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Abstract
Let Ta,ϕ be a Fourier integral operator with symbol a and phase ϕ . In this paper, under
the conditions a(x,ξ ) ∈ L∞Sn(ρ–1)/2ρ (ω) and ϕ ∈ L∞Φ2, the authors show that Ta,ϕ is
bounded from L2(Rn) to L2(Rn).
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1 Introduction and main results
Fourier integral operator on R

n has been studied extensively and is related to many ar-
eas in analysis and PDEs. In [1], Sogge considered the Cauchy problem of the hyperbolic
equations via the Lp-estimates theory of the Fourier integral operators (also see, for the lo-
cal smoothing estimates of wave equations, e.g., [2, 3] and the references therein for some
recent developments). For the Fourier integral operators with smooth amplitude, the L2-
regularity theory is comparably more progress. In [4] and [5], Eskin and Hörmander found
the local and global L2-regularity theory for Fourier integral operators, respectively. There
are also some results for the Lp boundedness of Fourier integral operators with classical
symbol and phase (see Littman [6], Miyachi [7], Peral [8], and Beals [9]).

Let f̂ be the Fourier transform of f . A Fourier integral operator T is a linear operator of
the form

Ta,ϕ f =
1

(2π )n

∫
Rn

eiϕ(x,ξ )a(x, ξ )f̂ (ξ ) dξ (1.1)

with symbol a(x, ξ ) and phase ϕ(x, ξ ), respectively. In particular, for ϕ(x, ξ ) = 〈x, ξ 〉, the
operator Ta is a so-called pseudo-differential operator. In [10], Hörmander showed that
Ta is bounded in L2(Rn), when a ∈ Sm

ρ,δ , δ < 1 and m ≤ n(ρ – δ)/2. For a ∈ S0
1,1, Ching

[11] proved that Ta is not bounded in L2(Rn). Moveover, for a ∈ Sm
ρ,1, Rodino [12] showed

that Ta is bounded in L2(Rn) if and only if m < n(ρ – 1)/2. However, the operator Ta is not
always L2-bounded for a ∈ Sn(ρ–1)/2

ρ,1 ; see, for example, [10–12]. The necessary and sufficient
conditions of L2-boundedness of Ta were obtained by Higuchi [13] as m = n(ρ – 1)/2. It is
natural to ask if the corresponding results hold for the Fourier integral operators. Recently,
Kenig, David, Salvador, and Wolfgang [14–16] have studied the Fourier integral operators
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with rough symbol and rough phases, both of which behave in the spatial variable x like
an L∞-function. More precisely, the symbol belongs to the class L∞Sm

	 whose constituent
element a obeys

∥∥∂α
ξ a(·, ξ )

∥∥
L∞(Rn) ≤ Cα〈ξ 〉m–	|α|.

Under this condition, for m = min{0, n
2 (ρ – δ)}, 0 ≤ ρ ≤ 1, 0 ≤ δ < 1, and a ∈ Sm

ρ,δ , Wolfgang
[14] proved the global continuity on Lp-space with p ∈ [1,∞] of Fourier integral operators.
A natural question is L2-boundedness of Fourier integral operators for δ = 1 and m = n(ρ –
1)/2. In this paper, we answer the question and prove the results for the Fourier integral
operators.

Our main result could be stated as follows.

Theorem 1.1 Let Ta,ϕ be a Fourier integral operator given by (1.1) with symbol a(x, ξ ) ∈
L∞Sn(ρ–1)/2

ρ (ω) and phase function ϕ ∈ L∞Φ2 satisfying the Lipschitz rough non-degeneracy
condition. Then, for 0 ≤ ρ ≤ 1, there exists a positive constant C such that

‖Ta,ϕu‖L2 ≤ C‖u‖L2 .

Here, the symbol class L∞Sn(ρ–1)/2
ρ (ω) is defined by Definition 2.2, the phase class L∞Φ2

is given by Definition 2.5, and the Lipschitz rough non-degeneracy condition is defined by
Definition 2.6.

Remark 1.1 Here we remark that, for a ∈ Sn(ρ–1)/2
ρ,1 , Higuchi and Nagase [13] pointed out

that the boundedness of the pseudo-differential operator Ta from L2(Rn) to L2(Rn) is not
always true. As the main result in this paper, we give an answer for this problem for the
Fourier integral operator Ta,ϕ . The main idea of our approach is treating the symbol class
L∞Sm

ρ (ω), where m = n(ρ – 1)/2. In particular, our results of L2(Rn)-boundedness for Ta,ϕ

are also the best as far as we know. We also remark that our methods are different from
the previous methods; see, for example, [13].

Finally, we make some conventions on notation. Throughout this article, we denote by C
a positive constant which is independent of the main parameters, but it may vary from line
to line. We sometimes write A � B as shorthand for A ≤ CB. Let Rn be an n-dimensional
Euclidean space, x = (x1, . . . , xn) be a point in R

n, Rn∗ = R
n \ {0}, N = {1, 2, . . .}, Z+ = N∪ {0},

and Z
n
+ = (Z+)n. For any multi-index α = (α1, . . . ,αn) and β = (β1, . . . ,βn) ∈ Z

n
+, we let

|α| =
n∑

j=1

αj, α + β = (α1 + β1, . . . ,αn + βn), ∂α
x =

∂α

∂
α1
x1 · · · ∂αn

xn
,

and ∇ξ = (∂ξ1 , . . . , ∂ξn ). Also, in the sequel we use the notation

|ξ | =

( n∑
j=1

ξ 2
j

)1/2

and 〈ξ 〉 =
(
1 + |ξ |2)1/2.
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2 Definitions, notations, and preliminaries
The following definition is just [17].

Definition 2.1 Let m ∈R and 0 ≤ δ, ρ ≤ 1. For any two multi-indices α and β , we assume
that the function a(x, ξ ) satisfies the following condition:

∣∣∂β
x ∂α

ξ a(x, ξ )
∣∣ ≤ Cα,β〈ξ 〉m–ρ|α|+δ|β|, (2.1)

where Cαβ is a positive constant only dependent on α and β . Let the smooth amplitude
Sm

ρ,δ be the set of all smooth functions a(x, ξ ) satisfying condition as in (2.1). Then the
pseudo-differential operator Ta with the symbol a(x, ξ ) ∈ Sm

ρ,δ is given formally by

(Taf )(x) =
∫
Rn

eix·ξ a(x, ξ )f̂ (ξ ) dξ .

The following definition for the class L∞Sm
ρ (ω) plays an important role in our setting.

Definition 2.2 Let m be a real number. A function a(x, ξ ), which is smooth in the fre-
quency variable ξ and bounded measurable in the spatial variable x, belongs to the symbol
class L∞Sm

ρ (ω) if, for all multi-indices α, it satisfies

∥∥∂α
ξ a(x, ξ )

∥∥
L∞(Rn) ≤ Cα〈ξ 〉m–ρ|α|ω

(〈ξ 〉),

where ω(t) satisfies

∫ ∞

1

ω(t)2

t
dt < ∞, (2.2)

and ω(t) is a nonnegative and decreasing function on [1,∞).

Remark 2.1 If ω(t) satisfies (2.1), then
∑∞

j=0 ω2(2j) < ∞.

David and Wolfgang [14] gave the class Φk as follows.

Definition 2.3 ([14], Φk) A real-valued function ϕ(x, ξ ) belongs to the class Φk if ϕ(x, ξ ) ∈
C∞(Rn ×R

n∗) is positively homogeneous of degree 1 in the frequency variable ξ and satis-
fies the following condition: for any pair of multi-indices α and β , satisfying |α| + |β| ≥ k,
there exists a positive constant Cα,β such that

sup
(x,ξ )∈Rn×R

n∗
|ξ |–1+α

∣∣∂α
ξ ∂β

x ϕ(x, ξ )
∣∣ ≤ Cα,β .

In connection to the problem of local boundedness of Fourier integral operators, one
considers phase functions ϕ(x, ξ ) that are positively homogeneous of degree 1 in the fre-
quency variable ξ for which

∣∣∣∣det
∂2ϕ(x, ξ )
∂xj∂ξk

∣∣∣∣ �= 0.
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The latter is referred to as the non-degeneracy condition. However, for the purpose of
proving global regularity results, we require a stronger condition than the non-degeneracy
condition above.

Definition 2.4 ([14], The strong non-degeneracy condition) A real-valued function
ϕ(x, ξ ) ∈ C2(Rn × R

n∗) satisfies strong non-degeneracy condition if there exists a positive
constant c such that

∣∣∣∣det
∂2ϕ(x, ξ )
∂xj∂ξk

∣∣∣∣ ≥ c

for all (x, ξ ) ∈ R
n ×R

n∗ .

Remark 2.2 The phases in class Φ2 satisfying the strong non-degeneracy condition arise
naturally in the study of the equations of hyperbolic type, namely

ϕ(x, ξ ) = |ξ | + 〈x, ξ 〉

belongs to the class Φ2 and satisfies the strong non-degeneracy condition.

In [14], they introduced the nonsmooth version of the class Φk which will be used in
our setting.

Definition 2.5 ([14], L∞Φk) A real-valued function ϕ(x, ξ ) belongs to the phase class
L∞Φk if it is positively homogeneous of degree 1 and smooth on R

n∗ in the frequency vari-
able ξ , bounded measurable in the spatial variable x, and if for all multi-indices |α| ≥ k it
satisfies

sup
(x,ξ )∈Rn×R

n∗
|ξ |–1+α

∣∣∂α
ξ ϕ(x, ξ )

∣∣ ≤ Cα .

Motivated by [14], we also need a Lipschitz rough non-degeneracy condition as follows.

Definition 2.6 (The Lipschitz rough non-degeneracy condition) A real-valued function
satisfies Lipschitz rough non-degeneracy condition if it is C∞ on R

n∗ in the frequency vari-
able ξ , bounded measurable in the spatial variable x, and there exist positive constants C1

and C2 such that, for all x, y ∈R
n and ξ ∈R

n∗ ,

∣∣∂ξϕ(x, ξ ) – ∂ξϕ(y, ξ )
∣∣ ≥ C1|x – y|,

∣∣∂α
ξ ϕ(x, ξ ) – ∂α

ξ ϕ(y, ξ )
∣∣ ≤ C2|x – y| for |α| ≥ 2.

3 Proof of the main result
In this section, we shall prove the main result, i.e., Theorem 1.1.

First we need a dyadic partition of unity. Let A be the annulus A = {ξ ∈ R
n; 1

2 ≤ |ξ | ≤ 2}
and

χ0(ξ ) +
∞∑
j=1

χj(ξ ) = 1 for all ξ ∈ R
n,
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where χ0(ξ ) ∈ C∞
0 (B(0, 2)) and χj(ξ ) = χ (2–jξ ) when j ≥ 1 with χ (ξ ) ∈ C∞

0 (A). Now we
decompose the operator Ta,ϕ as follows:

Ta,ϕ = Tχ0 (D) +
∞∑
j=1

Tχj (D) = T0(D) +
∞∑
j=1

Tj(D). (3.1)

The first term in (3.1) is bounded on L2(Rn) from Theorem 1.1.8 in [14]. After a change
of variables, we have

Tj(D) =
1

(2π )n

∫
Rn

eiϕ(x,ξ )χj(ξ )a(x, ξ )û(ξ ) dξ

=
2j	n

(2π )n

∫
Rn

ei·2j	ϕ(x,ξ )χj
(
2j	ξ

)
a
(
x, 2j	ξ

)
û
(
2j	ξ

)
dξ

=
2j	n

(2π )n

∫
Rn

ei·2j	ϕ(x,ξ )χj
(
2j	ξ

)
a
(
x, 2j	ξ

)∫
Rn

e–i2j	ξ ·yu(y) dy dξ

=
2j	n

(2π )n

∫
Rn×Rn

ei·2j	(ϕ(x,ξ )–y·ξ )χj
(
2j	ξ

)
a
(
x, 2j	ξ

)
u(y) dξ dy.

The kernel of the operator Tj(D) is given by

Tj(x, y) =
2j	n

(2π )n

∫
Rn

ei·2j	(ϕ(x,ξ )–y·ξ )χj
(
2j	ξ

)
a
(
x, 2j	ξ

)
dξ .

Let

aj(x, ξ ) = χ
(
2j(	–1)ξ

)
a
(
x, 2j	ξ

)
.

Then

Aj = Supp
ξ

aj ⊂
{
ξ ; 2–12j(1–	) < |ξ | < 2 · 2j(1–	)}

and it satisfies

∣∣∂α
ξ aj(x, ξ )

∣∣ ≤ Cα · 2jn(ρ–1)/2. (3.2)

We can confine ourselves to dealing with the high frequency component Tj of Ta,ϕ . Here
we shall use a Sj = TjT∗

j argument, and therefore,

Sju(x) =
1

(2π )n

∫
Rn×Rn

ei(ϕ(x,ξ )–ϕ(y,ξ ))χ2
j (ξ )a(x, ξ )a(y, ξ )u(y) dy dξ

=
2j	n

(2π )n

∫
Rn×Rn

ei2j	(ϕ(x,ξ )–ϕ(y,ξ ))

+ χ2
j
(
2j	ξ

)
a
(
x, 2j	ξ

)
a
(
y, 2j	ξ

)
u(y) dξ dy.

The kernel of the operator Sj = TjT∗
j reads

Sj(x, y) =
2j	n

(2π )n

∫
Rn

ei2j	(ϕ(x,ξ )–ϕ(y,ξ ))χ2
j
(
2j	ξ

)
a
(
x, 2j	ξ

)
a
(
y, 2j	ξ

)
dξ .
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Let bj(x, y, ξ ) = χ2
j (2j	ξ )a(x, 2j	ξ )a(y, 2j	ξ ). Then

Supp bj ⊂
{
ξ :

2j(1–	)

2
< |ξ | < 2 · 2j(1–	)

}
.

We claim that

∣∣∂α
ξ bj(x, y, ξ )

∣∣ ≤ Cα2jn(ρ–1)ω2(2j).

In fact,

∣∣∂α
ξ bj(x, y, ξ )

∣∣ =
∣∣∂α

ξ

[
χ2

j
(
2j	ξ

)
a
(
x, 2j	ξ

)
a
(
y, 2j	ξ

)]∣∣
=

∑
α1+α2=α

∣∣∂α1
ξ

[
a
(
x, 2j	ξ

)
a
(
y, 2j	ξ

)]∣∣∣∣∂α2
ξ χ2(2–j(1–	)ξ

)∣∣

�
∑

α1+α2=α

(
2j	)|α1|∣∣(∂α1

ξ (a · ā)
)(

x, 2j	ξ
)∣∣ω2(2j)

× 2–j(1–	)|α2|∣∣(∂α2
ξ χ

)(
2–j(1–	)ξ

)∣∣
�

∑
α1+α2=α

2j	|α1|〈2j	ξ
〉n(ρ–1)–	|α1|2–j(1–	)|α2|ω2(2j)

�
∑

α1+α2=α

2j	|α1|2j(n(ρ–1)–	|α1|)2–j(1–	)|α2|ω2(2j)

=
∑

α1+α2=α

2jn(ρ–1)–j(1–	)|α2|ω2(2j)

= 2jn(ρ–1)
∑
α2

2–j(1–	)|α2|ω2(2j)

� 2jn(ρ–1)ω2(2j). (3.3)

Next we consider the following differential operators for j ∈N:

Lj(x, y, D) =
∇ξΦ∇ξ

i2j	|∇ξΦ|2 , (3.4)

where Φ(x, y, ξ ) = ϕ(x, ξ ) – ϕ(y, ξ ). So LN
j (x, y, D)ei2j	Φ = ei2j	Φ and

L∗
j (x, y, D) = –∇ξ

∇ξΦ

i2j	|∇ξΦ|2 . (3.5)

From this and (3.4), it follows that

Sj(x, y) =
2j	n

(2π )n

∫
Rn

ei2j	(ϕ(x,ξ )–ϕ(y,ξ ))χ2
j
(
2j	ξ

)
a
(
x, 2j	ξ

)
a
(
y, 2j	ξ

)
dξ

=
2j	n

(2π )n

∫
Rn

(
LN

j ei2j	Φ
)
bj(x, yξ ) dξ

=
2j	n

(2π )n

∫
Rn

ei2j	Φ
(
L∗

j
)N bj dξ .
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Moreover, by (3.5), we see that

∂ξμ1

[ ∇ξΦ

|∇ξΦ|2 bj

]
=

(
∂ξμ1

[ ∇ξΦbj

|∇ξΦ|2
])

=
[

∂ξ1Φ

|∇ξΦ|2
]
∂ξμ1

bj + ∂ξμ1

[
∂ξ1Φ

|∇ξΦ|2
]

bj, . . . ,
[

∂ξnΦ

|∇ξΦ|2
]
∂ξμ1

bj

+ ∂ξμ1

[
∂ξnΦ

|∇ξΦ|2
]

bj,

which implies that

L∗
j bj = ∇ξ

[ ∇ξΦ

–i2j	|∇ξΦ|2 bj

]

=
1

–i2j	

n∑
l=1

{[
∂ξlΦ

|∇ξΦ|2
]
∂ξl bj + ∂ξl

[
∂ξlΦ

|∇ξΦ|2
]

bj

}
.

Thus

(
L∗

j
)N bj =

1
(–i2j	)N ∇ξ

{ ∇ξΦ

|∇ξΦ|2 · · ·
[
∇ξ

( ∇ξΦ

|∇ξΦ|2 bj

)]}

︸ ︷︷ ︸
N

=
1

(–i2j	)N

∑
α1+···+αN +β=N

∂α1

(
Φμ1

|∇Φ|2
)

· · · ∂αN

(
ΦμN

|∇Φ|2
)

∂βbj, (3.6)

where Φμk = ∂ξμk
Φ . Because of the following equation

∂k
ξ

(
Φμ

|∇Φ|2
)

=
∑

k0+k1+···+kj=k

Ck0,...,kj∂
k0
ξ Φμ∂

k1
ξ |∇Φ|2 · ∂kj

ξ |∇Φ|2
|∇Φ|2+2j ,

by Definition 2.6, we see that

∣∣∂k0
ξ Φμ

∣∣ � |x – y| and
∣∣∂k

ξ |∇Φ|2∣∣ � |x – y|2.

From this, together with (3.3) and (3.6), we further obtain

∣∣(L∗
j
)N bj

∣∣ � 1
2j	N · 1

|x – y|N 2jn(ρ–1)ω2(2j).

=
1

[2j	|x – y|]N 2jn(ρ–1)ω2(2j).

Integration by parts yields

Sj(x, y) =
2j	n

(2π )n

∫
Rn

ei2j	Φ
(
L∗

j
)N bj dξ

� 2j	n

[2j	|x – y|]N 2jn(ρ–1)ω2(2j)2j(1–	)n

=
2j	n

[2j	|x – y|]N ω2(2j).
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Thus,

∣∣Sj(x, y)
∣∣ N∑

l=0

(
2j	|x – y|)l � 2j	nω2(2j),

which implies that

∣∣Sj(x, y)
∣∣ � 2j	n

(1 + 2j	|x – y|)N ω2(2j).

This further gives

sup
x

∫
Rn

∣∣Sj(x, y)
∣∣dy � 2j	nω2(2j)∫

Rn

1
(1 + 2j	|x – y|)N dy

� ω2(2j)∫
Rn

1
(1 + |z|)N dz � ω2(2j).

By Young’s inequality, we obtain

∥∥Sju(x)
∥∥

L2 � ω2(2j)∥∥u(x)
∥∥

L2 .

Therefore, we have

∥∥T∗
j u

∥∥2
L2 =

〈
T∗

j u, T∗
j u

〉
=

〈
u, TjT∗

j u
〉

≤ ‖u‖L2‖Sju‖L2

≤ Cω2(2j)‖u‖2
L2 .

Namely,

‖Tju‖L2 ≤ Cω
(
2j)‖u‖L2 . (3.7)

Next we need a Littlewood–Paley decomposition. Let ψ0 : Rn → R be a smooth radial
function which is equal to one on the unit ball centric at the origin and supported on its
concentric double. Set ψ(ξ ) = ψ0(ξ ) – ψ0(2ξ ) and ψk(ξ ) = ψ(2–kξ ). Then

ψ0(ξ ) +
∞∑

k=1

ψk(ξ ) = 1 for all ξ ∈R
n,

and suppψk(ξ ) ⊂ {ξ : 2k–1 ≤ |ξ | ≤ 2k+1} for k ≥ 1. And we further have

û(ξ ) =
∞∑

k=0

û(ξ )ψk(ξ ) =
∞∑

k=0

ûk(ξ ).

Then

Ta,ϕu =
∞∑
j=1

Tju =
∞∑

k=0

∞∑
j=1

∫
Rn

eiϕ(x,ξ )aj(x, ξ )ûk(ξ ) dξ .
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For simplicity of notation, we write

∞∑
k=0

∞∑
j=1

∫
Rn

eiϕ(x,ξ )aj(x, ξ )ûk(ξ ) dξ =
∞∑
j=1

Tjuj,

where

uj =
∞∑

k=0

aj(x, ξ )ûk(ξ ).

From this, (3.7), Cauchy–Schwartz’s inequality, and Remark 2.1, it follows that

‖Ta,ϕu‖L2 =

∥∥∥∥∥
∞∑
j=0

Tjuj

∥∥∥∥∥
L2

�
∞∑
j=0

ω
(
2j)‖uj‖L2

�
( ∞∑

j=0

ω2(2j)
)1/2( ∞∑

j=0

‖uj‖2
L2

)1/2

� ‖u‖L2 .

This finishes the proof of Theorem 1.1.
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