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Abstract
Motivated by Pečarić et al. in (J. Math. Inequal. 11(2):543–5502017), we established
here weighted discrete dynamic inequalities for the difference of second divided
difference of 4-convex functions. Further we extend and unify the two inequalities, by
establishing the theory of n-convexity on time scales having constant graininess
function.
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1 Introduction
The two well-known equations of difference and differential equations were born due to
the sets of integers and real numbers, respectively. By virtue of a comprehensive study of
these kinds of equations, two different mathematical disciplines came into being, known
as discrete and continuous analysis. Many productive attempts have been made to bring
the two concepts together. Among those, the most significant attempt towards the unifi-
cation is considered to be the time scale theory. This theory was developed by Aulbach
and Hilger [2]. The pioneer of the theory provided efficient tools to unify discrete and con-
tinuous problems in his newly introduced theory. The classicist theories on an arbitrary
non-empty closed subset T of real numbers were extended to a set designated as time
scale. The two well-known particular cases of time scales are the set of integers Z and the
set of real numbers R. The applications of this theory have captured the attention of many
prolific researchers over the past few years. It has different applications in engineering,
biology, social sciences, neutral network, physics, and economics. For additional details
and basic notions of time scale calculus, we refer to [3–5].

Study and applications of convex functions and their different classes have a significant
place in the literature. Here we will discuss a special class of convex functions, known as
n-convex functions. The n-convexity or higher order convexity, for n ≥ 3, on an interval
was first considered by Hopf [6] in his dissertation. This was further studied in great detail
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by Popoviciu in [7, 8]. A detailed review of this class of functions is given in [9, 10]. Convex
functions have been defined on time scales by Dinu in 2008 [11]; after that large numbers
of inequalities for convex functions on time scales have been developed; see for example
[12, 13]. To the best of our knowledge n-convexity has not been defined on time scales yet.
In [14] Mikić and Pečarić developed some integral inequalities on time scales that hold
for n-convex functions but they defined their function on an interval on R. We need to
develop n-convex functions on time scales, in order to proceed towards our major results.

This paper is organized as follows. In Sect. 2 we give some preliminaries supporting
to the central results. Section 3.1 is devoted to defining n-convexity on time scales and
establishing a relationship between the nth divided difference and the nth ordered delta
derivatives on time scales. We develop discrete dynamic inequalities for the difference
of the second divided difference of 4-convex functions in Sect. 3.2. Finally in Sect. 3.3
we unify the inequalities defined in the preceding section, along with their continuous
versions established in [1] through the theory of time scales calculus.

2 Preliminaries
We accumulate in this section some fundamental preliminaries that are used throughout
the remaining part of the paper.

2.1 Time scale calculus
This part consists of the following basic concepts of time scales related to this article.

We quote [3]: “A time scale is defined to be an arbitrary closed subset of the real numbers
R, with the standard inherited topology. Since a time scale may or may not be connected,
we need the concept of jump operators, the forward jump operator and the backward
jump operator are defined by σ (ῐ) := inf{s ∈ T : s > ῐ}, and ρ(ῐ) := sup{s ∈ T : s < ῐ}, where
infφ = supT and supφ = infT. Thus, we classify the points ῐ ∈ T in such a manner that,
if σ (ῐ) > ῐ, then ῐ is right-scattered, and if ρ(ῐ) < ῐ, then ῐ is left-scattered. Points that are
right-scattered and left-scattered at the same time are called isolated. Also, if σ (ῐ) = ῐ, then
ῐ is said to be right-dense, and if ρ(ῐ) = ῐ, then ῐ is said to be left-dense. Points that are
simultaneously right-dense and left-dense are called dense. The mappings μ,ν : T −→
[0,∞) defined by

μ(ῐ) = σ (ῐ) – ῐ and ν(ῐ) = �ῐ – ρ(ῐ)

are called the forward and backward graininess functions respectively.”
Throughout this paper, an interval in time scales is denoted by IT = I ∩T, where I ⊆ R.

We define

T
K =

⎧
⎨

⎩

T \ S+ if T acquire a left-scattered maximum S+,

T otherwise.

Definition 2.1 ([3]) Assume u : T −→ R is a function and let ῐ ∈ T
K. Then we define

u�(ῐ) to be the number (provided it exists) with the property that, given any ε > 0, there is
a neighborhood UT of ῐ such that

∣
∣
(
u
(
σ (ῐ)

)
– u(s)

)
– u�(ῐ)

[
σ (ῐ) – s

]∣
∣ ≤ ε

∣
∣σ (ῐ) – s

∣
∣ for all s ∈ UT
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We call u�(ῐ) the delta derivative of u at ῐ. We say that u is delta differentiable on T
K

provided u�(ῐ) exists for all ῐ ∈ T
K.

Theorem 2.2 ([3]) For all ῐ ∈ T
K, we have the following:

a. If u is delta differentiable at ῐ, then u is continuous at ῐ.
b. If u is continuous at ῐ and ῐ is right-scattered, then u is delta differentiable at ῐ with

u�(ῐ) =
u(σ (ῐ)) – u(ῐ)

μ(ῐ)
.

c. If ῐ is right-dense, then u is delta differentiable at ῐ if and only if lims−→ῐ
u(ῐ)–u(s)

ῐ–s exists
as a finite number. In this case,

u�(ῐ) = lim
s−→ῐ

u(ῐ) – u(s)
ῐ – s

.

d. If u is delta differentiable at ῐ, then u(σ (ῐ)) = u(ῐ) + μ(ῐ)u�(ῐ).

Theorem 2.3 ([3]) Assume u, v : T−→ R are �-differentiable at ῐ ∈ T
K, then:

a. The sum, u + v is �-differentiable at ῐ, and

(u + v)�(ῐ) = u�(ῐ) + v�(ῐ).

b. For any constant k, ku is �-differentiable at ῐ, with

(ku)�(ῐ) = ku�(ῐ).

c. The product uv is �-differentiable at ῐ with

(uv)�(ῐ) = u�(ῐ)v(ῐ) + u
(
σ (ῐ)

)
v�(ῐ) = v�(ῐ)u(ῐ) + v

(
σ (ῐ)

)
u�(ῐ).

d. If u(ῐ)u(σ (ῐ)) 	= 0, then 1
u is �-differentiable at ῐ with

(
1
u

)�

(ῐ) = –
u�

u(ῐ)u(σ (ῐ))
.

Definition 2.4 ([3]) A function U : T −→ R is called a delta anti derivative of u : T −→ R

if U�(ῐ) = u(ῐ) for all ῐ ∈ T
K. Then we define the delta integral by

∫ ῐ

ta

u(s)�s = U(ῐ) – U(ta).

Definition 2.5 ([3]) A function u : T −→ R is called rd-continuous provided it is contin-
uous at right-dense points in T and its left-sided limits exist (finite) at left-dense points in
T. The set of rd-continuous functions u : T −→R is denoted by

Crd = Crd(T) = Crd(T,R).
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The set consisting of functions u : T −→R which are differentiable and whose derivative
is rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

Theorem 2.6 ([3]) If ta, tb, tc ∈ T, α ∈R and u, v ∈ Crd, then
a.

∫ tb
ta

[u(ῐ) + v(ῐ)]�ῐ =
∫ tb

ta
u(ῐ)�ῐ +

∫ tb
ta

v(ῐ)�ῐ;

b.
∫ tb

ta
(αu(ῐ)�ῐ) = α

∫ tb
ta

u(ῐ)�ῐ;

c.
∫ tb

ta
u(ῐ)�ῐ = –

∫ ta
tb

u(ῐ)�ῐ;

d.
∫ tb

ta
u(ῐ)�ῐ =

∫ tc
ta

u(ῐ)�ῐ +
∫ tb

tc
u(ῐ)�ῐ;

e.
∫ tb

ta
u(σ (ῐ))v�(ῐ)�ῐ = (uv)(tb) – (uv)(ta) –

∫ tb
ta

u�(ῐ)v(ῐ)�ῐ;

f.
∫ tb

ta
u(ῐ)v�(ῐ)�ῐ = (uv)(tb) – (uv)(ta) –

∫ tb
ta

u�(ῐ)v(σ (ῐ))�ῐ;

g.
∫ ta

ta
u(ῐ)�ῐ = 0;

h. If |u(ῐ)| ≤ v(ῐ) on [ta, tb), then

∣
∣
∣
∣

∫ tb

ta

u(ῐ)�ῐ

∣
∣
∣
∣ ≤

∫ tb

ta

v(ῐ)�ῐ;

i. If u(ῐ) ≥ 0 for all ta ≤ t < tb, then
∫ tb

ta
u(ῐ)�ῐ ≥ 0.

Definition 2.7 ([5]) We say ta < ῐ ∈ T
Kk–1 is a generalized zero (GZ) of order greater than

or equal to k of u if

u�j
(ῐ) = 0, j = 0, 1, . . . , k – 1.

Lemma 2.8 (Rolle’s theorem, [5]) If u has at least k ∈N GZs on T, counting multiplicities,
then u� has at least k – 1 GZs on T

K, counting multiplicities.

Remark 2.9 ([3]) u�σ and uσ� are not equal in general even if both exist which is clear
from the given relation

uσ� =
(
1 + μ�

)
u�σ ,

although for the time scales with constant graininess functions μ(ῐ), such as T = R, T = Z,

u�σ = uσ�. (2.1)

We intensively use this fact to accomplish the key results in Sects. 3.1 and 3.3.

2.2 Discrete calculus
This section recalls the following basic lemma from discrete calculus which is of great
interest.

Here we use these notations N = {0, 1, 2, . . .}, N(ta) = {ta, ta + 1, ta + 2, . . .}, where ta ∈ N,
N(ta, tb) = {ta, ta + 1, ta + 2, . . . , tb}, where ta < tb < ∞ and ta, tb ∈N.
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Lemma 2.10 ([15]) Let u(ῐ) and v(ῐ) be defined on N(ta). Then, for all ῐ ∈N(ta)
i. Product rule:

�
(
u(ῐ)v(ῐ)

)
= v(ῐ)�u(ῐ) + u(ῐ + 1)�v(ῐ)

= u(ῐ)�v(ῐ) + v(ῐ + 1)�u(ῐ).

ii. Summation by parts:

tb–1∑

ῐ=ta

u(ῐ)�v(ῐ) = u(ῐ)v(ῐ)|tb
ta –

tb–1∑

ῐ=ta

�u(ῐ)v(ῐ + 1).

2.3 n-Convex functions
Let u : I −→ R, where I is bounded and closed interval contained in R, and let a1, a2 ∈ I
then, for all δ ∈ [0, 1], if

u
(
δx1 + (1 – δ)a2

) ≤ δu(x1) + (1 – δ)u(a2)

holds, then u is known as a convex function.
Let x0 < x1 < · · · < xn be dissimilar points in I . An nth order divided difference of u for

these points is defined recursively as

[xi]u = u(xi) (0 ≤ i ≤ n).

Definition 2.11 The function u is called n-convex in [a, b] if we have

[x0, x1, . . . , xn]u ≥ 0

for all a ≤ x0 < x1 < · · · < xn ≤ b. u is called n-concave if –u is n-convex.

We state some basic properties of n-convex functions [9, 16]. The 0-convex function is
nonnegative function, 1-convex function is simply non-decreasing and a 2-convex func-
tion is just a convex. u is n-convex if and only if u(n) ≥ 0, provided that u(n) exists.

Definition 2.12 ([17]) If {an} is an n-convex real sequence, n ≥ 2, then

�na ≥ 0,

where �n is the nth forward difference.

A 2-convex sequence is just a convex sequence with

�2an = an – 2an+1 + an+2 ≥ 0.

It is clear that, if u : [0,∞) −→R is a convex function, then an = u(n) is a convex sequence.
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3 Main results
This section is devoted to providing our main results of this article. We are considering
the time scales having constant graininess functions throughout this section.

3.1 Higher order convexity on time scales
We have seen in the preliminaries section that n-convexity is defined through the nth
divided difference in the continuous as well as in the discrete case, so let us define the
divided difference in time scales first. Let ῐ0, ῐ1, . . . , ῐn ∈ T be n + 1 distinct points, then
consider the subset of T that is T̃ = {ῐ0, ῐ1, . . . , ῐn}, where T̃ is a closed subset of R which is
also a time scale. Now we can write every ῐi for i = 1, 2, . . . , n in terms of the forward value
of ῐ0,

ῐ1 = σ (ῐ0), ῐ2 = σ
(
σ (ῐ0)

)
= σ 2(ῐ0), . . . , ῐn = σ n(ῐ0).

Definition 3.1 The divided difference of the function u : T −→ R, for arguments ῐ0, ῐ1 is
denoted by u[ῐ0, ῐ1], and defined on T̃, by the given relation

u
[
ῐ0,σ (ῐ0)

]
=

u(σ (ῐ0)) – u(ῐ0)
σ (ῐ0) – ῐ0

=
u(ῐ0) – u(σ (ῐ0))

ῐ0 – σ (ῐ0)
= u

[
σ (ῐ0), ῐ0

]
.

The divided difference of three arguments ῐ0, ῐ1, ῐ2 can be defined in terms of two divided
differences of two arguments having a common argument, that is,

u
[
ῐ0,σ (ῐ0),σ 2(ῐ0)

]
=

u[σ (ῐ0),σ 2(ῐ0)] – u[ῐ0,σ (ῐ0)]
σ 2(ῐ0) – ῐ0

.

By proceeding in the same way we can define the divided difference of n + 1 arguments in
terms of two divided differences of n arguments,

u
[
ῐ0,σ (ῐ0), . . . ,σ n(ῐ0)

]
=

u[σ (ῐ0),σ 2(ῐ0), . . . ,σ n(ῐ0)] – u[t0,σ (ῐ0), . . . ,σ n–1(ῐ0)]
σ n(ῐ0) – ῐ0

.

Now we are able to define n-convex functions on time scales.

Definition 3.2 A function u : T −→R is called an n-convex function on time scales if the
condition holds that

u
[
ῐ0,σ (ῐ0), . . . ,σ n(ῐ0)

] ≥ 0.

For T = R or T = hZ, T̃ remains the same as T, that is, T̃ = {ῐ0,σ (ῐ0), . . . ,σ n(ῐ0)}.
We also need to prove that, if our function satisfies the smoothness condition, that is,

if u�n exists, u is n-convex if and only if u�n ≥ 0, for the first condition we require the
following results to establish the relation between divided difference and �-derivative.

Remark 3.3 In [3, P-14] the following formula is given to calculate the �n-derivative of
functions defined on time scales having constant graininess function μ(ῐ) = c,

f �n
(ῐ) =

1
cn

n∑

i=0

(
n
i

)

(–1)i–kf (ῐ + ck). (3.1)
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Let f (ῐ) = f1(ῐ) = a1 ῐ + a0 such that ῐ ∈ T and a0, a1 ∈ R, then (3.1) gets the following form
for n = 1:

f �
1 (ῐ) =

1
c

{(
1
0

)

(–1)1f1(ῐ) +
(

1
1

)

(–1)0f1(ῐ + c)
}

=
1
c
{–a1t – a0 + a1t + a1c + a0} = a11!.

If we let f (ῐ) = f2(ῐ) = a2 ῐ
2 + a1 ῐ + a0, then, for n = 2, we get

f �2
2 (ῐ) =

1
c2

{(
2
0

)

(–1)2f2(ῐ) +
(

2
1

)

(–1)1f2(ῐ + c) +
(

2
2

)

(–1)0f2(ῐ + 2c)
}

=
1
c2

{
a2 ῐ

2 + a1 ῐ + a0 – 2
(
a2 ῐ

2 + 2a2 ῐc + a2c2 + a1 ῐ + a1c + a0
)

+ a2 ῐ
2 + 4a2 ῐc + 4a2c2 + a1 ῐ + 2a1c + a0

}

= a22!.

Now for n = 3, we get f �3
3 (ῐ) = a33!, and so on.

In particular if we let f (ῐ) = fn(ῐ) = an ῐ
n + an–1 ῐ

n–1 + · · ·+ a1 ῐ+ a0 be a polynomial function
of degree n such that ῐ ∈ T and a0, a1, . . . , an ∈R, then

f �n
n (ῐ) = ann!. (3.2)

Theorem 3.4 Let u(ῐ) ∈ Cn
rd([ta, tb]T,R), let Tn–1(ῐ) be the interpolation polynomial for u(ῐ)

with respect to n distinct points from T̃, such that T̃ = {σ i(ῐ0)|ῐi ∈ T; i = 0, 1, . . . , n – 1}. Then,
for each ῐ ∈ [ta, tb]T there exists a point γ = γ (ῐ) in the open interval:

min
(
ῐ0,σ (ῐ0), . . . ,σ n–1(ῐ0), ῐ

)
= ta < γ < tb = max

(
ῐ0,σ (ῐ0), . . . ,σ n–1(ῐ0), ῐ

)
, (3.3)

such that

u(ῐ) – Tn–1(ῐ) ≡ Rn–1(ῐ) =
(ῐ – ῐ0)(ῐ – σ (ῐ0)) · · · (ῐ – σ n–1(ῐ0))

n!
u�n

(γ )

≡ ψn–1(ῐ)
n!

u�n
(γ ), (3.4)

where ψn–1(ῐ) = (ῐ – t0)(ῐ – σ (ῐ0)) · · · (ῐ – σ n–1(ῐ0)).

Proof Clearly

Rn–1(ῐ0) = Rn
(
σ (ῐ0)

)
= · · · = Rn–1

(
σ n–1(ῐ0)

)
= 0,

we define Gn–1(ῐ), for any ῐ 	= σ i(ῐ0), by setting

Rn–1(ῐ) = (ῐ – ῐ0)
(
ῐ – σ (ῐ0)

) · · · (ῐ – σ n–1(ῐ0)
)
Gn–1(ῐ) = ψn–1(ῐ)Gn–1(ῐ). (3.5)

By fixing ῐ we define another function Ω(s) by

Ω(s) = u(s) – Tn–1(s) – ψn–1(s)Gn–1(ῐ).
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Since Ω(s) ∈ Cn
rd([ta, tb]T,R) whenever u(s) ∈ Cn

rd([ta, tb]T,R), Ω�n (s) is defined in
[ta, tb]

TKn .
We see that Ω(s) has n + 1 GZs of order 1 in [ta, tb]T, namely

Ω(ῐ0) = Ω
(
σ (ῐ0)

)
= · · · = Ω

(
σ n–1(ῐ0)

)
= Ω(ῐ) = 0.

As there are n adjacent intervals in [ta, tb]T whose end points are GZs of Ω(s) of order 1, by
Rolle’s theorem on time scales [5, Lemma 8.9], in consideration of Ω(s) ∈ Cn

rd([ta, tb]T,R),
Ω�(s) has n GZs of order 1 in interval (3.3). They form at least n – 1 intervals, by applying
Rolle’s theorem again we get n – 1 distinct γi in these intervals on which Ω�2 (s) has GZs.
Thus, there are at least n – 1 distinct points in the interval (3.3) at which Ω�2 (s) has GZs.
Thus proceeding we get a point, say γ , in (3.3) as a GZ of the function Ω�n (s).

On the other hand, as we know that Tn–1(s) is an (n – 1)th degree polynomial function,
T�n

n–1(s) = 0, and by using (3.2) we can write [ψn–1(s)Gn–1(ῐ)]�n = 1.n!Gn–1(ῐ). Hence,

Ω�n
(s) = u�n

(s) – n!Gn–1(ῐ),

and since Ω�n (γ ) = 0, we obtain

Gn–1(ῐ) =
1
n!

u�n
(γ ), for ῐ 	= ῐ0,σ (ῐ0), . . . ,σ n–1(ῐ0). (3.6)

�

The next result gives the representation of divided difference of n + 1 points in terms of
the nth delta derivative.

Theorem 3.5 Let {ῐ0, ῐ1, . . . , ῐn–1} = T̃, ῐ ∈ [ta, tb]T, be n + 1 distinct points and let u(z) ∈
Cn

rd([ta, tb]T,R), then, for some point γ = γ (ῐ) in the interval

min
(
ῐ, ῐ0, . . . ,σ n–1(ῐ0)

)
= a < γ < b = max

(
ῐ, ῐ0, . . . ,σ n–1(ῐ0)

)
,

u
[
ῐ0, . . . ,σ n–1(ῐ0), ῐ

]
=

u�n (γ )
n!

.
(3.7)

Proof By (3.9),

u(ῐ) – Tn–1(ῐ) = (ῐ – ῐ0)
(
ῐ – σ (ῐ0)

) · · · (ῐ – σ n–1(ῐ0)
)
u
[
t0,σ (ῐ0), . . . ,σ n–1(ῐ0), ῐ

]

T
. (3.8)

We have to use Newton’s divided difference interpolation formula for n distinct inter-
polation points from T̃, the reader can follow the procedure given in [18, P-248],

u(ῐ) – Tn–1(ῐ) =

[n–1∏

j=0

(
ῐ – σ j(ῐ0)

)
]

u
[
ῐ0,σ (ῐ0), . . . ,σ n–1(ῐ0), ῐ

]
. (3.9)

Notice that Tn–1(ῐ) is an interpolation polynomial which is equal to u(ῐ) at the n points
ῐ0,σ (ῐ0), . . . ,σ n–1(ῐ0) it follows from Theorem 3.4 that

u(ῐ) – Tn–1(ῐ) ≡ Rn–1(ῐ)

= (ῐ – ῐ0)
(
ῐ – σ (ῐ0)

) · · · (ῐ – σ n–1(ῐ0)
)un(γ )

n!
. (3.10)
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By (ῐ – t0)(ῐ – σ (ῐ0)) · · · (ῐ – σ n–1(ῐ0)) 	= 0, the desired result follows by equating the right
hand-sides of (3.8) and (3.10). �

From the above discussion, we immediately conclude to the following result.

Corollary 3.6 u : T−→ R is n-convex if and only if u�n ≥ 0, provided that u�n exists.

3.2 The case of 4-convex sequence
Theorem 3.7 Let ϑ(ῐ) be defined on N[ta, tb] be 4-convex as well as 2-convex sequence.

Let w : N[ta, tb] −→ [0,∞) possess 2-concavity and satisfy

w(ῐ) = �w(ῐ) = �2w(ῐ) = �3w(ῐ) = 0, ῐ ∈ {a, b, a + 1}. (3.11)

Then the following estimate is valid:

tb–1∑

ῐ=ta

∣
∣�2ϑ(ῐ)

∣
∣2w(ῐ) ≤

tb–1∑

ῐ=ta

(
(ϑ(ῐ + 4))2

2
– max

∣
∣ϑ(ῐ)

∣
∣
∣
∣u(ῐ + 4)

∣
∣

)

�4w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
�ϑ(ῐ + 3)

)2
�3w(ῐ). (3.12)

Proof Let

B =
tb–1∑

ῐ=ta

�2ϑ(ῐ)�2ϑ(ῐ)w(ῐ),

and by applying summation by parts on B, we get

B = –
tb–1∑

ῐ=ta

�ϑ(ῐ + 1)�
(
�2ϑ(ῐ)w(ῐ)

)
,

note that here we used condition (3.11). Now we have to use the product rule for the
forward difference

B = –
tb–1∑

ῐ=ta

�ϑ(ῐ + 1)�3ϑ(ῐ)w(ῐ) –
tb–1∑

ῐ=ta

�ϑ(ῐ + 1)�2ϑ(ῐ + 1)�w(ῐ).

Again by applying the summation by parts formula to the first term, we get

B =
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) +
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�3ϑ(ῐ)�w(ῐ)

–
tb–1∑

ῐ=ta

�ϑ(ῐ + 1)�2ϑ(ῐ + 1)�w(ῐ).
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Applying the summation by parts formula to the second term this time, we get

B =
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

�ϑ(ῐ + 2)�2ϑ(ῐ + 1)�w(ῐ)

–
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�2ϑ(ῐ + 1)�2w(ῐ) –
tb–1∑

ῐ=ta

�ϑ(ῐ + 1)�2ϑ(ῐ + 1)�w(ῐ)

=
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1)

–
tb–1∑

ῐ=ta

(
�ϑ(ῐ + 2)�2ϑ(ῐ + 1) + ϑ(ῐ + 1)�2ϑ(ῐ + 1)

)
�w(ῐ)

–
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�2ϑ(ῐ + 1)�2w(ῐ)

=
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

�
(
�ϑ(ῐ + 1)

)2
�w(ῐ)

–
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�2ϑ(ῐ + 1)�2w(ῐ).

By applying the summation by parts formula to the second term twice, we get

B =
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�2ϑ(ῐ + 2)�2w(ῐ)

–
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�ϑ(ῐ + 3)�3w(ῐ) –
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�2ϑ(ῐ + 1)�2w(ῐ),

=
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

ϑ(ῐ + 3)
(
�2ϑ(ῐ + 2) + �2ϑ(ῐ + 1)

)
�2w(ῐ)

–
tb–1∑

ῐ=ta

ϑ(ῐ + 3)�ϑ(ῐ + 3)�3w(ῐ),

now by breaking up the last term and adding and subtracting the term 1
2
∑tb–1

ῐ=ta
ϑ(ῐ +

4)�u(ῐ + 3)�3w(ῐ), we get

B =
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

ϑ(ῐ + 3)
(
�2ϑ(ῐ + 2) + �2ϑ(ῐ + 1)

)
�2w(ῐ)

–
1
2

tb–1∑

ῐ=ta

(
ϑ(ῐ + 3)�ϑ(ῐ + 3) + ϑ(ῐ + 4)�ϑ(ῐ + 3)

)
�3w(ῐ)

+
1
2

tb–1∑

ῐ=ta

�ϑ(ῐ + 3)
(
ϑ(ῐ + 4) – ϑ(ῐ + 3)

)
�3w(ῐ).
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By using the third term with the difference of (ϑ(ῐ + 3))2, and the last term with the
difference of ϑ(ῐ + 3) and applying the summation by parts formula to the third term, we
get

B =
tb–1∑

ῐ=ta

ϑ(ῐ + 2)�4ϑ(ῐ)w(ῐ + 1) –
tb–1∑

ῐ=ta

ϑ(ῐ + 3)
(
�2ϑ(ῐ + 2) + �2ϑ(ῐ + 1)

)
�2w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
ϑ(ῐ + 4)

)2
�4w(ῐ) +

1
2

tb–1∑

ῐ=ta

�ϑ(ῐ + 3)
(
�ϑ(ῐ + 3)

)
�3w(ῐ).

We can write

B ≤ max
t∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

∣
∣�4ϑ(ῐ)

∣
∣w(ῐ + 1)

+ max
t∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

∣
∣�2ϑ(ῐ + 2) + �2ϑ(ῐ + 1)

∣
∣
∣
∣�2w(ῐ)

∣
∣

+
1
2

tb–1∑

ῐ=ta

(
ϑ(ῐ + 4)

)2
�4w(ῐ) +

1
2

tb–1∑

ῐ=ta

�ϑ(ῐ + 3)
(
�ϑ(ῐ + 3)

)
�3w(ῐ).

Now by using 2- as well as 4-convexity of ϑ(ῐ) and concavity of the weight function, we
get

B ≤ max
t∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

�4ϑ(ῐ)w(ῐ + 1)

– max
t∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

(
�2ϑ(ῐ + 2) + �2ϑ(ῐ + 1)

)
�2w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
ϑ(ῐ + 4)

)2
�4w(ῐ) +

1
2

tb–1∑

ῐ=ta

(
�ϑ(ῐ + 3)

)2
�3w(ῐ).

Finally by using the summation by parts formula four times on the first term and two
times on the second term, respectively, we get

B ≤ max
ῐ∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

ϑ(ῐ + 3)�4w(ῐ) – max
ῐ∈[ta ,tb]Z

∣
∣ϑ(ῐ)

∣
∣

tb–1∑

ῐ=ta

(
ϑ(ῐ + 4) + ϑ(ῐ + 3)

)
�4w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
ϑ(ῐ + 4)

)2
�4w(ῐ) +

1
2

tb–1∑

ῐ=ta

(
�ϑ(ῐ + 3)

)2
�3w(ῐ),

from which follows the desired inequality. �

The next result describes the energy estimates for the difference of two 4-convex se-
quences defined on N[ta, tb].
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Corollary 3.8 Let ϑ1, ϑ2 be 4-convex as well as 2-convex sequences defined on N[ta, tb],
and let w satisfy the conditions of Theorem 3.7. Then the following estimate is valid:

tb–1∑

ῐ=ta

∣
∣�2ϑ2(ῐ) – �2ϑ1(ῐ)

∣
∣2w(ῐ)

≤
tb–1∑

ῐ=ta

(
(ϑ2(ῐ + 4) – ϑ1(ῐ + 4))2

2
– max

∣
∣ϑ2(ῐ) – ϑ1(ῐ)

∣
∣
[
ϑ2(ῐ + 4) + ϑ1(ῐ + 4)

]
)

�4w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
�ϑ2(ῐ + 3) – �ϑ1(ῐ + 3)

)2w�3
(ῐ). (3.13)

Proof By letting ϑ(ῐ) = ϑ2(ῐ) – ϑ1(ῐ) we can write

∣
∣�2ϑ2(ῐ) – �2ϑ1(ῐ)

∣
∣ ≤ ∣

∣�2ϑ2(ῐ)
∣
∣ +

∣
∣�2ϑ1(ῐ)

∣
∣ = �2ϑ1(ῐ) + �2ϑ2(ῐ);

similarly

∣
∣�4ϑ2(ῐ) – �4ϑ1(ῐ)

∣
∣ ≤ ∣

∣�4ϑ2(ῐ)
∣
∣ +

∣
∣�4ϑ1(ῐ)

∣
∣ = �4ϑ1(ῐ) + �4ϑ2(ῐ),

then, by applying Theorem 3.7, we get

tb–1∑

ῐ=ta

∣
∣�2ϑ2(ῐ) – �2ϑ1(ῐ)

∣
∣2w(ῐ)

≤
tb–1∑

ῐ=ta

(
(ϑ2(ῐ + 4) – ϑ1(ῐ + 4))2

2
– max

∣
∣ϑ2(ῐ) – ϑ1(ῐ)

∣
∣
[
ϑ2(ῐ + 4) + ϑ1(ῐ + 4)

]
)

�4w(ῐ)

+
1
2

tb–1∑

ῐ=ta

(
�ϑ2(ῐ + 3) – �ϑ1(ῐ + 3)

)2w�3
(ῐ).

�

This leads us towards the following remark.

Remark 3.9 Let ϑ1, ϑ2 and w(ῐ) be similar in the earlier result. By applying the discrete
Hölder inequality, we obtain

tb–1∑

ῐ=ta

∣
∣�2ϑ2(ῐ) – �2ϑ1(ῐ)

∣
∣2w(ῐ) ≤

∣
∣
∣
∣
∣

tb–1∑

ῐ=ta

ϑ̃p(ῐ)

∣
∣
∣
∣
∣

1
p
∣
∣
∣
∣
∣

tb–1∑

ῐ=ta

�4wq(ῐ)

∣
∣
∣
∣
∣

1
q

+
1
2

tb–1∑

ῐ=ta

(
�ϑ2(ῐ + 3) – �ϑ1(ῐ + 3)

)2w�3 (ῐ), (3.14)

where

ϑ̃(ῐ) =
(ϑ2(ῐ + 4) – ϑ1(ῐ + 4))2

2
– max

∣
∣ϑ2(ῐ) – ϑ1(ῐ)

∣
∣
[
ϑ2(ῐ + 4) + ϑ1(ῐ + 4)

]
.
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3.3 The case of 4-convex functions on time scales
The subsequent results are of great significance, they unify the results presented in
Sect. 3.2 and the results established in [1], by using the tools of time scale calculus.

Theorem 3.10 Let u(ῐ) ∈ C4
rd([ta, tb]T,R) be 4-convex as well as 2-convex, let w be a non-

negative 2-concave function in C4
rd[ta, tb]T, satisfying

w(ῐ) = w�(ῐ) = w�2
(ῐ) = w�3

(ῐ) = 0, t ∈ {
a, b,σ (a)

}
. (3.15)

Then the following estimate is true:

∫ tb

ta

∣
∣u�2

(ῐ)
∣
∣2w(ῐ)�ῐ ≤

∫ tb

ta

(
(uσ 4 (ῐ))2

2
–

∥
∥u(ῐ)

∥
∥

L∞uσ 4
(ῐ)

)

w�4
(ῐ)�ῐ (3.16)

+
μ(ῐ)

2

∫ tb

ta

(
u�σ 3

(ῐ)
)2w�3

(ῐ)�ῐ. (3.17)

Proof Consider

A =
∫ tb

ta

[
u�2

(ῐ)
]2w(ῐ)�ῐ.

This can be written as

A =
∫ tb

ta

u�2
(ῐ)

(
u�2

(ῐ)w(ῐ)
)
�ῐ,

now applying the �-integration by parts formula, Theorem 2.6, we get

A = –
∫ tb

ta

u�σ (ῐ)
(
u�2

(ῐ)w(ῐ)
)�

�ῐ

= –
∫ tb

ta

u�σ (ῐ)u�3
(ῐ)w(ῐ)�ῐ –

∫ tb

ta

u�σ (ῐ)u�2σ (ῐ)w�(ῐ)�ῐ.

Here we used condition (3.15) on the weight function w. By applying (2.1) and �-
integration by parts to the first integral again, see Theorem 2.6, we get

A =
∫ tb

ta

uσσ (ῐ)u�3 (ῐ)w�(ῐ)�ῐ +
∫ tb

ta

uσσ (ῐ)u�4 (ῐ)wσ (ῐ)�ῐ

–
∫ tb

ta

u�σ (ῐ)u�2σ (ῐ)w�(ῐ)�ῐ. (3.18)

By applying (2.1) and the �-integration by parts formula to the first integral we get

A =
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ –

∫ tb

ta

[
u�σ (ῐ)u�2σ (ῐ) + u�σσ (ῐ)u�2σ (ῐ)

]
w�(ῐ)�ῐ

–
∫ tb

ta

uσ 3
(ῐ)u�2σ (ῐ)w�2

(ῐ)�ῐ
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=
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ –

∫ tb

ta

[(
u�σ (ῐ)

)2]�w�(ῐ)�ῐ

–
∫ tb

ta

uσ 3
(ῐ)u�2σ (ῐ)w�2

(ῐ)�ῐ.

Now by applying the �-integration by parts formula to the second integral we get

A =
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ +

∫ tb

ta

(
u�σσ (ῐ)

)2w��(ῐ)�ῐ –
∫ tb

ta

uσ 3
(ῐ)u�2σ (ῐ)w�2

(ῐ)�ῐ,

A =
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ –

∫ tb

ta

uσ 3
(ῐ)

[
u�2σσ (ῐ) + u�2σ (ῐ)

]
w�2

(ῐ)�ῐ

–
∫ tb

ta

uσ 3
(ῐ)u�σ 3

(ῐ)w�3
(ῐ)�ῐ,

now by breaking up the last term and adding and subtracting the term 1
2
∫ tb

ta
uσ 4 (ῐ)u�σ 3 (ῐ) ×

w�3 (ῐ)�ῐ, we get

A =
∫ tb

ta

uσσ (ῐ)u�4 (ῐ)wσ (ῐ)�ῐ –
∫ tb

ta

uσ 3 (ῐ)
[
u�2σσ (ῐ) + u�2σ (ῐ)

]
w�2 (ῐ)�ῐ

–
1
2

∫ tb

ta

[
uσ 3

(ῐ)u�σ 3
(ῐ) + uσ 4

(ῐ)u�σ 3
(ῐ)

]
w�3

(ῐ)�ῐ

+
1
2

∫ tb

ta

u�σ 3
(ῐ)uσ 4

(ῐ)w�3
(ῐ)�ῐ –

1
2

∫ tb

ta

u�σ 3
(ῐ)uσ 3

(ῐ)w�3
(ῐ)�ῐ.

By using the third term with the �-derivative of (uσ 3 )2, and applying the �-integration
by parts formula to it, we get

A =
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ –

∫ tb

ta

uσ 3
(ῐ)

[
u�2σσ (ῐ) + u�2σ (ῐ)

]
w�2

(ῐ)�ῐ

+
1
2

∫ tb

ta

(
uσ 4 (ῐ)

)2w�4 (ῐ)�ῐ +
1
2

∫ tb

ta

u�σ 3 (ῐ)
[
uσ 4 (ῐ) – uσ 3 (ῐ)

]
w�3 (ῐ)�ῐ. (3.19)

Now by using Theorem 2.2(d) we can write

A =
∫ tb

ta

uσσ (ῐ)u�4
(ῐ)wσ (ῐ)�ῐ –

∫ tb

ta

uσ 3
(ῐ)

[
u�2σσ (ῐ) + u�2σ (ῐ)

]
w�2

(ῐ)�ῐ

+
1
2

∫ tb

ta

(
uσ 4 (ῐ)

)2w�4 (ῐ)�ῐ +
1
2

∫ tb

ta

u�σ 3 (ῐ)
[
μσ 3 (ῐ)u�σ 3 (ῐ)

]
w�3 (ῐ)�ῐ.

We are considering the case of constant graininess functions only, so μσ 3 (ῐ) = μ(ῐ) for
all ῐ ∈ [ta, tb]T, and we have

∫ tb

ta

∣
∣u�2 (ῐ)

∣
∣2w(ῐ)�ῐ

≤ 1
2

∫ tb

ta

(
uσ 4

(ῐ)
)2w�4

(ῐ)�ῐ + sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

∣
∣u�4

(ῐ)
∣
∣wσ (ῐ)�ῐ
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+ sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

(∣
∣u�2σσ (ῐ)

∣
∣ +

∣
∣u�2σ (ῐ)

∣
∣
)∣
∣w�2

(ῐ)
∣
∣�ῐ

+
μ(ῐ)

2

∫ tb

ta

(
u�σ 3

(ῐ)
)2w�3

(ῐ)�ῐ.

By using 2-convexity and 4-convexity of u and the concavity of the weight function w,
the above inequality can get the form

∫ tb

ta

∣
∣u�2

(ῐ)
∣
∣2w(ῐ)�ῐ

≤ 1
2

∫ tb

ta

(
uσ 4

(ῐ)
)2w�4

(ῐ)�ῐ + sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

u�4
(ῐ)wσ (ῐ)�ῐ

– sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

(
u�2σσ (ῐ) + u�2σ (ῐ)

)
w�2 (ῐ)�ῐ

+
μ(ῐ)

2

∫ tb

ta

(
u�σ 3

(ῐ)
)2w�3

(ῐ)�ῐ.

Finally by integrating the second integral four times and the third integral two times on
the right hand side, by applying the �-integration by parts formula and (2.1), we get

∫ tb

ta

∣
∣u�2

(ῐ)
∣
∣2w(ῐ)�ῐ

≤ 1
2

∫ tb

ta

(
uσ 4

(ῐ)
)2w�4

(ῐ)�ῐ + sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

uσ 3
(ῐ)w�4

(ῐ)�ῐ

– sup
t∈[ta ,tb]T

∣
∣u(ῐ)

∣
∣
∫ tb

ta

(
uσ 4

(ῐ) + uσ 3
(ῐ)

)
w�4

(ῐ)�ῐ

+
μσ 3 (ῐ)

2

∫ tb

ta

∣
∣u�σ 3

(ῐ)
∣
∣2∣∣w�3

(ῐ)
∣
∣�ῐ,

from which follows the desired inequality (3.16). �

The succeeding result represents the energy estimates for the difference of two 4-convex
functions on time scales.

Corollary 3.11 Let u1, u2 ∈ C4
rd([ta, tb]T,R) be smooth 4-convex as well as 2-convex, and

let w satisfy the conditions of Theorem 3.10. Then the following estimate is valid:

∫ tb

ta

∣
∣u�2

2 (ῐ) – u�2
1 (ῐ)

∣
∣2w(ῐ)�ῐ

≤
∫ tb

ta

(
1
2
∥
∥uσ 4

2 (ῐ) – uσ 4
1 (ῐ)

∥
∥2

L∞ –
∥
∥u2(ῐ) – u1(ῐ)

∥
∥

L∞
∥
∥uσ 4

2 (ῐ) + uσ 4
1 (ῐ)

∥
∥

L∞

)

w�4
(ῐ)�ῐ

+
μ(ῐ)

2

∫ tb

ta

(
u�σ 3

2 (ῐ) – u�σ 3
1 (ῐ)

)2w�3
(ῐ)�ῐ. (3.20)
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Proof Assume u(ῐ) = u2(ῐ) – u1(ῐ) then we can prove a result similar to Theorem 3.10, but
the last term will get the form, through (3.19),

1
2

∫ tb

ta

(
u�σ 3

2 (ῐ) – u�σ 3
1 (ῐ)

)[(
uσ 4

2 (ῐ) – uσ 4
1 (ῐ)

)
–

(
uσ 3

2 (ῐ) – uσ 3
1 (ῐ)

)]
w�3

(ῐ)�ῐ

=
1
2

∫ tb

ta

(
u�σ 3

2 (ῐ) – u�σ 3
1 (ῐ)

)[
μ(ῐ)u�σ 3

2 (ῐ) – μ(ῐ)u�σ 3
1 (ῐ)

]
w�3 (ῐ)�ῐ

=
μ(ῐ)

2

∫ tb

ta

(
u�σ 3

2 (ῐ) – u�σ 3
1 (ῐ)

)2w�3
(ῐ)�ῐ. �

We sum up this section with the following remark.

Remark 3.12 Let u1, u2 ∈ C4
rd([ta, tb]T,R) and w(ῐ) be similar in the earlier result. By apply-

ing Hölder’s inequality on time scale [13], our estimate will get the following form:

∫ tb

ta

∣
∣u�2

2 (ῐ) – u�2
1 (ῐ)

∣
∣2w(ῐ)�ῐ

≤ ∥
∥ũ(ῐ)

∥
∥

Lp

∥
∥w�4

(ῐ)
∥
∥

Lq
+

μ(ῐ)
2

∫ tb

ta

(
u�σ 3

2 (ῐ) – u�σ 3
1 (ῐ)

)2w�3
(ῐ)�ῐ, (3.21)

where ũ(ῐ) = 1
2‖uσ 4

2 (ῐ) – uσ 4
1 (ῐ)‖2

L∞ – ‖u2(ῐ) – u1(ῐ)‖L∞‖uσ 4
2 (ῐ) + uσ 4

1 (ῐ)‖L∞ .
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