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1 Introduction
Let T be a multilinear operator defined on the m-fold product of Schwarz spaces and
taking values in the space of tempered distributions,

T:SR") x -+ x S(R") - S'(R").

In [1] the multilinear operator T satisfying the following conditions was studied:

(1) There exists a function K defined off the diagonal x = y; = - - - = y,, in (R")"”*! such
that
T 9= [ Kooy SoOm -y (11)
RYI m

forall x ¢ (), suppJ;.
(2) There exists C > 0 such that

C
I<(y0!y1:~")ym) < 77 . (12)
| | (O %s=0 |y = yul)™
(3) For some € > 0, there exists C > 0 such that
Cly; -yl
y] y] (1'3)

I( yV1see s Viseo s VYm _I( I AP REES] ,')H'r 5 m 4
| ()’0 N Yj y) (yO N Vi ym)| (Zk,l:0|yk_yl|)mn+€

provided that 0 <j < m and |y; —y;| < %maxoiksmb/j = Ykl
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(4) There exist 1 <qy,...,qn < 00 such that

T:LT x ... x LI — 1

is bounded, where % = q% +ot

In [1] it is proved that

1
am’

T:LT x...x [T 14,
wherelzi+---+iandl<q,»<oof0rallj=1,..,,m,and
q q1 qm
T:LT x ... x [Im — [T,
1

where 1 <g¢j,...,4,, <00 and 011 = qi.lnparticular,
m

T:L'x - x L' — L™,

—
Let b =(by,...,b,) € (BMO)™” be alocally integrable vector function. The commutator
—
of b and m-linear Calder6n—Zygmund operator T, denoted TZZ’ was introduced by

Pérez and Torres [2] and defined as
m .
Tz_l;(fl,...,fm) = 21: T} (- fon)
]:

where

Tij(?):bjT(fl,...,f,...,fm)— T(ir- s bifi e fin)-

The iterated commutator Tl_[—b> is defined by

Tl_ﬁ(fl,...,fm): (b1 [t s Tl ],y ],

To clarify the notation, if T is associated in the usual way with a kernel K satisfying (1.1)-
(1.3), then, formally,

T 5 (- / 2 (B0 = OG0, 3lfs 01) < fin ) s -y
xb @ 4
and
- m
1 DW= [ T BN G 3mi00)-SoO -
1_[ b (Rmym i1

The theory of multiple weight associated with m-linear Calder6n—Zygmund operators

was developed by Lerner et al. [3]. Let 1 < p; < oo forj=1,...,m, 117 = pil 4ot ﬁ, and

Page 2 of 17
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79) = (p1,-..,Pm)- They showed that if W e A—p> (see the definition in the next section), then

N m
” s )“Lp(vﬁ) = Cl_[ M”L"/(W/y
w ]:1
If 1 <pj<ooforj=1,...,m and at least one p; = 1, then they also proved that

m
%
|| T(f )”U”'DO(V*)) S Cl_[ |[ﬁ||Lp/(wj)'
w =1

Let1<pj<oo,j:1,...,m,and1<p<oowith%:pil+~~~+ﬁ,PérezandTorresproved

—
thatif » € (BMO)™, then

— m m
|73 (Il = €D Mbslmwo [ T 151
j=1 j=1
In [3] the weighted L”-version of bounds is also obtained: for all W e A;),

— “ “
1755 gy = €2 Mo [ 1
w 1=1

Jj=1

As for TZZ’ a strong-type bound for TH - was also established by Pérez et al. [4].
The vector-valued multilinear operator T), associated with the operator T was first stud-

ied by Grafakos and Martell [5]. For y > 0, the vector-valued multilinear operator T, is
defined by

—_—
T,(f)0) = [Tl )@,

o0 17y
= (Z|T(f1k,;fmk)(x)|y) ’
k=1

where f; = {fi )32, fori=1,...,m. Let # <p<oo, =21 +~~-+1%l_with1<p1,...,pm<oo,

r n
% <y <00,and % = % +ooo % with 1 < y4,..., ¥ < 00. Grafakos and Martell proved that

— m
1T () iy < CT T s oy (1.4)

j=1

Later, Cruz-Uribe et al. [6] proved that if% < p <00, % = 1%1 +oe +I% withl<py,...,pm <

oo,%<y<oo,and%:%+~~-+%with1<yl,...,ym<oo,then

N m
|7, (f )”wwaen) = CHHWV/HLP;(RW)' (1.5)

j-1

They also obtained the weighted L?-versions of (1.4) and (1.5), but their results are not the
multiple weighted estimates obtained by Lerner et al. [3].
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ﬁ
For the sequence { fx }72; = (fix, ..., fimk)7o;» the vector-valued versions of the commuta-

and T_— are defined by
15,

tors T —
> b, Y

Y

o0 1/y
e —
Tog (f))= ITZ;,y(f INOE (;|T27(ﬁk,...,fmk)(x)yy>

and

oo 1/y
T F@=[T 5 (D], (;!Tnzmk,...,fmn(x)V) .

In 2008, Tang [7] established weighted norm inequalities for the commutators of a vector-
valued multilinear operator, but his results are not the multiple weighted estimates ob-
tained by Lerner et al. [3].

In this paper, we consider T associated with the kernel satisfying a weaker regularity
conditions introduced in [8, 9]. Let {A,}:-0 be a class of integral operators that play the role
of an approximation of the identity. We always assume that the operators A; are associated
with kernels a;(x, y) in the sense that, for all f € (J,¢(; o) L¥ and x € R”,

Af () = / als)f0)dy

and that the kernels a;(x, y) satisfy the condition

x_
)| <o) = (P22, (1.6

where s is a positive fixed constant, and / is a positive bounded decreasing function such
that for some n > 0,

lim 7*"h(r*) = 0. (1.7)

r—0o0

Recall that the jth transpose T*/ of the m-linear operator T is defined as

(T Fircofiu ) = (T(Fir o fiots@firtr o) f)

forallfi,...,fi,g in S(R"). Note that the kernel K */ of T* is related to the kernel K of T
via the identity

I<*’j(x7yl’ .. ‘;y]’—l’yjrijrl) .. rym) = I((yj’ylr v ’yj—lrx’ijrl; .. )ym)

If an m-linear operator 7' maps a product of Banach spaces X; X --- X X, to another
Banach space X, then the transpose T*/ maps X; x - -+ X X1 XX X Xj1 X - x X, to X
Moreover, the norms of 7 and T*/ is equal. To maintain uniform notation, we occasionally
denote T by 7% and K by K*°.
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Assumption 1 For each i € {1,...,m}, there exists an operator {Af) }es0 with kernels
aE’)(x, y) that satisfy conditions (1.6)—(1.7) with constants s, 1, and that for every j €
{0,1,...,m}, there exist kernels Kt*”’(l)(x,yl, ...»¥m) such that

<T*Y1’(f1" lf;’ fm /Rn /Rn)m I< e x’ylx 7ym)

forallfy,...,f,, in S(R") with (M), supp(fx) N supp(g) = . Moreover, there exist a function
¢ € C(R) with supp¢ C [-1,1] and constants € > 0 and A such that for allj € {0, 1,...,m}
and i € {1,...,m}, we have

» i 1yi — yxl

K*"(x,yl, 0y ) — K*,l,(t) (x,yl’ Y < ¢<

‘ m m ’ Zk . |x yk| mn klzk#l tl/s
Ate/s

1.9
T - i)y (19)

whenever % < |x — y;|/2.

If T satisfies Assumption 1, then we will say that 7 is an m-linear operator with gen-
eralized Calderén—-Zygmund kernel K. We denote the set of functions K satisfying (1.8)
and (1.9) with parameters m, A, s, 1), and € by m-GCZK(A4, s, n, €). We say that T is of class
m-GCZO(A, s, n,€) if T has an associated kernel K in m-GCZK(A,s, n, €).

Assumption 2 There exist operators {B;}.o with kernels b;(x,y) that satisfy conditions
(1.6) and (1.7) with constants s and 7. Let

I(}O)(x,yl,...,ym)zf K(z,y1,..,Ym)bs(x,2) dz.
RVI

We assume that the kernels Kt(o) (%, 91, ..., ym) satisfy the following estimates: there exist a
function ¢ € C(R) with supp¢ C [-1,1] and constants € > 0 and A such that

A

0

whenever 2¢15 < min; <j<, [x — y;], and

0 lyi = Y
|]<(xyy1;~wym) I<[ (xrylwurym)|_(zk1|x ykl)’"” Z d’( £1ls )

k=1,ki
Ate/s
+ m
(Qkon e = yel)mmee

whenever 2|x —'| < ¢S and 2£ < maxy <j<pu [x - yil.

Throughout this paper, we always assume that the m-linear operator T satisfies the fol-
lowing assumption.
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Assumption 3 There exist py,...,p,, € [1,00) and p € (0,00) with 1/p = Z;Zl 1/p; such
that T’ maps LP1(R") x - -- x LPm(R") to LP(R").

When T is of class m-GCZO(4, s, n, €) and satisfies Assumption 3, Duongetal. [9] proved
that the multilinear singular integral operator T is bounded from L”!(w) x --- x LP"(w)
to L?(w), where w € A, with py = min(py,...,p,) > 1. Grafakos et al. [10] obtained that T
maps L1 (wy) X - -+ X LPm(w,,) to L”(VW) (Lp’oo(vw)) for w € A—p>. For the boundedness of

commutator generated by a BMO function, Anh and Duong [11] established that TZ 2 is

bounded from LP!(w;) X - - - x LPm(w,,) to L”(VW) for w € ]_[]'Z1 Ay withp;>1,j=1,...,m
Chen and Wu [12] proved that TZ_b) is bounded from LP'(wy) x - - - x LPm(w,,) to LP(VW)

for w eA_P>, _b) € BMO”.

On the other hand, for the vector-valued Calderén-Zygmund operator T, in m-
GCZO(A, s, 1, €) satisfying Assumption 3. Chen et al. [13] proved that T), is bounded from
LPY(wq) X -+« X LPm(w,,) to LI’(VW) (LP’OO(V—W>)) forwe A?. They also obtained the bound-

edness of commutators T_ -~ and T_— from LP1(w;) X - -+ x LP"(w,,) to L?(v-) for
Y by [15.y w

we A?, _b) € BMO™. He and Zhou [14] extended the results of Chen et al. to weighted
Morrey spaces. They proved that T, is bounded from P (wy) x -+ x LPmP(w,,) to
LP'O(VW) (WLP'O(VTM»)) for w € ]—[;ZIAP], with p; > 1, j = 1,...,m, where 0 < 6 < 1. They
also obtained the boundedness of the /th-order iterated BMO commutator Tl'[ 2oy in
weighted Morrey spaces.

The generalized weighted Morrey space (L?(w),L?)* was introduced by Feuto [15].
Moreover, he showed that the Calderén—Zygmund operators, Marcinkiewicz operators,
the maximal operators associated with Bochner—Riesz operators, and their commutators
are bounded on (L?(w), L9)%.

Inspired by the works mentioned, in this paper, we prove weighted norm inequalities for
vector-valued multilinear singular integrals with nonsmooth kernels and commutators on
generalized weighted Morrey spaces. We state our main results as follows.

Theorem 1.1 Let T be a multilinear operator in m-GCZO(A, s, n,€) with kernel K sat-
isfying Assumption 2. Let p < o < q < 00, p1,...,Pm € [1,00) with 1/p = 27:1 1/pj, and
Viyeooy Ym € (1,00) with 1]y = Z}’Zl 1/y;. Then for W= Wiyevrs Win) EA?, we have:

(i) when all p; > 1, there exists a constant C such that

HT (f ” 1P (v ) L) = Cl_[”[ﬂy]” i (w, Lqpl/p)o’pl/p’
j=1

(ii) when some p; = 1, there exists a constant C such that

17, woste CHllwy, | 071y 0y

Theorem 1.2 Let T be a multilinear operator in m-GCZO(A, s, n,€) with kernel K sat-
isfying Assumption 2. Let p < a < q < 00, p1,...,pm € (1,00) with 1/p = Z;Zl 1/p;, and

—
Viyeeor Vm € (1,00) with 1]y = Z]mzl 1/y;. IfVV) = Wiy, Wyy) eA_p> and b € BMO", then
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there exists a constant C such that

17 (f Wryzap < CZ 1By ||BMo]"[||Lf|y,

j=1 i=1

(LPi (w;),L9Pi/Pyopilp*

Theorem 1.3 Let T be a multilinear operator in m-GCZO(A, s, n,€) with kernel K sat-
isfying Assumption 2. Let p < o < q < 00, p1,...,Pm € (1,00) with 1/p = Z]’ZI 1/pj, and

-
Viseoor Ym € (1,00) with 1]y = Z;Zl 1/y;. If?/) = (Wiyens Win) GA—p> and b € BMQO", then
there exists a constant C such that

175 P Lqu_c]"[nanMo]"[||V|y,

j=1 i=1

(LPi(wy),L9Pilpyepilp

2 Some preliminaries and notations
For a measurable set E, we define |E| as the Lebesgue measure of E, and xg as the char-
acteristic function of E; Q(x,r) denotes the cube centered at x with the sidelength r,
aQ(x,r) = Q(x,ar), and _p) = (p1,...,pm). For any number r > 0, r_p) = (rp1,...,rpm). For
a locally integrable function f, f; denotes the average f; = ﬁ fQ f(x) dx. The letter C will
denote a constant not necessarily the same at each occurrence.

By a weight we always mean a positive locally integrable function. We say that a weight
w belongs to the class A, for 1 < p < 0o if there is a constant C such that for all cubes Q,

(IQI/ wo) y)<|é|/w(””1‘dy>p_lsc.

In particular case, when p = 1, it is understood as

1
(IQI / w(y)dy) < Cyicggw(x).

If w € A, then there exist positive constants § and C such that

w(E) 120
w(Q) ~ C( |QI> (2.1)

for any measurable subset E of a ball Q. Since the classes A, increase with respect to p, we
write Aoo = (21 Ap-

Definition 2.1 (Multiple weights [3]) Let _p> =p1,....pm)and 1/p = 1/py +-- -+ 1/p,, with

.= . . .
1<pi,....pm <00. Givenw = (wy,...,w,,) with each w; being nonnegative measurable,
set
plpj
V— = w;
w ]
j=1

We say that W satisfies the A7 condition and write W € A? if

1 up m ;4 O\
i o) T o 14)
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where the supremum is taken over all cubes Q C R”, and the term (I_fli)\ fQ wj(x)l_pi dx)""?i
is understood as (info w;)~! when p; = 1.

Lemma 2.2 ([3]) Let 1 < py,...,pm < 00 and W= (W1, ..., Wn). Then the following state-

ments are equivalent:
() we AH;

1p
(ii) w; eAmp,]_l ., m, andv;; € App,

1-p,
where w; ' is understood as wl/”’ € Aj inthe casep; = 1.

Lemma 2.3 ([3]) Let 1 < py,...,pm < 00 and W = WiyevoyWy) € A—p>. Then there exists

r> 1 such that w € A?/r.

To prove the results for commutators, we recall the definition and some basic properties
of BMO function spaces. We say a locally integrable function b is in BMO if

”b”BMO—Sup@ |b(y) — bo| dy < 0.

For b € BMO, 1 < p < 00, we have ||b|lgmo = ||b|lsmor, where

1/p
161lBmor —Sup(|Q|/|b(x)—bQ|pdx> ,

and for all cubes Q, if w € A, then by (2.1) and the John—Nirenberg inequality we have

1 1/p
—— [ |bx) = bo| wix)d < C|llpmo- 2.2
(57 [ o9 bol weatx) < Clbliono 2
For all nonnegative integers k, by simple calculation we get
|byki1g — bol < C(k +1)[1bllB™mo- (2.3)
Definition 2.4 ([15] (Generalized weighted Morrey space)) Let 1 <p <« < g < 00, and
let w be a weight. The space (L?(w), L1)* := (L?(w), L1)*(R") is defined as the set of all mea-
surable functions f satisfying ||f || (z(w),z9)¢ < 00, where

W Nl o oLy := sup I/ Nl e r <00

with

1/q
W llwe Loy, = [ fR n((W(B(% r )))l/a_up_uﬂleB(yvr)||U’<w>)qdy]

for r > 0, with the usual modification when g = co. When w = 1, the space (L”, L7)* was
introduced in [16]. For p < @ and g = oo, the space (L”(w),L7)* is the weighted Morrey
space LY (w) with 6 = 1/p — 1/« defined by Komori and Shirai [17].
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The weak space (L7*°(w), L7)* is defined with

1/q
Il oo (wy,zaye = [ fR ’ (w(BG»M)" ™ 1if xay) ||w°c<w>)qd3’] .

When p = 1, the space (L*(w), L9)* was introduced in [15].
The following results were obtained by Chen et al.

Theorem A ([13]) Let T be a multilinear operator in m-GCZO(A,s,n,€) with kernel
K satisfying Assumption 2. Let 1 < py,...,p, < 00 with 1/p = Z,m=1 1/p;. Then for W =
Wi,..., W) € A—p>, we have:

(@) Ifl<pj<oo,j=1,...,m,then

N m
|7, (f )||m(v7v>) <c[ Tl Iy

j=1

(i) If1<pj<o0,j=1,...,m,and at least one p; = 1, then

N m
” T,,(f )”vaw(v_,) = CH”WV,'”LPJ(Wj)'
w ],=1

Theorem B ([13]) Let T be a multilinear operator in m-GCZO(A, s, n,€) with kernel K
satisfying Assumption 2. Let 1 < py,...,py <00 with 1/p = Z]'Zl 1/p;. If7v) =Wi,..., W) €

%
A? and b € BMQO", then there exists a constant C such that

- m m
17e5 (i) = €2 Iblmwo [ 1AL,

j=1 i=1

LPi(w;)*

Theorem C ([13]) Let T be a multilinear operator in m-GCZO(A, s, n,€) with kernel K
satisfying Assumption 2. Let 1 < py,...,py <00 with 1/p = Z]'Zl 1/p;. If@) =Wi,...,Wpy) €

%
A—P> and b € BMQO", then there exists a constant C such that

1Pi(w)’

—> " “
I T]_[_b),y(f )] CH ||b1’||BM01_[||Ifi|Vi
W i=1

j=1
3 Proof of the main results

Proof of Theorem 1.1 (i) Let {fix,...,fmk}zo, be any smooth vector-valued functions. For

n s = _)0 _>oo _)0 00 = 00
any Q = Q(y,7) € R”, We split each fi = fi° + fi °°, where {fi "}2%, = {/fi xo* 11 =
{fikxQ#s - - o fmk X0+ }3o; and Q = 8Q. Then

[ 1500 = TTRON +£200) = Y- i 0n) - fak m)
j:l O] 5ee0sOpm

j=1
=[[Ron+ D> o0 furom+ [ [0
j=1

o] 5,0 €{0,00} j=1

Page9of 17
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where «;,...,a,, are not all equal to 0 or co at the same time. Hence, for x € Q(y,r), we

have

Ty (fis - fi) )| =

T},(flo,...,fyg)(x)
+ > T, f‘l,...,f;;m)(x)+Ty(ﬁm,...,f,;c)‘

Z T, (... fom) (%)

=1+ +1II.

+ Ty (1. 50|

We first estimate [II. Taking ¢ = (2r)*, since x,z € Q and y; e R*\ Q*, forall j=1,...,m, we
have

lyj—zl =lyj—rl—lz—r|>7r> 215,

Hence ¢(|y; — z|/t'5) = 0. By Assumption 2 we have

Ate/s
Qi) e = glymmse”

|I((x’y1; e ,J’m) - I(t(O)(x’ylr oo ’ym)| <

Then for any x € Q, by Assumption 2, we have

00 v\ Uy
1115(2(/@”\@ K%, 5) - K (x,y)|l_[lfk()’1)|dy>>

k=1

E‘X’ " r\ 1y
(0 SR e
+ ( (/(R”\Q* ‘K )‘ };[lf;k()’;)‘ dy ) )

k=

s i Atels m R v\ Uy
=c oy
(Z< @ (ko 1 = yel) e Elf’k(y’)‘ y) )

k=1

( ;Hlfk(%ldy)y)w

+
e (g 1 — yil)™

|Q*|s/s 1 " N 1y
=< ( ( (8v+1|Q|1/n)mn+e (8v+1|Q|1/n)mn> v/(8"+1Q)V” !;[V}k(yl)| d y) )
o0 o0 " 1/y;
Z 8v+1Q|m H<k=1 (‘/8v+1Qlﬁk(y})| y;) )

Zl;[ 8v+1Q|/ Ufily; ) o

I/\

| /\
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and the Holder inequality gives

1/p; - 1/p;
L modn=c( [ mopymondn) ([, mon )
8v+1Q v+l 8v+1Q

By the definition of A—p> we obtain

w=e3 e [Wtoml ey

For II, without loss of generality, we assume that o; = oo for i = 1,...,

I+1,...,m.For x € Q(y,7), by Assumption 2 we get

Iy (S5 SRS G- - fo) @)

00 m y\ 1y
K(x, K9, ()| dy
5(2(/@@ K6, 7)) - KO,y )!E[[ﬁk(y,)! y))

k=1

+

N m y\ 1y
Z( KO, 5 Hlﬁk@/>|d7> )
®RMQ j-1

§C

(>
(&

! Iy
X l_ﬂﬁk(y/ |dy,> )
j=1

[}
|Q*|e/s 1
<C
Z( 8v+1|Q|1/n mn+e + (8v+1|Q|1/n)mn

V=

xﬁ(

j=1+1 \ k=1 k=1
CZ 8v+1Q|m 11;[1/ lf')’;(yl dy}l_[/ If|y,()/})dy/
SCVXEH 8v+1Q|/ lf')ﬁ(yl)dyl’

and by the Holder inequality and the definition of A? we have

H<CZ (fg QY )UpHHW'WXSWIQ”LP/(W/)

Ate/s
1 (,1;[1/ ad yl(/R"\Q*)’((Z,l»l | — ;) ' (o =)

Bl DE(L 0o

land aj =0 for j =

=)

Page 11 of 17



Zhao and Zhou Journal of Inequalities and Applications (2020) 2020:180 Page 12 of 17

Combining the estimates of II and I, we obtain
— —
T, (f )] = CIT (f °)|

+ CZ 1/p l_[Hlf|V] 8”*1QHL”/ (3.1

V= 81/1

Taking the LP(VW) norms on the cube Q(y,r) of both sides of (3.1), by Theorem A(i) we
get

N m
17, (Fxeunllig.y = CT T X0l 0
w ]=1

e s

) )i l_[”[flyz XBV”QHLPI (3:2)
gv+
Multiplying both sides of (3.2) by v—, (Q)"/*""/4"1/7, by Lemmas 2.2 and 2.3 we get

9
V,—;(Q)l/a_l/q_l/p H T,(f )xawn ”Lp(v_,)

o0 1 B 3 m
<CY g w 7 Q" T Ty ool
v=0

-1

For 3", p/p; = 1, by the Holder inequality

9
v (QYeVa P T, (£ )Xt o) llzan

1
< CZ_SM(W - 1—[” W, 8V+1Q)p/ap, Vpi-plap; 116l xsvall 2 W)HLqp,/p @
j=1

Note that Y 2, WM converges. Hence

”T (f )“(Lp(v_, LAY Cl_[“lﬂl/;” iw L””’J/P epjlp
(ii) For any A > 0, by (3.1) and Theorem A(ii) we have

hv (k€ Qo) : | T, (f )] > )

m
(v
= Tl sl iy + € Z(Ii(ziwupl_[lllflv, Xs10ll i

j=1 v=1 8V

Hence

—_
|75 (f Ixaon ||moo<vﬁ)

(o)™

= Cl_[||lf|y,x8v+lo||Lp/<w + CZ o r )P l—[|lv’ly,x8v+1o||Lp,

j=1
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Multiplying both sides of this inequality by v—, (Q)"/*~"/4"'/ and applying a similar method
to (i), we complete the proof of Theorem 1.1. O

Proof of Theorem 1.2 1t suffices to prove that Ti,,y’bj € BMO. For Q = Q(y,7), x € Q, we

can write

Tij,y(?))(x):Tij‘y(?xQ*)(x)+ S (BT (e ff)

1.0 €{0,00}
=Ty (s Bif e Sk @)
WTy (s S50 ofp) = Ty (£ Bif oo ) )

=I'+1I'+ 1T,
where a1,...,q,, are not all equal to 0 or co at the same time. For III', we have

1] < | (56) - bo) T, 5 f??"w-;fri‘k’)|+|Ty(f1°k°:-~,(b;—bo)ﬁi"w-,fyi‘i)(xﬂ

o

= |b/(x)_bQ|Z (fs R )1/19 l_[“lf'l’z 8"*1Q||L1’t (w;)

v=1

+ |Ty (fﬁ(o, ceey (b] - bQ + b8v+1Q - b8v+1Q)ﬁzo, Ve ,f,zi)(x)|

Similarly to Il in (i), we have

|T (flk 3 b bQ + b8v+lQ b8v+1Q)_fk '’ frzi) (x)’
<|T, (K% (b - = byr1Q)fii"s - oSt @)
+ ’Ty(floko,...,(bsv+lQ—bQ) ];O,,fn?;()(x)‘

o0
|b v+l bQI
= e )p l—[||lf|le8"*1Q”Lpt

v=1 v+1 V

+Z |8v+1Q|m /8v+1 1_[ Lf|y,(Yz)Lf|y,(V1 |b (Y;) b8v+1Q|dy

1117’}

Since w € A?;, we can select suitable r > 1 such that w € A;)/r by Lemma 2.3, and by the
Holder inequality and Lemma 2.2 we have

oo

Z |8v+1Q|m /8"+1 l_[ [fll/z(yl lf|y,0//)’b 0// b8v+1Q|d_y
i=1,i#j
u 1/r
- Z |8V+1Q|m/r (l 1:[# / If|y, dyl> (/SMQ([f,Iy/(y,){b,(y,) - b8v+1Q|)r)
> 1 1/p; (Bi-nIpir
Pi (v d ; (v —r/(pi—r))
SV21:|81/+1Q|m/rll?/(/ Ifl W()/) y) (/g;leW(y)

{oir) Bi-n/pi
ir i—7, — i
* (/8v+1Q|bf0’j) = by w0 dy’)

Page 13 0of 17
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»; 1/pj
x (/ lfj|ny/(VJ)dy/)
8"+1Q

o0
< C“bj”BMOZ m H”Lfly, SV+1Q||LPz

v=1

Hence we have

|III/} |b () - bQ| Z (fs v )1/p l_[|||f|th8V+1Q||Lpt (w;)
|b v+1 bQ|
Z fs < l/p H“lflJ/LXSV*lQ”[}% (w;p)
=1 8v+1
+ ||b lBMO Z (f oV )1/p HHI'f'VzXS"*lQ”Lp, (W)
v+

For II', we now consider «; = oo for i = landaj=0forj=1+1,...,m. There are two

cases:

|b1'(x)Ty (ﬁ?""’fjlio’ S fl+1 P rgk)
-1, (flc;f""’hlfjlfo’""flio'f((l)ﬂ)k"“’frgk)(x)}

or

|b1‘(x)Ty(f10ko"“’flio f1+1 fk’ )
-T, (ffio S S 1+1 bsz’ f,gk)(x)|.

We just consider the following case, the other case being completely analogous:

BTy (s oS Sy So)
=Ty (s B S S+ Soi) @)
S\(b/(x)—bQ)Ty(/’f’k"»--rﬁZ"; SRS+ o Fo)|
+|Ty(ﬁ°k°,--.,(b,»—be>f2°, SRS Gy S )]

< |;x) - bo| Z - ooy ]_[IHfly,st+1Q||m o)

|b v+1 bQ|
+Zﬁl_[”lf|y,)(gv+1(2”byl
y=1 8+
00

Z |8v+1Q|m 1_[/ lf'}’,(yl)dyz

i=l+1

oo LT V10081, 0)lb09 — uracl 45

i=1,i#j
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Since w € A—p>, we can select suitable r > 1 such that W € A7/r by Lemma 2.3, and by the

Holder inequality and Lemma 2.2 we have

1 L
§ |5V+1\/—2| l|l+|1/ lfl%(y dy
| | | i\l | b ) b v+1 d
X/(‘SVH«[Q) zllgjlfy(y lf)/,(y} | (yl 8 \/—Q| y

ily; idi
Z|8v+1\/—Q|mlll_[7! LV+1ﬁQV|le) )

* /sm Uil 01)[B107) = byt el

1

< Cllb; ||BMOZ o H”W%XW*‘IQ”LPL wy)’

VnQ w)l/p

Hence we have

|7}, (H @] <75, ,(F x0)@)

) S | [
|b8V+1Q bQ|
+ VXI‘ W [ TIALxs 10l iy

+ 1185 1o Z ( fsv+ i HHIf b xs10 iy

Taking the L” (VW) norms on the cube Q(y, r) of both sides of this inequality, by Theorem B

and Lemmas 2.2 and 2.3 we have
P
” Tb,,y(f )XQwn ||Lp(vl_”>)

m
< Clibliamo [ [IVxsr 10 iy,

i=1
fQ %)

+ “h ”BMO Z (fs 1/17 l_[||lﬁ|ViX8v+lQ||LPi(w)

i=1

Multiplying both sides of this inequality by v_. (Q)"/*"/4"'7, by (2.1) and Lemma 2.2 we
get

. >
V—W> (Q)l/a—l/q—l/P H Ti,‘,)/(f )XQ(y,r) HU’(VW)

<C =\ (k +1)|15;llsmo gvl () Ve L/a-1ip =
= Z gnks(1/a-1/q) VW( Q) H”lﬁIViXSV”QHLﬂi(W,)

v=0 i=1
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By a proof similar to that of Theorem 1.1(i) we have

N m m
” Tz_b’,y(f )H<Lp<v;;),m)a = CZ 1155110 H” Uil ||<L1’i<Wi>,Lth’P>“Pi’P'

j=1 i=1
Thus we complete the proof of Theorem 1.2. d

The proof of Theorem 1.3 also uses very similar arguments, and hence we omit the
details.
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