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1 Introduction
In this paper, we are interested in the existence of nontrivial solutions for the following
equation:

{
(–�)s

pu + (–�)s
qu = λ|u|r–2u + |u|p∗

s –2u, x ∈ Ω ,
u = 0, x ∈ RN \ Ω ,

(1.1)

where Ω is a bounded domain in RN , 0 < s < 1, 1 < q < p < r < p∗
s , λ is a positive constant,

p∗
s = pN/(N – sp) is the fractional critical exponent, and (–�)s

p is the fractional p-Laplacian
operator defined on smooth functions as

(–�)s
pu(x) = P.V .

∫
RN

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+sp dy.

The definition is consistent, up to a normalization constant depending on N and s, with
the usual definition of the linear fractional Laplacian operator (–�)s when p = 2. When
s = 1, Eq. (1.1) becomes a local problem of the form

–�pu – �qu = λ|u|r–2u + |u|p∗–2u, (1.2)

which has been studied before, and some existence results have been proven under differ-
ent conditions. For 1 < q < p < r < p∗, there exists λ∗ > 0 such that for any λ > λ∗, problem
(1.2) has a nontrivial solution in W 1,p

0 (Ω) (see Yin and Yang [1]), whereas for 1 < r < q < p,
there exits λ0 such that problem (1.2) has infinitely many solutions in W 1,p

0 (Ω) for any
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λ ∈ (0,λ0) (see Li and Zhang [2]). Our result can be viewed as extension on [1] for frac-
tional setting.

As explained in [1], the study of Eq. (1.2) comes from a general reaction–diffusion system

ut = div
[
H(u)∇u

]
+ c(x, u),

where H(u) = |∇u|p–2 + |∇u|q–2. This system has a wide range of applications in physics
and related sciences such as biophysics, plasma physics, and chemical reaction design.
In applications the function u represents a concentration, div[H(u)∇u] corresponds to
the diffusion with diffusion coefficient H(u), whereas c(x, u) is related to source and loss
processes. Typically, in chemical and biological applications the reaction term c(x, u) has
a polynomial form with respect to the concentration u.

When p = q = r, problem (1.1) reduces to the fractional p-Laplacian problem

(–�)s
pu = λ|u|p–2u + |u|p∗

s –2u, (1.3)

which has been studied by Mosconi et al. [3], who obtained nontrivial solutions to this
Brezis–Nirenberg problem for fractional p-Laplacian operator and extended some well-
known results of critical p-Laplacian problems to the fractional setting; see, for example,
Azorero and Alonso [4] and Egnell [5]. In fact, there is a rapidly growing literature on prob-
lems involving these nonocal operators. For example, the fractional p-eigenvalue problem
has been studied by Franzina and Palatucci [6] and Lindgren and Lindqvist [7]. Concern-
ing the existence results for this kind of equations, some well-known existence results for
classical Laplace operators have also been extended to the nonlocal fractional setting; see
[8–12].

When p = q, there also are some recent results on the fractional p-Laplacian operator.
In 2017, Mahwin and Bisci [13] proved a Brezis–Nirenberg-type result for the fractional
p-Laplacian equation

(–�)s
pu = λg(x, u) + |u|p∗

s –2u (1.4)

in a bounded domain with p ≥ 2, where g is a subcritical nonlinearity. By variational meth-
ods they prove the existence of a local minimizer of the associated functional to (1.4),
which turns to be a weak solution of problem (1.4), provided that the constant λ is suffi-
ciently small.

It is worth mentioning that there is also some literature concerning the fractional Lapla-
cian equation with constant γ attached to the critical term,

(–�)su = γ |u|2∗
s –2u + f (x, u), (1.5)

where f satisfies some subcritical conditions; see Fiscella et al. [14]. By variational methods
they obtain multiplicity and bifurcation results for (1.5), which generalized those given
in [15] to the nonlocal framework of the fractional Laplacian. It is easy to see that the
critical term and the subcritical term have different influences on the functional struc-
ture.
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Motivated by the papers mentioned, we tend to investigate the existence of a nontrivial
solution for problem (1.1). To our knowledge, not many critical results for fractional p-q
Laplacian are present. We denote by X the fractional space W s,p

0 (Ω) = {u ∈ W s,p(Ω)|u = 0,
x ∈ RN \ Ω} equipped with the norm

‖u‖p
p := [u]p

s,p =
∫ ∫

Q

|u(x) – u(y)|p
|x – y|N+sp dx dy, (1.6)

where Q = R2N \ (CΩ ×CΩ) with CΩ = RN \Ω . By the results of [16] there is a continuous
embedding W s,p

0 (Ω) ↪→ Ls(Ω) for s ∈ [1, p∗
s ] and compact for s ∈ [1, p∗

s ). For more details
on fractional Sobolev spaces, we refer to Palatucci et al. [16] and references therein.

Our approach to studying problem (1.1) is variational and uses critical point theorems.
The main difficulty in dealing with this problem is the fact that in general the associated
energy functional does not satisfy the Palais–Smale condition. Hence we cannot directly
use the standard variational methods. To overcome this, we prove that the corresponding
functional satisfies the Palais–Smale condition on a certain range. We also mention that
there is a local weak lower semicontinuity result for the corresponding energy functional
of problem (1.1), which leads to the existence of a critical point under certain conditions.
At last, when p = 2, the spectrum result of the fractional operator ensures a suitable de-
composition of the functional space, which leads to a multiplicity result. It is worth noting
that our results can also be generalized by the abstract result proposed by Devillanova and
Solimini [17, 18]. Our main results read as follows.

Theorem 1.1 If 1 ≤ q < p < r < p∗
s , then there exists λ∗ > 0 such that for any λ > λ∗, problem

(1.1) has a nontrivial solution in W s,p
0 (Ω).

Theorem 1.2 If 2 ≤ q < p and 1 < r < p∗
s , then there exists an open interval Λ such that,

for every λ ∈ Λ, problem (1.1) admits a weak solution in W s,p
0 (Ω).

Theorem 1.3 If 1 ≤ q < p = 2 and r ∈ (2, 2∗
s ), then for any k ∈ N , there exists λk ∈ (0, +∞]

such that problem (1.1) admits at least k pairs of nontrivial solutions for any λ > λk .

The present paper is organized as follows. Section 2 is devoted to the functional struc-
ture and Palais–Smale condition of problem (1.1). In Sect. 3, we prove our results.

2 Preliminaries
In this section, we give some preliminary results about the functional structure of problem
(1.1). The fact that u is a weak solution of the problem (1.1) is equivalent to being a critical
point of the functional

Iλ(u) :=
1
p
‖u‖p

p +
1
q
‖u‖q

q –
λ

r

∫
Ω

|u|r dx –
1
p∗

s

∫
Ω

|u|p∗
s dx. (2.1)
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It is trivial that Iλ(u) ∈ C1(X, R) and for any v ∈ X, the weak solution satisfies 〈I ′
λ(u), v〉 = 0,

that is,

∫
Q

|u(x) – u(y)|p–2(u(x) – u(y))
|x – y|N+sp

(
v(x) – v(y)

)
dx dy

+
∫

Q

|u(x) – u(y)|q–2(u(x) – u(y))
|x – y|N+sq

(
v(x) – v(y)

)
dx dy

= λ

∫
Ω

|u|p–2uv dx +
∫

Ω

|u|p∗
s uv dx. (2.2)

We denote by S the best fractional Sobolev constant:

S = inf
u∈W s,p

0 (Ω)\0

‖u‖p
p

|u|pp∗
. (2.3)

Now we define the PS sequence and condition in W s,p
0 (Ω).

Definition 2.1 Let c ∈ R, let X be a Banach space, and let Iλ ∈ C1(X, R). Then {uk} is called
a (PS)c sequence in X if I(uk) = c + o(1) and I ′

λ(uk) = o(1) in X ′ as k → ∞, where X ′ is the
dual of X. The functional Iλ satisfies (PS)c condition in X if every (PS)c sequence in X for
Iλ contains a convergent subsequence.

We first show that Iλ possesses the mountain pass geometry.

Lemma 2.2 Let 1 < q < p < r < p∗. Then for any λ > 0, we have:
(i) there exist constants ρ,β > 0 such that Iλ(u) > β for u ∈ X with ‖u‖p = ρ ;

(ii) there exists u0 ∈ X such that Iλ(u0) < β and ‖u0‖p > ρ .

Proof (i) By the Hölder inequality and fractional Sobolev inequality we have

Iλ(u) =
1
p
‖u‖p

p +
1
q
‖u‖q

q –
λ

r

∫
Ω

|u|r dx –
1
p∗

s

∫
Ω

|u|p∗
s dx

≥ 1
p
‖u‖p

p +
1
q
‖u‖q

q –
λ

r
|Ω|

p∗–r
p∗ |u|rp∗ –

1
p∗ |u|p∗

p∗

≥ 1
p
‖u‖p

p +
1
q
‖u‖q

q –
λ

r
|Ω|

p∗–r
p∗ S– r

p ‖u‖r
p –

1
p∗ S– p∗

p ‖u‖p∗
p .

Since 1 < q < p < r < p∗, there exits two constants ρ,β > 0 such that Iλ(u) > β for all u ∈ X
with ‖u‖p = ρ .

(ii) Fixing any u ∈ X, we deduce that

Iλ(tu) =
tp

p
‖u‖p

p +
tq

q
‖u‖q

q –
λtr

r

∫
Ω

|u|r dx –
tp∗

p∗

∫
Ω

|u|p∗
dx. (2.4)

Since Iλ(tu) → –∞ as t → +∞, we can choose t0 > 0 such that ‖t0u‖p > ρ and Iλ(t0u) < 0.
Let u0 = t0u. Then (ii) holds. �
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We denote by cλ the mountain pass level:

cλ := inf
{

sup
t≥0

Iλ(tu), u ∈ X
}

.

Then we have the following result.

Lemma 2.3 Let 1 ≤ q < p < r < p∗. Then for any λ > 0, Iλ satisfies the (PS)c conditions for
all c ∈ (0, 1

N S
N
p ). Moreover, we have cλ ∈ (0, 1

N S
N
p ) when λ > λ∗ for some positive constant

λ∗ if 1 ≤ q < p < r < p∗.

Proof Let {uk} be a (PS)c sequence of I at the level c, that is,

I(uk) = c + o(1);
〈
I ′(uk), uk

〉
= o(1)‖uk‖. (2.5)

We first check that {uk} is bounded in X. First, from (2.5) we have

c + o(1)‖u‖p
p = I(uk) –

1
p
〈
I ′(uk), uk

〉

=
(

1
q

–
1
p

)
‖u‖q

q +
(

1
p

–
1
r

)
θ

∫
Ω

|u|r dx +
(

1
p

–
1
p∗

)∫
Ω

|u|p∗
dx

≥
(

1
p

–
1
r

)
θ

∫
Ω

|u|r dx +
(

1
p

–
1
p∗

)∫
Ω

|u|p∗
dx

and

c + o(1) = I(uk)

=
1
p
‖u‖p

p +
1
q
‖u‖q

q –
1
p∗

∫
Ω

|u|p∗
dx –

θ

r

∫
Ω

|u|r dx

≥ 1
p
‖u‖p

p –
1
p∗

∫
Ω

|u|p∗
dx –

θ

r

∫
Ω

|u|r dx

≥ 1
p
‖u‖p

p – C′ + o(1)‖u‖p
p.

Thus {uk} is bounded in W s,p
0 (Ω). Taking if necessary a subsequence, we can assume that

there exists u ∈ W s,p
0 (Ω) such that

uk ⇀ u in W s,p
0 (Ω),

uk → u in Ls(Ω), 1 ≤ s < p∗,

uk → u a.e. in Ω .

(2.6)

Noting that the sequences

{ |uk(x) – uk(y)|p–2(uk(x) – uk(y))

|x – y| N+ps
p

}
k∈N

and
{ |uk(x) – uk(y)|q–2(uk(x) – uk(y))

|x – y| N+qs
q

}
k∈N
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are bounded in Lp′ (Ω) and Lq′ (Ω), by the pointwise convergence uk → u we have

|uk(x) – uk(y)|p–2(uk(x) – uk(y))

|x – y| N+ps
p

⇀Lp′
(Ω) |u(x) – u(y)|p–2(u(x) – u(y))

|x – y| N+ps
p

,

|uk(x) – uk(y)|q–2(uk(x) – uk(y))

|x – y| N+qs
q

⇀Lq′
(Ω) |u(x) – u(y)|q–2(u(x) – u(y))

|x – y| N+qs
q

.

Thus for any v ∈ W s,p
0 (Ω), we have

lim
n→∞

〈
I ′
λ(un), v

〉
=

〈
I ′
λ(u), v

〉
= 0, (2.7)

that is, u is a critical point of Iλ. Then we get

Iλ(u) =
(

1
q

–
1
p

)
‖u‖q

q +
(

1
p

–
1
r

)
λ

∫
Ω

|u|r dx +
1
N

∫
Ω

|u|p∗
dx ≥ 0. (2.8)

It now suffices to show that uk → u in W s,p
0 (Ω). Let vk = uk – u. The fractional form of the

Brezis–Lieb lemma leads to

Iλ(uk) =
1
p
‖u‖p

p +
1
p
‖vk‖p

p +
1
q
‖vk‖q

q +
1
q
‖u‖q

q

–
λ

r

∫
Ω

|u|r –
1
p∗

∫
Ω

|vk|p∗
–

1
p∗

∫
Ω

|u|p∗
+ o(1)

= c + o(1)

and

〈
I ′(uk), uk

〉
= ‖vk‖p

p +‖u‖p
p +‖vk‖q

q +‖u–‖q
q –λ

∫
Ω

|u|r –
∫

Ω

|vn|p∗ –
∫

Ω

|u|p∗ +o(1) = o(1),

where o(1) → 0 as k → ∞. From this and from (2.7) we have

‖vk‖p
p + ‖vk‖q

q =
∫

Ω

|vk|p∗
dx + o(1). (2.9)

Without loss of generality, we assume that

‖vk‖p
p = a + o(1), ‖vk‖q

q = b + o(1),

and thus (2.9) implies

|vk|p∗
p∗ = a + b + o(1).

By the fractional Sobolev inequality we have

a ≥ S(a + b)
p

p∗ ≥ Sa
p

p∗ . (2.10)
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If a = 0, then we complete the proof. Otherwise, a ≥ SN/p. Combining this with (2.1) and
1 ≤ q < p < r < p∗, as n → ∞, we have

c =
a
p

+
b
q

–
a + b

p∗ +
1
p
‖u‖p

p +
1
q
‖u‖q

q –
λ

r

∫
Ω

|u|r dx –
1
p∗

s

∫
Ω

|u|p∗
s dx

=
(

1
p

–
1
p∗

)
a +

(
1
q

–
1
p∗

)
b +

(
1
q

–
1
p

)
‖u‖q

q

+
(

1
p

–
1
r

)
λ

∫
Ω

|u|r dx +
(

1
p

–
1
p∗

)∫
Ω

|u|p∗
dx + o(1)

≥ 1
N

a

≥ 1
N

SN/p,

which contradicts the assumption on c. Thus we have a = 0, and Iλ satisfies the (PS)c con-
ditions when c ∈ (0, 1

N SN/p). So we try to show that cλ ∈ (0, 1
N S

N
p ).

We now choose a nonnegative u0 ∈ W s,p
0 (Ω) with |u0|p∗ = 1. Since limt→∞ Iλ(tu0) = –∞

and limt→0 Iλ(tu0) = 0, there exists a tλ > 0 such that supt≥0 Iλ(tu0) = Iλ(tλu0), and thus tλ
satisfies

0 = tp–1
λ ‖u0‖p

p + tλ‖u0‖q
q – λtr–1

λ |u0|rr – tp∗–1
λ .

Then we get

tp–r
λ ‖u0‖p

p + tq–r
λ ‖u0‖q

q – tp∗–r
λ = λ|u0|rr .

Since 1 ≤ q < p < r < p∗, we get tλ → 0 as λ → ∞. Then there exists λ∗ > 0 such that for
any λ > λ∗ > 0, we have

sup
t≥0

Iλ(tu0) <
1
N

S
N
p ,

that is,

cλ ∈
(

0,
1
N

S
N
p

)
for λ > λ∗. (2.11)

This completes the proof. �

Next, we prove the local weak lower semicontinuity of Iλ. From now on we denote the
best constant of the continuous Sobolev embedding W s,p

0 (Ω) ↪→ Lp∗
s (Ω) as

S′ = sup
u∈W s,p

0 (Ω)\0

|u|p∗

‖u‖p
. (2.12)

Lemma 2.4 Let t > 1. Denote by B(0,ρ) the closed ball centered at 0 and with radius ρ > 0
in the fractional Sobolev space W s,t

0 (Ω). Then there exists a positive constant ρ such that
the functional Iλ is weakly lower semicontinuous on B(0,ρ).



Zhi and Yang Journal of Inequalities and Applications        (2020) 2020:183 Page 8 of 13

Proof It suffices to prove that I0 is weakly lower semicontinuous. Let {uj} be a weakly
convergent sequence in ⊂ B(0,ρ), that is, there exists u′ ∈ B(0,ρ) satisfying

uj ⇀ u′ in W s,t
0 (Ω),

uj → u′ in Ls(Ω), 1 ≤ s < t∗,

uj → u′ a.e. in Ω .

(2.13)

We try to check that

I := lim inf
j→+∞

(
I0(uj) – I0

(
u′)) ≥ 0,

that is,

lim inf
j→+∞

{
1
p
(‖uj‖p

p –
∥∥u′∥∥p

p

)
+

1
q
(‖uj‖q

q –
∥∥u′∥∥q

q

)
–

1
p∗

s

(|uj|p
∗
s

p∗
s

–
∣∣u′∣∣p∗

s
p∗

s

)} ≥ 0. (2.14)

Since 2 ≤ q < p, by the elementary inequality

|b|p – |a|p ≥ p|a|p–2a(b – a) + 21–p|a – b|p, a, b ∈ R,

from (2.13) we derive that

1
p
(‖uj‖p

p –
∥∥u′∥∥p

p

)
+

1
q
(‖uj‖q

q –
∥∥u′∥∥q

q

) ≥ C
∥∥uj – u′∥∥p

p. (2.15)

On the other hand, the Brezis–Lieb lemma leads to

lim inf
j→+∞

(|uj|p
∗
s

p∗
s

–
∣∣u′∣∣p∗

s
p∗

s

)
= lim inf

j→+∞
∣∣uj – u′∣∣p∗

s
p∗

s
. (2.16)

Hence we have

lim inf
j→+∞

(
I0(uj) – I0

(
u′)) ≥ lim inf

j→+∞

{
C

∥∥uj – u′∥∥p
p –

1
p∗

s

∣∣uj – u′∣∣p∗
s

p∗
s

}
. (2.17)

Finally, by continuous embedding and owing to {uj – u′} ⊂ B(0, 2ρ), we obtain

I ≥ lim inf
j→+∞

(
C –

S′p∗
s ‖uj – u′‖p∗–p

p

p∗
s

)∥∥uj – u′∥∥p
p.

Thus for ρ sufficiently small such that

0 < ρ ≤ 1
2

(
Cp∗

s

S′p∗
s

)1/(p∗
s –p)

,

the functional Iλ is weakly semicontinuous on Bρ , provided that

ρ ∈
(

0,
1
2

(
Cp∗

s

S′p∗
s

)1/(p∗
s –p)]

. (2.18)

The proof is now complete. �
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3 Main theorems
To prove the first existence result, we need the following general version of the mountain
pass lemma.

Lemma 3.1 Let I ∈ C1(X, R) be a functional on Banach space X. Assume that there exist
β ,ρ > 0 such that

(i) I(u) > β for all u ∈ X with ‖u‖p = ρ .
(ii) I(0) = 0, and I(v0) < β for some v0 ∈ X with ‖v0‖p > ρ .

Set α := inf{maxt≥0 I(tu), u ∈ X \ 0}.Tthen there exists a sequence {un} ⊂ X such that
I(un) → α and I ′(un) → 0 in X∗ as n → ∞.

Proof of Theorem 1.1 From Lemmas 2.2, 2.3, and 3.1 we obtain the existence of a critical
point of Iλ in W s,p

0 (Ω) when λ > λ∗. �

Next, we define the auxiliary function

h(ρ) :=
ρ – S′p∗

s ρp∗
s –1 – C′ρq–1

S′r|Ω|(p∗
s –r)/p∗

s ρr–1 , ρ ≥ 0, (3.1)

where |Ω| denotes the Lebesgue measure of the domain Ω , S′ is the critical Sobolev con-
stant given in (2.8), and C′ is the embedding constant satisfying ‖u‖q

q ≤ C′‖u‖q
p. By the

weak lower semicontinuity result in Lemma 2.4 we can prove the existence of a critical
point of the energy functional by a direct minimization approach.

Proof of Theorem 1.2 Let ρmax be the global maximum point of the rational function de-
fined in (3.1), set ρ0 := min{ρmax,ρ}, where ρ is defined in Lemma 2.4, and take

λ ∈ Λ :=
(
0, h(ρ0)

)
.

Hence there exists ρ0,λ ∈ (0,ρ0) such that

λ <
ρ0,λ – S′p∗

s ρ
p∗

s –1
0,λ – C′ρq–1

0,λ

S′r|Ω|(p∗
s –r)/p∗

s ρr–1
0,λ

. (3.2)

Then let 0 < ε < ρ0,λ and for 0 < ζ < η, set

Θλ(u) := –
1
q

∫
Ω

|u(x) – u(y)|q
|x – y|n+qs dx +

1
p∗

s

∫
Ω

|u|p∗
s dx +

λ

r

∫
Ω

|u|r dx

and

Φλ(η, ζ ) := sup
B(0,η)

Θλ(u) – sup
B(0,η–ζ )

Θλ(u). (3.3)

From Remark 3 in [13] we know that if

lim sup
ε→0+

Φλ(�, ε)
ε

< � (3.4)



Zhi and Yang Journal of Inequalities and Applications        (2020) 2020:183 Page 10 of 13

for some � > 0, then there exists w ∈ B(0,�) such that

Iλ(w) <
�p

p
– Φλ(u) (3.5)

for every u ∈ B(0,�). Next, we denote

Ψλ(ε,ρ0,λ) :=
Φλ(ρ0,λ, ε)

ε
. (3.6)

By continuous embedding and rescaling u it is easy to prove that

lim sup
ε→0+

Ψλ(ε,ρ0,λ) < ρ0,λ. (3.7)

Thus by (3.5) there exists wλ ∈ W s,p
0 (Ω) such that

Iλ(wλ) <
ρ

p
0,λ

p
– Φλ, ∀u ∈ B(0,ρ0,λ). (3.8)

Since ρ0,λ < ρ , by Lemma 2.4 the energy functional Iλ is weakly lower semicontinuous on
B(0,ρ0,λ), and the restriction Iλ|B(0,ρ0,λ) has a global minimum u0,λ ∈ B(0,ρ0,λ). On the other
hand, if ‖u0,λ‖ = ρ0,λ, then by (3.7) we have

Iλ(u0,λ) > Iλ(wλ),

which is a contradiction. Thus u0,λ is a local minimum for the energy functional, which is
a weak solution of problem (1.1). Thus completes the proof. �

At last, we give a multiplicity result for problem (1.1) when 1 ≤ q < p = 2, based on
a suitable decomposition of the functional space Hs

0. We first recall that Hs
0 is a Hilbert

space with the inner product

〈u, v〉 =
∫

Q

(u(x) – u(y))(v(x) – v(y))
|x – y|n+2s dx dy (3.9)

and the norm ‖u‖ = 〈u, u〉. Denote by {λj}j∈N the sequence of the eigenvalues of the eigen-
value problem

{
(–�)su = λu, x ∈ Ω ,
u = 0, x ∈ Rn \ Ω ,

(3.10)

with

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ λj+1 ≤ · · · (3.11)

and eigenfunctions ej corresponding to λj. Also, we can normalize {ej}j∈N to construct an
orthonormal basis of L2(Ω) and an orthogonal basis of Hs

0(Ω). For details on the spectrum
theory of the fractional Laplacian, we refer to [6] and [7]. Then we set, for any j ∈ N ,

Pj+1 =
{

u ∈ Hs
0(Ω) : 〈u, ei〉 = 0 for i = 1, . . . , j

}
,
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where P1 = Hs
0(Ω) as defined in Servadei and Valdinoci [19]. We also denote by

Hj = span{e1, . . . , ej}

the linear subspace generated by the first j eigenfunctions of (–�)s. It is trivial that Hs
0(Ω)

is the direct sum of the above two subspaces, that is,

Hs
0(Ω) = Pj+1 ⊕Hj (3.12)

for j ∈ N . We need the following version of the symmetric mountain pass theorem for
multiplicity result (see Rabinowitz and Ambrosetti [20]).

Lemma 3.2 Let E = V ⊕ X, where E is a real Banach space, and V is a finite-dimensional
space. Suppose that I ∈ C1(E, R) is a functional satisfying the following conditions:

(I1) I(u) = I(–u) and I(0) = 0;
(I2) there exists a constant ρ > 0 such that I|∂Bρ ∩ X ≥ 0;
(I3) there exist a subspace W ⊂ E with dim V < dim W < +∞ and M > 0 such that

maxu∈W I(u) < M;
(I4) for M > 0 from (I3), I(u) satisfies the (PS)c condition for 0 ≤ c ≤ M.
Then there exist at least dim W – dim V pairs of nontrivial critical points of I .

Since Iλ is even and Iλ(0) = 0, condition (I1) is always satisfied. We try to check (I2) and
(I3). We first consider V = Hj and X = Pj+1 with j ∈ N chosen as follows.

Lemma 3.3 There exist j ∈ N and ρ,α > 0 such that Iλ ≥ α for any u ∈ Pj+1 with ‖u‖ = ρ .

Proof Since r ∈ (2, 2∗), by Lemma 4.1 of Fiscella et al. [14], for any δ > 0, there exists j ∈ N
such that |u|rr ≤ δ‖u‖r for u ∈ Pj+1. Thus for constant c > 0, we have

Iλ(u) ≥ 1
2
‖u‖2 +

1
q
‖u‖q

q –
λ

r
δ‖u‖r –

c
p∗ ‖u‖2∗ .

For 1 ≤ q < p < r < p∗, it is clear that there exist α,ρ > 0 such that Iλ ≥ α for all u ∈ Pj+1

with ‖u‖ = ρ . �

Lemma 3.4 Let l ∈ N . Then there exist a subspace W of Hs
0(Ω) and a constant M > 0 such

that dim W = l and maxu∈W I(u) < M.

Proof By decomposition argument as before, we can take W = span{e1, e2, . . . , el} and
dim W = l. Let us choose a nonnegative u0 ∈ W with |u0|p∗ = 1. Since limt→∞ Iλ(tu0) = –∞
and limt→0 Iλ(tu0) = 0, there exists tλ > 0 such that supt≥0 Iλ(tu0) = Iλ(tλu0), and then tλ sat-
isfies

0 = tp–1
λ ‖u0‖p

p + tλ‖u0‖q
q – λtr–1

λ |u0|rr – tp∗–1
λ . (3.13)

Then we get

tp–r
λ ‖u0‖p

p + tq–r
λ ‖u0‖q

q – tp∗–r
λ = λ|u0|rr . (3.14)
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Since 1 ≤ q < p < r < p∗, we get tλ → 0 as λ → ∞. Thus for any constant M > 0, there exists
λ∗ > 0 such that for any λ > λ(M) > 0, we have

sup
t≥0

Iλ(tu0) < M, (3.15)

that is, maxu∈W I(u) < M, concluding the proof. �

Proof of Theorem 1.2 By Lemmas 3.2 and 3.3 we have that Iλ satisfies (I2) in X = Pj+1 and
for any l ∈ N , there is a subspace W ⊂ Hs

0(Ω) with dim W = l + j, and Iλ satisfies (I3) with
M > 0 for λ > λ(M) > 0. By Lemma 2.3 we can take λ∗ sufficiently large to ensure that Iλ
satisfies (I4) for any λ > λ∗. Thus we can apply Lemma 3.2 to conclude that Iλ admits k
pairs of nontrivial critical points for λ > 0 sufficiently large. This completes the proof. �
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