν),

∫

Z
h(t, y, y, ŷ,ν)π (dν) =

∫ ∞

0
(0.01νy + 0.3

√
νy – 0.2ŷ)

1√
2πν

e– (ln ν)2
2 dν

= 0.03y + 0.49y – 0.23ŷ (110)
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and

∫

Z
hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)π (dν)

=
∫ ∞

0
(0.01νy + 0.3

√
νy – 0.2ŷ)T Q(0.01νy + 0.3

√
νy – 0.2ŷ)

1√
2πν

e– (lnν)2
2 dν

≤ 0.0614yT Qy + 0.7966yT Qy + 0.3008ŷT Qŷ. (111)

Also based on Eq. (24), we have

L1
(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)
= 0.29

(
y

1 + y2 + sin(y) + ŷ
)

≤ 0.29(y + y + ŷ), (112)

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ 0.87
(
yT Qy + yT Qy + ŷT Qŷ

)
, (113)

L–1
(∫

Z
h(t, y, y, ŷ)π (dν)

)
≤ 0.0097y + 0.151y – 0.0653ŷ, (114)

L–1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ 0.002yT Qy + 0.034yT Qy + 0.0148ŷT Qŷ. (115)

Thus, Assumption 2.2 holds with Q = 1, α1 = 8, α2 = α3 = 1, k = 1, β1 = β2 = β3 = 3,
η1 = η2 = η3 = 48, η̃1 = 4.6325, η̃2 = 6.2482, η̃3 = 7.1832, σ1 = σ2 = σ3 = 0.87, σ̃1 = 0.002,
σ̃2 = 0.034, σ̃3 = 0.0148, L = 80, γ1 = 0.0614, γ2 = 0.7966 and γ3 = 0.3008. Obviously these
parameters satisfy inequality (23):

8 = α1 > α2 + α3kτ +
1
2
(
β1 + β2 + β3k2

τ 2) +
1
2
λ
(
γ1 + γ2 + γ3k2

τ 2) = 7.6588. (116)

Substituting the proposed values in (65) yields

(
160(1 – θ ) + 162.0639

)
�t∗2 +

(
160(1 – θ ) + 162.0639

)
�t∗ – 3.002 = 0. (117)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE
with jump (100) is performed using both θ = 0.1 and θ = 0.8.

Therefore, according to Theorem 5.1, if θ = 0.1, the SSTM scheme is stable for time-
steps �t ≤ 2–7. However, the mean-square stability is lost if �t ≥ 2–6. If θ = 0.8, the SSTM
scheme is stable for time-steps �t ≤ 2–6, but it is not if �t ≥ 2–5.

The results obtained are reported in Fig. 1. As we see in Fig. 2, if θ = 0.1, the split-step
θ -Euler scheme is stable for time-steps �t ≤ 2–9. However, the mean-square stability is
lost if �t ≥ 2–8. If θ = 0.8, the split-step θ -Euler scheme is stable for time-steps �t ≤ 2–8,
but it is not if �t ≥ 2–7.
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Figure 1 Unstable and stable numerical solutions for the SSTM scheme with different values of θ and �t

Figure 2 Unstable and stable numerical solutions for the split-step θ -Euler scheme with different values of θ
and �t

Example 6.2 Let us consider the following two-dimensional SDIDE with jump:

dy(t) = Vy(t) dt + g
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds

)
dW (t)

+
∫

Z
h
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds,ν

)
Nλ(dt, dν), t > 0, (118)

with initial data

ξ (t) =
(
ξ1(t), ξ2(t)

)T = (1, 1)T ∈ C
(
[–1, 0];R2), (119)

where V is the following matrix:

V =

(
–3 1
–1 –2

)
. (120)
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Let y(t) = (y1(t), y2(t))T , y(t) = (y1(t – 1), y2(t – 1))T , ŷ(t) = (ŷ1(t), ŷ2(t))T and

f (t, y, y, ŷ) = Vy(t) =
(
–3y1(t) + y2(t), –y1(t) – 2y2(t)

)T ,

g(t, y, y, ŷ) =
(

1
2

ln
(
1 + y2

1(t)
)

+
∫ t

t–1
sin ŷ1(s) cos ŷ1(s) ds,

1
2

sin2 y2(t) –
∫ t

t–1
sin ŷ1(s) cos ŷ1(s) ds

)T

,

h(t, y, y, ŷ,ν) =
(

0.01νy1(t) – 0.4
∫ t

t–1
sin ŷ1(s) cos ŷ1(s) ds,

0.3
√

νy2(t) + 0.1
∫ t

t–1
sin ŷ1(s) cos ŷ1(s) ds

)T

.

We are going to show that Assumption 2.2 holds if we choose, for example, the following
symmetric positive definite matrix Q:

Q =

(
2 1
1 2

)
. (121)

In fact, for any y, y, ŷ ∈R
2 and t > 0, we can obtain

yT Qf (t, y, 0, 0) =
(

y1 y2

)(
2 1
1 2

)(
–3 1
–1 –2

)(
y1

y2

)

=
(

–7y1 – 5y2 –3y2

)(
y1

y2

)

≤ –
19
2

y2
1 –

11
2

y2
2 ≤ –

11
2

|y|2, (122)

f T (t, y, y, ŷ)Qf (t, y, y, ŷ) =
(

–5y1 – 4y2 –y1 – 6y2

)(
–3y1 + y2

–y1 – 2y2

)

≤ 47
2

y2
1 +

31
2

y2
2 ≤ 47

2
|y|2. (123)

Moreover, similar arguments yield

gT (t, y, y, ŷ)Qg(t, y, y, ŷ)

=
(

1
2 ln(1 + y2

1) + 1
2 ŷ1

1
2 sin2 y2 – 1

2 ŷ2

)(
2 1
1 2

)(
1
2 ln(1 + y2

1) + 1
2 ŷ1

1
2 sin2 y2 – 1

2 ŷ2

)

= ln2(1 + y2
1
)

+ ŷ2
1 +

1
2

sin4(y2) –
1
2

ŷ2
2 ≤ 2|ŷ|2, (124)

where we used the fact that ln2(1 + y2) ≤ |y|2, | sin(y)|4 ≤ |y|2 and the Cauchy–Schwartz
inequality. In addition, according to (24), we have

L1gT (t, y, y, ŷ) =
1
2

(
y1

1+y2
1

ln(1 + y2
1) + 1

2 ŷ1 sin3 y2 cos y2 – 1
2 ŷ2

)

≤ 1
4

(
y1 + ŷ1 2y2 – ŷ2

)
, (125)
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so that

L1gT (t, y, y, ŷ)QL1g(t, y, y, ŷ) ≤ 7
16

|y|2 +
6

16
|ŷ|2. (126)

Also we have

L–1g(t, y, y, ŷ)

=

(
1
2 ln(1 + (y1 +

∫
Zhπ (dν))2) +

∫ t
t–1 sin(ŷ1 +

∫
Z hπ (dν)) cos(ŷ1 +

∫
Z hπ (dν)) ds

1
2 sin2(y2 +

∫
Zhπ (dν)) –

∫ t
t–1 sin(ŷ1 +

∫
Z hπ (dν)) cos(ŷ1 +

∫
Z hπ (dν)) ds

)

–

(
1
2 ln(1 + y2

1) +
∫ t

t–1 sin ŷ1(s) cos ŷ1(s) ds
1
2 sin2 y2 –

∫ t
t–1 sin ŷ1(s) cos ŷ1(s) ds

)

≤
(

0.462y1 + 0.2266ŷ1 – 0.2473y2 – 0.0566ŷ1

)T
, (127)

L–1gT (t, y, y, ŷ)QL–1g(t, y, y, ŷ) ≤ 0.4957|y|2 + 0.0199|y|2 + 0.2385|ŷ|2. (128)

A simple calculation shows that

∫

Z
hT (t, y, y, ŷ,ν)π (dν)

≤
(∫

Z(0.01νy1 – 0.4ŷ1)π (dν)
∫

Z(0.3
√

νy2 + 0.1ŷ2)π (dν)
)

=
(

0.0308y1 – 0.4532ŷ1 0.4946y2 + 0.1133ŷ1

)
(129)

and

hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)

=
(

0.01νy1 – 0.4ŷ1 0.3
√

νy2 + 0.1ŷ2

)(
2 1
1 2

)(
0.01νy1 – 0.4ŷ1

0.3
√

νy2 + 0.1ŷ2

)

= 0.0001ν2|y1|2 + 0.004ν|y1||ŷ1| + 0.04|ŷ1|2 + 0.09ν|y2|2

– 0.03
√

ν|y2||ŷ2| + 0.0025|ŷ2|2, (130)

therefore, by using the property of the log-normal distributed h̃(ν) defined in Eq. (109),
we can obtain

∫

Z
hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)π (dν)

=
∫ ∞

0

(
0.0001ν2|y1|2 + 0.004ν|y1||ŷ1| + 0.04|ŷ1|2 + 0.09ν|y2|2

– 0.03
√

ν|y2||ŷ2| + 0.0025|ŷ2|2
) 1√

2πν
e– (ln ν)2

2 dν

≤ 0.0085|y|2 + 0.3019|y|2 + 0.0515|ŷ|2. (131)
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Also based on Eq. (24), we have

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)

≤
(

0.2112y1 – 0.4224ŷ1 –0.2112y2 + 0.4224ŷ1

)
, (132)

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ 0.223|y|2 + 0.357|ŷ|2, (133)

L–1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)

≤
(

0.0178y1 – 0.2617ŷ1 0.4946y2 + 0.0035y1 – 0.162ŷ1

)

–
(

0.3080y1 – 0.4532ŷ1 0.4946y2 + 0.1133ŷ1

)

=
(

–0.2902y1 + 0.1915ŷ1 0.0035y1 – 0.2753ŷ1

)
, (134)

L–1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL–1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ 0.134|y|2 + 0.087|ŷ|2. (135)

Thus, Assumption 2.2 holds with Q as in (121), λ = 2, α1 = 5.5, α2 = α3 = 0, k = 1,
β1 = β2 = 0, β3 = 2, L = 23.5, η1 = 0, η2 = 0.4375, η3 = 0.375, η̃1 = 0.4957, η̃2 = 0.0199,
η̃3 = 0.2385, σ1 = 0, σ2 = 0.223, σ3 = 0.357, σ̃1 = 0.134, σ̃2 = 0, σ̃3 = 0.087, γ1 = 0.0085, γ2 =
0.3019 and γ3 = 0.0515. Obviously these parameters satisfy inequality (23):

5.5 = α1 > α2 + α3kτ +
1
2
(
β1 + β2 + β3k2

τ 2) +
1
2
λ
(
γ1 + γ2 + γ3k2

τ 2) = 1.3619. (136)

Substituting the proposed values in (65) yields

(
47(1 – θ ) + 1.567

)
�t∗2 +

(
47(1 – θ ) + 1.567

)
�t∗ – 4.9388 = 0. (137)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE
with jump (118) is performed using both θ = 0.1 and θ = 0.8. Therefore, according to The-
orem 5.1, if θ = 0.1, the SSTM scheme is stable for time-steps �t ≤ 2–4. However, the
mean-square stability is lost if �t ≥ 2–3. If θ = 0.8, the SSTM scheme is stable for all time-
steps �t ≤ 2–2. The results obtained are reported in Fig. 3.

As we see in Fig. 4, if θ = 0.1, the split-step θ -Euler scheme is stable for time-steps
�t ≤ 2–5. However, the mean-square stability is lost if �t ≥ 2–4. If θ = 0.8, the split-step
θ -Euler scheme is stable for time-steps �t ≤ 2–3, but it is not if �t ≥ 2–2.

Example 6.3 Let us consider the following three-dimensional SDIDE with jump:

dy(t) = Uy(t) dt + g
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds

)
dW (t)

+
∫

Z
h
(

t, y(t), y(t – τ ),
∫ t

t–τ

K
(
s, y(s)

)
ds,ν

)
Nλ(dt, dν), t > 0, (138)
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Figure 3 Unstable and stable numerical solutions for the SSTM scheme with different values of θ and �t

Figure 4 Unstable and stable numerical solutions for the split-step θ -Euler scheme with different values of θ
and �t

with the initial data

ξ (t) =
(
ξ1(t), ξ2(t), ξ3(t)

)T = (1, 1, 1)T ∈ C
(
[–1, 0];R3), (139)

where U is the following matrix:

U =

⎛
⎜⎝

–7 1 –3
–3 –2 –1
–2 –1 –2

⎞
⎟⎠ . (140)

Let y(t) = (y1(t), y2(t), y3(t))T , y(t) = (y1(t – 1), y2(t – 1), y3(t – 1))T , ŷ(t) = (ŷ1(t), ŷ2(t), ŷ3(t))T

and

f (t, y, y, ŷ) = Uy(t)

=
(
–7y1(t) + y2(t) – 3y3(t), –3y1(t) – 2y2(t) – y3(t), –2y1(t) – y2(t) – 2y3(t)

)T ,

g(t, y, y, ŷ) =
(

1
2

sin2 y1(t) –
1
2

ŷ1(t),
1
2

ln
(
1 + y2

2(t)
)
,
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ln
(
1 + y2

3(t)
)

–
∫ t

t–1
sin3(y3(s)

)
ds

)T

,

h(t, y, y, ŷ,ν) =
(

1√
ν

y1(t) + 0.1
∫ t

t–1

ŷ1(s)
1 + ŷ2

1(s)
ds, 0.01νy2(t) – 0.4

∫ t

t–1

ŷ2(s)
1 + ŷ2

2(s)
ds,

0.2
√

νy3(t) + 0.5
∫ t

t–1

ŷ3(s)
1 + ŷ2

3(s)
ds

)T

.

We are going to show that Assumption 2.2 holds if we choose, for example, the following
symmetric positive definite matrix Q:

Q =

⎛
⎜⎝

2 1 0
1 2 1
0 1 2

⎞
⎟⎠ . (141)

In fact, for any y, y, ŷ ∈R
3 and t > 0, we can obtain

yT Qf (t, y, 0, 0) =
(

y1 y2 y3

)
⎛
⎜⎝

2 1 0
1 2 1
0 1 2

⎞
⎟⎠

⎛
⎜⎝

–7 1 –3
–3 –2 –1
–2 –1 –2

⎞
⎟⎠

⎛
⎜⎝

y1

y2

y3

⎞
⎟⎠

=
(

2y1 + 2y2 y1 + 2y2 + y3 y2 + 2y3

)
⎛
⎜⎝

–7y1 + y2 – 3y3

–3y1 – 2y2 – y3

–2y1 – y2 – 2y3

⎞
⎟⎠

≤ –31y2
1 – 17y2

2 –
35
2

y2
3 ≤ –17|y|2, (142)

f T (t, y, y, ŷ)Qf (t, y, y, ŷ)

=
(

–13y1 – 8y2 – 5y3 –8y1 – 8y2 – 6y3 –5y1 – 4y2 – 5y3

)

×
⎛
⎜⎝

–7y1 + y2 – 3y3

–3y1 – 2y2 – y3

–2y1 – y2 – 2y3

⎞
⎟⎠ ≤ 151

2
y2

1 + 21y2
2 +

79
2

y2
3

≤ 151
2

|y|2. (143)

Moreover, similar arguments yield

gT (t, y, y, ŷ)Qg(t, y, y, ŷ)

=
(

1
2 sin2 y1(t) – 1

2 ŷ1(t) 1
2 ln(1 + y2

2(t)) ln(1 + y2
3(t)) –

∫ t
t–1 sin3(y3(s)) ds

)
(144)

×
⎛
⎜⎝

2 1 0
1 2 1
0 1 2

⎞
⎟⎠

⎛
⎜⎝

1
2 sin2(y1(t)) – 1

2 ŷ1(t)
1
2 ln(1 + y2

2(t))
ln(1 + y2

3(t)) –
∫ t

t–1 sin3(y3(s)) ds

⎞
⎟⎠

=
1
4

sin4(y1) –
3
4

ŷ2
1 +

1
2

ln2(1 + y2
2
)

+
3
2

ln2(1 + y2
3
)

+
1
2

(∫ t

t–1
sin3(y3(s)

)
ds

)2

≤ 1
2
|y|2 –

3
4
|ŷ|2 + 2|y|2, (145)
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where we used the fact that ln2(1 + y2) ≤ |y|2, | sin(y)|4 ≤ |y|2 and the Cauchy–Schwartz
inequality. In addition, according to (24), we have

L1g(t, y, y, ŷ)

=

⎛
⎜⎜⎝

1
2 sin3(y1) cos(y1) – 1

4 sin2(y1) – 1
2 sin(y1) cos(y1)ŷ1 + 1

4 ŷ1
y2

2(1+y2
2) ln(1 + y2

2)
2y3

1+y2
3

ln(1 + y2
3) – ln(1 + y2

3) – 2y3
1+y2

3

∫ t
t–1 sin3(y3(s)) ds +

∫ t
t–1 sin3(y3(s)) ds

⎞
⎟⎟⎠

≤
⎛
⎜⎝

1
4 y1 + 1

4 ŷ1
1
2 y2

–y3

⎞
⎟⎠ , (146)

so that

L1gT (t, y, y, ŷ)QL1g(t, y, y, ŷ) ≤ 3
2
|y|2 –

1
8
|ŷ|2. (147)

Also we have

L–1g(t, y, y, ŷ)

=

⎛
⎜⎝

1
2 sin2(y1 +

∫
Zhπ (dν)) – 1

2 (ŷ1 +
∫

Z hπ (dν))
1
2 ln(1 + (y2 +

∫
Zhπ (dν))2)

ln(1 + (y3 +
∫

Zhπ (dν))2) –
∫ t

t–1 sin3(y3(s) +
∫

Zhπ (dν)) ds

⎞
⎟⎠

–

⎛
⎜⎝

1
2 sin2(y1) – 1

2 ŷ1
1
2 ln(1 + y2

2)
ln(1 + y2

3) –
∫ t

t–1 sin3(y3(s)) ds

⎞
⎟⎠

≤
⎛
⎜⎝

–0.0003ŷ1

0.0154y2 – 0.2266ŷ2

0

⎞
⎟⎠ , (148)

L–1gT (t, y, y, ŷ)QL–1g(t, y, y, ŷ) ≤ 0.0065|y|2 + 0.0957|ŷ|2. (149)

A simple calculation shows that

∫

Z
hT (t, y, y, ŷ,ν)π (dν)

≤
(∫

Z( 1√
ν

y1 + 0.1ŷ1)π (dν)
∫

Z(0.01νy2 – 0.4ŷ2)π (dν)
∫

Z(0.2
√

νy3 + 0.5ŷ3)π (dν)
)

=
(

y1 + 0.1133ŷ1 0.0308y2 – 0.4532ŷ2 0.3298y3 + 0.5665ŷ3

)
(150)

and

hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)

=
(

1√
ν

y1 + 0.1ŷ1 0.01νy2 – 0.4ŷ2 0.2
√

νy3 + 0.5ŷ3

)
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×
⎛
⎜⎝

2 1 0
1 2 1
0 1 2

⎞
⎟⎠

⎛
⎜⎝

1√
ν

y1 + 0.1ŷ1

0.01νy2 – 0.4ŷ2

0.2
√

νy3 + 0.5ŷ3

⎞
⎟⎠

=
(
0.01

√
ν – 0.0025ν + 0.002ν

√
ν + 0.0002ν2 + 0.0005

)|y2|2

+
(

–
0.2√

ν
+ 0.01

√
ν +

2
ν

)
|y1|2 + (–0.04

√
ν + 0.04ν)|y2|2

+ (0.261
√

ν + 0.001ν
√

ν + 0.04ν + 0.25)|y3|2

+
(

0.2√
ν

+ 0.0005ν – 0.0195
)

|ŷ1|2 +
(

–
0.4√

ν
– 0.008ν – 0.08

√
ν + 0.08

)
|ŷ2|2

+ (0.005ν + 0.1
√

ν + 0.05)|ŷ3|2, (151)

therefore, by using the property of the log-normal distributed* h̃(ν) defined in Eq. (109),
we can obtain

∫

Z
hT (t, y, y, ŷ,ν)Qh(t, y, y, ŷ,ν)π (dν)

=
∫ ∞

0

(
0.01

√
ν – 0.0025ν + 0.002ν

√
ν + 0.0002ν2 + 0.0005

)|y2|2

× 1√
2πν

e– (lnν)2
2 dν

+
∫ ∞

0

(
–

0.2√
ν

+ 0.01
√

ν +
2
ν

)
|y1|2 × 1√

2πν
e– (lnν)2

2 dν

+
∫ ∞

0
(–0.04

√
ν + 0.04ν)|y2|2 × 1√

2πν
e– (lnν)2

2 dν

+
∫ ∞

0
(0.261

√
ν + 0.001ν

√
ν + 0.04ν + 0.25)|y3|2 × 1√

2πν
e– (ln ν)2

2 dν

+
∫ ∞

0

(
0.2√

ν
+ 0.0005ν – 0.0195

)
|ŷ1|2 × 1√

2πν
e– (ln ν)2

2 dν

+
∫ ∞

0

(
–

0.4√
ν

– 0.008ν – 0.08
√

ν + 0.08
)

|ŷ2|2 × 1√
2πν

e– (lnν)2
2 dν

+
∫ ∞

0
(0.005ν + 0.1

√
ν + 0.05)|ŷ3|2 × 1√

2πν
e– (ln ν)2

2 dν

≤ 0.0286|y|2 + 3.3246|y|2 – 0.0642|ŷ|2. (152)

Also based on Eq. (24), we have

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
≤

(
0.5566y1 – 0.5566ŷ1 –0.2112y2 0

)
, (153)

L1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ 0.0892|y|2 – 0.1175|y|2 + 0.1175|ŷ|2, (154)
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L–1
(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤
⎛
⎜⎝

2.1133y1 + 0.2416ŷ1

0.0178y2 + 0.0035y1 – 0.2617ŷ2

0.6252y3 + 1.0743ŷ3

⎞
⎟⎠ –

⎛
⎜⎝

y1 + 0.1133ŷ1

0.0308y2 – 0.4532ŷ2

0.3298y3 + 0.5665ŷ3

⎞
⎟⎠

=

⎛
⎜⎝

1.1133y1 + 0.1283ŷ1

–0.013y2 + 0.1915ŷ2

0.2954y3 + 0.5078ŷ3

⎞
⎟⎠ , (155)

L–1
(∫

Z
hT (t, y, y, ŷ,ν)π (dν)

)
QL–1

(∫

Z
h(t, y, y, ŷ,ν)π (dν)

)

≤ –0.031|y|2 + 2.9753|y|2 + 0.8577|ŷ|2. (156)

Thus, Assumption 2.2 holds with Q as in (141), λ = 3, α1 = 17, α2 = α3 = 0, k = 1, β1 = 0.5,
β2 = 2, β3 = –0.75, L = 75.5, η1 = 0, η2 = 1.5, η3 = –0.125, η̃1 = –0.0065, η̃2 = 0, η̃3 = 0.0957,
σ1 = 0.0892, σ2 = –0.1175, σ3 = 0.1175, σ̃1 = –0.031, σ̃2 = 2.9753, σ̃3 = 0.8577, γ1 = 0.0286,
γ2 = 3.3246 and γ3 = –0.0642. Obviously these parameters satisfy inequality (23):

17 = α1 > α2 + α3kτ +
1
2
(
β1 + β2 + β3k2

τ 2) +
1
2
λ
(
γ1 + γ2 + γ3k2

τ 2) = 5.3085. (157)

Substituting the proposed values in (65) yields

(
75.5(1 – θ ) + 1.4642

)
�t∗2 +

(
75.5(1 – θ ) + 1.4642

)
�t∗ – 17.5283 = 0. (158)

To empirically check these theoretical findings, the SSTM approximation of the SDIDE
with jump (118) is performed using both θ = 0.1 and θ = 0.8. Therefore, according to The-
orem 5.1, if θ = 0.1, the SSTM scheme is stable for time-steps �t ≤ 2–3. However, the
mean-square stability is lost if �t ≥ 2–2. If θ = 0.8, the SSTM scheme is stable for time-
steps �t ≤ 2–1, but it is not if �t ≥ 1. The results obtained are reported in Fig. 5.

Figure 5 Unstable and stable numerical solutions for the SSTM scheme with different values of θ and �t
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7 Conclusion
In this paper, we considered the general case of n-dimensional SDIDEs with Poisson jump.
We succeeded to define Lyapunov differential operators and obtained the exponential
mean-square stability of the proposed model solution. Also, by introducing the SSTM
scheme and by using the delayed difference inequality as well approximating the integro
part of the model by the simple trapezoidal rule, we obtain the same exponential mean-
square stability property for some restrictive stepsize �t. Finally, in Figs. 1, 3 and 5, the
behavior of the exponential mean-square stability solution is consistent with the �t values
for both different values of θ .
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