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Abstract
We use the definition of a new class of fractional integral operators, recently
introduced by Ahmad et al. in [J. Comput. Appl. Math. 353:120–129, 2019], to establish
a fractional-type integral identity with one parameter. We derive some parameterized
integral inequalities for convex mappings based on this identity, and provide two
examples to illustrate the investigated results as well. Moreover, we present
applications of our findings to special means of real numbers, and error estimations
for the quadrature formula in numerical analysis.
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1 Introduction
Throughout this paper, let I ⊆R be a real interval and I◦ be the interior of I .

Let u : I → R be a convex mapping on the interval I , for any a, b ∈ I with a < b. Then
one has

u
(

a + b
2

)
≤ 1

b – a

∫ b

a
u(τ ) dτ ≤ u(a) + u(b)

2
, (1.1)

which is called a Hermite–Hadamard inequality. This well-known inequality gives esti-
mates for the mean value of a continuous convex mapping u : [a, b] →R.

For recent results obtained in terms of inequality (1.1), we refer the reader to [7, 15, 18,
19, 22, 31, 32, 35] and the references therein.

Another classical inequality of equal significance, which is named Simpson’s inequality,
is expressed as follows:

∣∣∣∣1
6

[
u(a) + 4u

(
a + b

2

)
+ u(b)

]
–

1
b – a

∫ b

a
u(τ ) dτ

∣∣∣∣ ≤ 1
2880

∥∥u(4)∥∥∞(b – a)4, (1.2)
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where u : I → R is a four-order continuously differentiable mapping on I◦ with ‖u(4)‖∞ =
supτ∈I◦ |u(4)(τ )| < ∞.

Many inequalities have been established in terms of inequality (1.2) via functions of dif-
ferent classes, such as convex functions [10], geometrically relative convex functions [24],
extended (s, m)-convex functions [9], p-quasi-convex functions [12], preinvex functions
[6], and h-convex functions [20].

In [27], the authors gave certain inequalities for twice differentiable convex mappings
related to Hadamard’s inequality. They used the following lemma to derive their results.

Lemma 1.1 Let u : I → R be a twice differentiable function on I◦, a, b ∈ I with a < b. If
u′′ ∈ L1([a, b]), then the following equality holds:

1
b – a

∫ b

a
u(τ ) dτ – u

(
a + b

2

)

=
(b – a)2

2

∫ 1

0
h(t)

[
u′′(ta + (1 – t)b

)
+ u′′(tb + (1 – t)a

)]
dt, (1.3)

where

h(t) =

⎧⎨
⎩

t2, t ∈ [0, 1
2 ],

(1 – t)2, t ∈ ( 1
2 , 1].

In [3], using mappings whose twice derivatives absolute values are quasi-convex, Alo-
mari et al. presented some Hadamard inequalities based on the following lemma.

Lemma 1.2 Let u : I → R be a twice differentiable function on I◦, a, b ∈ I with a < b. If
u′′ ∈ L1([a, b]), then the following equality holds:

u(a) + u(b)
2

–
1

b – a

∫ b

a
u(τ ) dτ =

(b – a)2

2

∫ 1

0
t(1 – t)u′′(ta + (1 – t)b

)
dt. (1.4)

In [26], Sarikaya and Aktan gave the following general integral identity for twice differ-
entiable mappings.

Lemma 1.3 Let u : I → R be a twice differentiable function on I◦, a, b ∈ I with a < b. For
0 ≤ ξ ≤ 1, if u′′ ∈ L1([a, b]), then the following equality holds:

(ξ – 1)u
(

a + b
2

)
– ξ

u(a) + u(b)
2

+
1

b – a

∫ b

a
u(τ ) dτ

=
(b – a)2

2

∫ 1

0
D(t)u′′(ta + (1 – t)b

)
dt, (1.5)

where

D(t) =

⎧⎨
⎩

t(t – ξ ), t ∈ [0, 1
2 ],

(1 – t)(1 – ξ – t), t ∈ ( 1
2 , 1].



Zhou et al. Journal of Inequalities and Applications        (2020) 2020:163 Page 3 of 20

Fractional calculus, as a very useful tool, has become a fascinating field of mathemat-
ics. This field has attracted many researchers to consider this issue. As a result, some
well-known integral inequalities by the approach of fractional calculus have been car-
ried out by many authors, including Chen [4] and Mohammed [23] in the study of
the Hermite–Hadamard inequality, and Set et al. [29] in the Simpson type integral in-
equality for Riemann–Liouville fractional integrals, Chen and Katugampola [5] in the
Hermite–Hadamard–Fejér type inequality for Katugampola fractional integrals, Wang
et al. [33] in the Ostrowski type inequality for Hadamard fractional integrals, Du et al.
[8] in the extensions of trapezium inequalities for k-fractional integrals, and Khan et al.
[14] in the Hermite–Hadamard inequality for conformable fractional integrals. For more
results related to the fractional integral operators, the interested reader is directed to
[1, 11, 13, 16, 17, 21, 25, 28, 30] and the references cited therein.

In 2019, Ahmad et al. [2] proposed a new fractional integral operators with an exponen-
tial kernel as follows.

Definition 1.1 Let g ∈ L1([a, b]). The fractional integrals Iα
a+ g and Iα

b– g of order α ∈ (0, 1)
are, respectively, defined by

Iα
a+ g(x) =

1
α

∫ x

a
e(– 1–α

α (x–τ ))g(τ ) dτ , x > a,

and

Iα
b– g(x) =

1
α

∫ b

x
e(– 1–α

α (τ–x))g(τ ) dτ , x < b.

Note that

lim
α→1

Iα
a+ g(x) =

∫ x

a
g(τ ) dτ , lim

α→1
Iα

b– g(x) =
∫ b

x
g(τ ) dτ .

In the same paper, they established a fractional version of Hermite–Hadamard type in-
volving exponential kernels as follows.

Theorem 1.1 Let g : [a, b] → R be a positive convex mapping with 0 ≤ a < b. If g ∈
L1([a, b]), then the following inequality for fractional integrals with an exponential kernel
holds:

g
(

a + b
2

)
≤ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

] ≤ g(a) + g(b)
2

, (1.6)

where

ρ =
1 – α

α
(b – a).

In [34], Wu et al. obtained an inequality of Hermite–Hadamard type involving twice
differentiable convex mappings. They used the following lemma to prove their result.
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Lemma 1.4 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b. If
g ′′ ∈ L1([a, b]), then the following identity holds:

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
–

g(a) + g(b)
2

=
(b – a)2

2ρ(1 – e–ρ)

∫ 1

0

(
e–ρt + e–ρ(1–t) – 1 – e–ρ

)
g ′′(ta + (1 – t)b

)
dt. (1.7)

Using fractional integrals with an exponential kernel, another integral identity involving
twice differentiable mapping was presented by Wu et al. [34] as follows.

Lemma 1.5 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b. If
g ′′ ∈ L1([a, b]), then the following identity holds:

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– g

(
a + b

2

)

=
(b – a)2

2

∫ 1

0
m(t)g ′′(ta + (1 – t)b

)
dt, (1.8)

where

m(t) =

⎧⎨
⎩

t – 1+e–ρ–e–ρt–e–ρ(1–t)

ρ(1–e–ρ ) , t ∈ [0, 1
2 ],

(1 – t) – 1+e–ρ–e–ρt–e–ρ(1–t)

ρ(1–e–ρ ) , t ∈ ( 1
2 , 1].

Motivated by the results mentioned above, especially the results developed in [2] and
[34], we notice that it is possible to deal with these results uniformly via the fractional
integrals with exponential kernels. For this purpose, we establish a general fractional-type
integral identity for twice differentiable mappings. Using this integral identity, we derive
certain parameterized fractional-type inequalities, which unifies Simpson’s inequality, the
averaged midpoint-trapezoid inequality, and the trapezoid inequality. This is the main
contribution of this work.

2 Main results
To prove our primary theorems, we present the following lemma.

Lemma 2.1 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b. If
g ′′ ∈ L1([a, b]) and 0 ≤ λ ≤ 1, then the following identity for fractional integrals holds:

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

=
(b – a)2

2

∫ 1

0
w(t)g ′′(ta + (1 – t)b

)
dt, (2.1)

where

w(t) =

⎧⎨
⎩

t(1 – λ) – 1+e–ρ–e–ρt–e–ρ(1–t)

ρ(1–e–ρ ) , t ∈ [0, 1
2 ],

(1 – t)(1 – λ) – 1+e–ρ–e–ρt–e–ρ(1–t)

ρ(1–e–ρ ) , t ∈ ( 1
2 , 1].
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Proof Multiplying (1.7) by λ and (1.8) by (1 – λ) on both sides, respectively, and adding
the resulting equalities obtained as a result, we get (2.1). Therefore, we deduce the desired
result. �

By means of Lemma 2.1, we derive the following general integral inequalities.

Theorem 2.1 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b sat-
isfying g ′′ ∈ L1([a, b]) and 0 ≤ λ ≤ 1. If |g ′′| is convex on [a, b], then the following inequality
holds:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2

2

(
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
+

1 – λ

8

)(∣∣g ′′(a)
∣∣ +

∣∣g ′′(b)
∣∣). (2.2)

Proof Using Lemma 2.1 and the definition of w(t), we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2

2

[∫ 1
2

0

∣∣∣∣t(1 – λ) –
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

∣∣∣∣
∣∣g ′′(ta + (1 – t)b

)∣∣dt

+
∫ 1

1
2

∣∣∣∣(1 – t)(1 – λ) –
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

∣∣∣∣
∣∣g ′′(ta + (1 – t)b

)∣∣dt
]

≤ (b – a)2

2

[∫ 1
2

0
t(1 – λ)

∣∣g ′′(ta + (1 – t)b
)∣∣dt

+
∫ 1

1
2

(1 – t)(1 – λ)
∣∣g ′′(ta + (1 – t)b

)∣∣dt

+
∫ 1

0

∣∣∣∣1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

∣∣∣∣
∣∣g ′′(ta + (1 – t)b

)∣∣dt
]

. (2.3)

Since 2e– ρ
2 ≤ e–ρt + e–ρ(1–t) ≤ 1 + e–ρ for any t ∈ [0, 1] and |g ′′| is convex on [a, b], we obtain

∫ 1

0

∣∣∣∣1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

∣∣∣∣
∣∣g ′′(ta + (1 – t)b

)∣∣dt

≤
∫ 1

0

1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)
(
t
∣∣g ′′(a)

∣∣ + (1 – t)
∣∣g ′′(b)

∣∣)dt

=
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
(∣∣g ′′(a)

∣∣ +
∣∣g ′′(b)

∣∣). (2.4)

On the other hand,

∫ 1
2

0
t(1 – λ)

∣∣g ′′(ta + (1 – t)b
)∣∣dt +

∫ 1

1
2

(1 – t)(1 – λ)
∣∣g ′′(ta + (1 – t)b

)∣∣dt

≤ (1 – λ)(|g ′′(a)| + |g ′′(b)|)
8

. (2.5)
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Using (2.4) and (2.5) in (2.3), we get the desired result in (2.2). Thus, the proof is com-
pleted. �

Corollary 2.1 Under all assumptions of Theorem 2.1, if |g ′′(x)| ≤ M on [a, b], then we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2M

(
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
+

1 – λ

8

)
.

Corollary 2.2 Consider Theorem 2.1.
(1) For λ = 0, we have Theorem 3 established by Wu et al. in [34].
(2) For λ = 1

3 , we have the following Simpson inequality:

∣∣∣∣1
6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣
≤ (b – a)2

2

(
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
+

1
12

)(∣∣g ′′(a)
∣∣ +

∣∣g ′′(b)
∣∣).

(3) For λ = 1
2 , we have the following averaged midpoint-trapezoid integral inequality:

∣∣∣∣1
4

[
g(a) + 2g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣
≤ (b – a)2

2

(
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
+

1
16

)(∣∣g ′′(a)
∣∣ +

∣∣g ′′(b)
∣∣).

(4) For λ = 1, we have Theorem 2 established by Wu et al. in [34].

Remark 2.1 In (2.2) of Theorem 2.1, if we take α → 1, i.e. ρ = 1–α
α

(b – a) → 0, then we
have

lim
α→1

1 – α

2(1 – e–ρ)
=

1
2(b – a)

(2.6)

and

lim
α→1

ρ + ρe–ρ + 2e–ρ – 2
2ρ2(1 – e–ρ)

=
1

12
. (2.7)

Thus, Theorem 2.1 is transformed to

∣∣∣∣ 1
b – a

∫ b

a
g(x) dx – (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2

2

(
1

12
+

1 – λ

8

)(∣∣g ′′(a)
∣∣ +

∣∣g ′′(b)
∣∣). (2.8)

Specially, putting λ = 1, we have Proposition 2 established by Sarikaya and Aktan in [26].
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Remark 2.2 For λ = 1
3 and α → 1, we have the following Simpson inequality:

∣∣∣∣1
6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
–

1
b – a

∫ b

a
g(x) dx

∣∣∣∣
≤ (b – a)2

12
(∣∣g ′′(a)

∣∣ +
∣∣g ′′(b)

∣∣).

Remark 2.3 For λ = 1
2 and α → 1, we have the averaged midpoint-trapezoid integral in-

equality:

∣∣∣∣1
4

[
g(a) + 2g

(
a + b

2

)
+ g(b)

]
–

1
b – a

∫ b

a
g(x) dx

∣∣∣∣
≤ 7(b – a)2

96
(∣∣g ′′(a)

∣∣ +
∣∣g ′′(b)

∣∣).

Before giving the following results, we recall that hyperbolic tangent function is defined
by

tanh(x) =
sinh(x)
cosh(x)

=
ex – e–x

ex + e–x .

Theorem 2.2 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b sat-
isfying g ′′ ∈ L1([a, b]) and 0 ≤ λ ≤ 1. For q > 1 with p–1 + q–1 = 1, if |g ′′|q is convex on [a, b],
then the following inequalities for fractional integrals hold:

(1) For 0 ≤ λ < 1, we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2(1 – λ)
2

(
2

p + 1

) 1
p
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)p+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

. (2.9)

(2) For λ = 1, we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
–

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2 tanh( ρ

4 )
2ρ

( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

. (2.10)

Proof First, suppose that 0 ≤ λ < 1. Utilizing Lemma 2.1, the definition of w(t), and the
Hölder inequality, we obtain

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2

2

∫ 1

0

∣∣w(t)
∣∣∣∣g ′′(ta + (1 – t)b

)∣∣dt
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≤ (b – a)2

2

(∫ 1

0

∣∣w(t)
∣∣p dt

) 1
p
(∫ 1

0

∣∣g ′′(ta + (1 – t)b
)∣∣q dt

) 1
q

=
(b – a)2

2

(∫ 1
2

0

∣∣w1(t)
∣∣p dt +

∫ 1

1
2

∣∣w2(t)
∣∣p dt

) 1
p

×
(∫ 1

0

∣∣g ′′(ta + (1 – t)b
)∣∣q dt

) 1
q

, (2.11)

where

w1(t) = t(1 – λ) –
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)
, t ∈

[
0,

1
2

]
,

and

w2(t) = (1 – t)(1 – λ) –
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)
, t ∈

(
1
2

, 1
]

.

Owing to 2e– ρ
2 ≤ e–ρt + e–ρ(1–t) ≤ 1 + e–ρ for any t ∈ [0, 1], we have

∫ 1

1
2

∣∣w2(t)
∣∣p dt =

∫ 1
2

0

∣∣w1(t)
∣∣p dt

≤
∫ 1

2

0

(
t(1 – λ) +

1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)p

dt

≤
∫ 1

2

0

(
t(1 – λ) +

1 + e–ρ – 2e– ρ
2

ρ(1 – e–ρ)

)p

dt

= (1 – λ)p
∫ 1

2

0

(
t +

(1 – e– ρ
2 )2

ρ(1 – e–ρ)(1 – λ)

)p

dt

= (1 – λ)p 1
p + 1

[(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)p+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)p+1]
.

As a result,

∫ 1

0

∣∣w(t)
∣∣p dt ≤ (1 – λ)p 2

p + 1

[(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)p+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)p+1]
. (2.12)

Since |g ′′|q is convex on [a, b], we get

∫ 1

0

∣∣g ′′(ta + (1 – t)b
)∣∣q dt ≤ |g ′′(a)|q + |g ′′(b)|q

2
. (2.13)

Using (2.12) and (2.13) in (2.11), we obtain the desired result in (2.9). Thus, this ends the
proof for this case.

Now, suppose that λ = 1. The remainder of the argument is analogous to that of part one
in Theorem 2.2 and we omit the details. Thus, the proof of Theorem 2.2 is completed. �
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Corollary 2.3 Under all assumptions of Theorem 2.2, if |g ′′(x)| ≤ M on [a, b], then we ob-
tain

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤
⎧⎨
⎩

M(b–a)2(1–λ)
2 ( 2

p+1 )
1
p [( 1

2 + tanh( ρ
4 )

ρ(1–λ) )p+1 – ( tanh( ρ
4 )

ρ(1–λ) )p+1]
1
p , 0 ≤ λ < 1,

M(b–a)2 tanh( ρ
4 )

2ρ
, λ = 1.

Corollary 2.4 Consider Theorem 2.2.
(1) For λ = 0, we have the following midpoint inequality:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– g

(
a + b

2

)∣∣∣∣

≤ (b – a)2

2

(
2

p + 1

) 1
p
[(

1
2

+
tanh( ρ

4 )
ρ

)p+1

–
(

tanh( ρ

4 )
ρ

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

(2) For λ = 1
3 , we have the following Simpson inequality:

∣∣∣∣1
6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

3

(
2

p + 1

) 1
p
[(

1
2

+
3 tanh( ρ

4 )
2ρ

)p+1

–
(3 tanh( ρ

4 )
2ρ

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

(3) For λ = 1
2 , we have the following averaged midpoint-trapezoid integral inequality:

∣∣∣∣1
4

[
g(a) + 2g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

4

(
2

p + 1

) 1
p
[(

1
2

+
2 tanh( ρ

4 )
ρ

)p+1

–
(2 tanh( ρ

4 )
ρ

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

Remark 2.4 In (2.9) of Theorem 2.2, if we take α → 1, i.e. ρ = 1–α
α

(b – a) → 0, then we
have

lim
α→1

(1 – e– ρ
2 )2

ρ(1 – e–ρ)
=

1
4

. (2.14)
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Using (2.6) and (2.14) in (2.9), Theorem 2.2 is transformed to

∣∣∣∣ 1
b – a

∫ b

a
g(x) dx – (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2(1 – λ)
2

(
2

p + 1

) 1
p

×
[(

1
2

+
1

4(1 – λ)

)p+1

–
(

1
4(1 – λ)

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

. (2.15)

Theorem 2.3 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b sat-
isfying g ′′ ∈ L1([a, b]) and 0 ≤ λ < 1. If |g ′′|q is convex on [a, b] with q > 1, then the following
inequality holds:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2(1 – λ)
2

(
2

q + 1

) 1
q
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)q+1] 1
q

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

. (2.16)

Proof Utilizing Lemma 2.1, the definition of w(t), and the Hölder inequality, we obtain

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2

2

(∫ 1

0
1 dt

) 1
p
(∫ 1

0

∣∣w(t)g ′′(ta + (1 – t)b
)∣∣q dt

) 1
q

≤ (b – a)2

2

(∣∣g ′′(a)
∣∣q

∫ 1

0
t
∣∣w(t)

∣∣q dt +
∣∣g ′′(b)

∣∣q
∫ 1

0
(1 – t)

∣∣w(t)
∣∣q dt

) 1
q

. (2.17)

Using the properties of integration, we get

∫ 1

0
t
∣∣w(t)

∣∣q dt =
∫ 1

2

0
t
∣∣w1(t)

∣∣q dt +
∫ 1

1
2

t
∣∣w2(t)

∣∣q dt

with

∫ 1
2

0
t
∣∣w1(t)

∣∣q dt ≤
∫ 1

2

0
t
(

t(1 – λ) +
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)q

dt

≤
∫ 1

2

0
t
(

t(1 – λ) +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)

)q

dt

= (1 – λ)q
∫ 1

2

0
t
(

t +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)(1 – λ)

)q

dt
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and
∫ 1

1
2

t
∣∣w2(t)

∣∣q dt ≤
∫ 1

1
2

t
(

(1 – t)(1 – λ) +
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)q

dt

≤
∫ 1

1
2

t
(

(1 – t)(1 – λ) +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)

)q

dt

= (1 – λ)q
∫ 1

1
2

t
(

(1 – t) +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)(1 – λ)

)q

dt,

where

∫ 1
2

0
t
(

t +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)(1 – λ)

)q

dt

=
1

2(q + 1)

(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
1

(q + 1)(q + 2)

(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+2

+
1

(q + 1)(q + 2)

(
tanh( ρ

4 )
ρ(1 – λ)

)q+2

and

∫ 1

1
2

t
(

(1 – t) +
(1 – e– ρ

2 )2

ρ(1 – e–ρ)(1 – λ)

)q

dt

= –
1

(q + 1)

(
tanh( ρ

4 )
ρ(1 – λ)

)q+1

+
1

2(q + 1)

(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
1

(q + 1)(q + 2)

(
tanh( ρ

4 )
ρ(1 – λ)

)q+2

+
1

(q + 1)(q + 2)

(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+2

.

Thus,

∫ 1

0
t
∣∣w(t)

∣∣q dt ≤ (1 – λ)q 1
q + 1

[(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)q+1]
. (2.18)

Analogously,

∫ 1

0
(1 – t)

∣∣w(t)
∣∣q dt ≤ (1 – λ)q 1

q + 1

[(
1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)q+1]
. (2.19)

Using (2.18) and (2.19) in (2.17), we deduce the desired result in (2.16). Thus, the proof is
completed. �

Corollary 2.5 Under all assumptions of Theorem 2.3, if |g ′′(x)| ≤ M on [a, b], then the
following inequality is true:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ M(b – a)2(1 – λ)
2

(
2

q + 1

) 1
q
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)q+1] 1
q

.
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Corollary 2.6 Consider Theorem 2.3.
(1) For λ = 0, we have the following midpoint inequality:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– g

(
a + b

2

)∣∣∣∣

≤ (b – a)2

2

(
2

q + 1

) 1
q
[(

1
2

+
tanh( ρ

4 )
ρ

)q+1

–
(

tanh( ρ

4 )
ρ

)q+1] 1
q

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

(2) For λ = 1
3 , we have the following Simpson inequality:

∣∣∣∣1
6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

3

(
2

q + 1

) 1
q
[(

1
2

+
3 tanh( ρ

4 )
2ρ

)q+1

–
(3 tanh( ρ

4 )
2ρ

)q+1] 1
q

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

(3) For λ = 1
2 , we have the averaged midpoint-trapezoid integral inequality:

∣∣∣∣1
4

[
g(a) + 2g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

4

(
2

q + 1

) 1
q
[(

1
2

+
2 tanh( ρ

4 )
ρ

)q+1

–
(2 tanh( ρ

4 )
ρ

)q+1] 1
q

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

.

Theorem 2.4 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b sat-
isfying g ′′ ∈ L1([a, b]) and 0 ≤ λ ≤ 1. If |g ′′|q is convex on [a, b] with q > 1, then the following
inequality holds:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2

2

(
1 – λ

4
+

ρ + ρe–ρ + 2e–ρ – 2
ρ2(1 – e–ρ)

)( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

. (2.20)

Proof Utilizing Lemma 2.1, the definition of w(t), and the power-mean integral inequality,
we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2

2

∫ 1

0

∣∣w(t)
∣∣∣∣g ′′(ta + (1 – t)b

)∣∣dt
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≤ (b – a)2

2

(∫ 1

0

∣∣w(t)
∣∣dt

)1– 1
q
(∫ 1

0

∣∣w(t)
∣∣∣∣g ′′(ta + (1 – t)b

)∣∣q dt
) 1

q

≤ (b – a)2

2

(∫ 1

0

∣∣w(t)
∣∣dt

)1– 1
q

×
(∣∣g ′′(a)

∣∣q
∫ 1

0
t
∣∣w(t)

∣∣dt +
∣∣g ′′(b)

∣∣q
∫ 1

0
(1 – t)

∣∣w(t)
∣∣dt

) 1
q

. (2.21)

Using the properties of the modulus and direct computation, we obtain

∫ 1

0

∣∣w(t)
∣∣dt =

∫ 1
2

0

∣∣w1(t)
∣∣dt +

∫ 1

1
2

∣∣w2(t)
∣∣dt

≤
∫ 1

2

0

(
t(1 – λ) +

1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)
dt

+
∫ 1

1
2

(
(1 – t)(1 – λ) +

1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)
dt

=
1 – λ

4
+

ρ + ρe–ρ + 2e–ρ – 2
ρ2(1 – e–ρ)

(2.22)

and

∫ 1

0
(1 – t)

∣∣w(t)
∣∣dt =

∫ 1

0
t
∣∣w(t)

∣∣dt

=
∫ 1

2

0
t
∣∣w1(t)

∣∣dt +
∫ 1

1
2

t
∣∣w2(t)

∣∣dt

≤
∫ 1

2

0
t
(

t(1 – λ) +
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)
dt

+
∫ 1

1
2

t
(

(1 – t)(1 – λ) +
1 + e–ρ – e–ρt – e–ρ(1–t)

ρ(1 – e–ρ)

)
dt

=
1 – λ

8
+

ρ + ρe–ρ + 2e–ρ – 2
2ρ2(1 – e–ρ)

. (2.23)

Using (2.22) and (2.23) in (2.21), we obtain the desired result in (2.20). Thus, the proof is
completed. �

Corollary 2.7 Under all assumptions of Theorem 2.4, if |g ′′(x)| ≤ M on [a, b], then the
following inequality is true:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ (b – a)2M

2

(
ρ + ρe–ρ + 2e–ρ – 2

ρ2(1 – e–ρ)
+

1 – λ

4

)
.
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Corollary 2.8 Consider Theorem 2.4.
(1) For λ = 0, we have the following midpoint inequality:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– g

(
a + b

2

)∣∣∣∣

≤ (b – a)2

2

(
1
4

+
ρ + ρe–ρ + 2e–ρ – 2

ρ2(1 – e–ρ)

)( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

.

(2) For λ = 1
3 , we have the following Simpson inequality:

∣∣∣∣1
6

[
g(a) + 4g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

2

(
1
6

+
ρ + ρe–ρ + 2e–ρ – 2

ρ2(1 – e–ρ)

)( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

.

(3) For λ = 1
2 , we have the averaged midpoint-trapezoid integral inequality:

∣∣∣∣1
4

[
g(a) + 2g

(
a + b

2

)
+ g(b)

]
–

1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]∣∣∣∣

≤ (b – a)2

2

(
1
8

+
ρ + ρe–ρ + 2e–ρ – 2

ρ2(1 – e–ρ)

)( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

.

(4) For λ = 1, we have the trapezoid inequality:

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
–

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2(ρ + ρe–ρ + 2e–ρ – 2)
2ρ2(1 – e–ρ)

( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

.

Remark 2.5 Using (2.6) and (2.7) in (2.20), Theorem 2.4 is transformed to

∣∣∣∣ 1
b – a

∫ b

a
g(x) dx – (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣

≤ (b – a)2

2

(
1 – λ

4
+

1
6

)( |g ′′(a)|q + |g ′′(b)|q
2

) 1
q

. (2.24)

Corollary 2.9 Under all assumptions of Theorems 2.1–2.4 with 0 ≤ λ < 1, we have

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
≤ min{L1,L2,L3,L4},

where

L1 = (b – a)2M
(

ρ + ρe–ρ + 2e–ρ – 2
2ρ2(1 – e–ρ)

+
1 – λ

8

)
,
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L2 =
M(b – a)2(1 – λ)

2

(
2

p + 1

) 1
p

×
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)p+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)p+1] 1
p

,

L3 =
M(b – a)2(1 – λ)

2

(
2

q + 1

) 1
q

×
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)q+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)q+1] 1
q

and

L4 =
(b – a)2M

2

(
ρ + ρe–ρ + 2e–ρ – 2

ρ2(1 – e–ρ)
+

1 – λ

4

)
.

3 Examples
In this section, we provide two examples to illustrate our main results.

Example 3.1 Let g(x) = x2, for x ∈ (–∞,∞). Then |g ′′| is convex on (–∞,∞). If we take
a = 0, b = 1, α = 1

2 and λ = 1
4 , then all assumptions in Theorem 2.1 are satisfied.

Clearly, ρ = 1–α
α

(b – a) = 1. The left-hand side term of (2.2) is

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
=

∣∣∣∣ 1
2(1 – e–1)

(∫ 1

0
es–1s2 ds +

∫ 1

0
e–ss2 ds

)
–

5
16

∣∣∣∣
=

∣∣∣∣ 1
2(1 – e–1)

((
1 – 2e–1) +

(
2 – 5e–1)) –

5
16

∣∣∣∣ ≈ 0.0235.

The right-hand side term of (2.2) is

(b – a)2

2

(
ρ + ρe–ρ + 2e–ρ – 2

2ρ2(1 – e–ρ)
+

1 – λ

8

)(∣∣g ′′(a)
∣∣ +

∣∣g ′′(b)
∣∣)

=
3e–1 – 1
(1 – e–1)

+
3

16
≈ 0.3515.

It is clear that 0.0235 < 0.3515, which demonstrates the result described in Theorem 2.1.

Example 3.2 Let g(x) = ex, for x ∈ (–∞,∞). Then |g ′′|q is convex on (–∞,∞). If we take
a = 0, b = 1, α = 1

2 , λ = 1
2 and p = 2 = q, then all assumptions in Theorem 2.2 are satisfied.

Clearly, ρ = 1–α
α

(b – a) = 1. The left-hand side term of (2.9) is

∣∣∣∣ 1 – α

2(1 – e–ρ)
[
Iα

a+ g(b) + Iα
b– g(a)

]
– (1 – λ)g

(
a + b

2

)
– λ

g(a) + g(b)
2

∣∣∣∣
=

∣∣∣∣ 1
2(1 – e–1)

(∫ 1

0
es–1es ds +

∫ 1

0
e–ses ds

)
–

1
2

e
1
2 –

1 + e
4

∣∣∣∣
=

∣∣∣∣ 1
2(1 – e–1)

(
e – e–1

2
+ 1

)
–

1
2

e
1
2 –

1 + e
4

∣∣∣∣ ≈ 0.0334.
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The right-hand side term of (2.9) is

(b – a)2(1 – λ)
2

(
2

p + 1

) 1
p
[(

1
2

+
tanh( ρ

4 )
ρ(1 – λ)

)p+1

–
(

tanh( ρ

4 )
ρ(1 – λ)

)p+1] 1
p

×
( |g ′′(a)|q + |g ′′(b)|q

2

) 1
q

=
1
4

(
1 + e2

3

) 1
2
[(

1
2

+ 2 tanh

(
1
4

))3

–
(

2 tanh

(
1
4

))3] 1
2 ≈ 0.3859.

It is clear that 0.0334 < 0.3859, which demonstrates the result described in Theorem 2.2.

Remark 3.1 Theorems 2.1–2.4 provide an upper bound for the approximation of the frac-
tional integrals 1–α

2(1–e–ρ ) [Iα
a+ g(b) + Iα

b– g(a)]. There exist certain integral functions that can-
not be expressed by elementary functions. So Theorems 2.1–2.4 are of importance to deal
with such integral functions. For example, let g(x) = e–x2+x, for x ∈ [2,∞). Then |g ′′|q for
q ≥ 1 is convex on [2,∞). If we take a = 2, b = 3, α = 1

2 and λ = 1
2 , then all assumptions in

Theorem 2.3 are satisfied.
Clearly, ρ = 1–α

α
(b – a) = 1. The left-hand side term of (2.16) is

∣∣∣∣ 1
2(1 – e–1)

(
e–2

∫ 3

2
e–(s–1)2

ds + e2
∫ 3

2
e–s2

ds
)

–
1
2

e– 15
4 –

1
2

e–2 + e–6

2

∣∣∣∣. (3.1)

Obviously, the term
∫ 3

2 e–(s–1)2 ds and
∫ 3

2 e–s2 ds cannot be solved directly due to the fact that∫
e–s2 ds cannot be expressed by elementary functions. However, applying Theorem 2.3

with q = 2, we obtain an upper bound for (3.1), i.e.

1
4

(
2
3

) 1
2
[(

1
2

+ 2 tanh

(
1
4

))3

–
(

2 tanh

(
1
4

))3] 1
2
(

(7e–2)2 + (23e–6)2

2

) 1
2

≈ 0.1265. (3.2)

4 Application to special means
We consider the following means for arbitrary real numbers m, n (m �= n).

(a) The arithmetic mean:

A(m, n) =
m + n

2
.

(b) The geometric mean:

G(m, n) =
√

mn, mn ≥ 0.

(c) The harmonic mean:

H(m, n) =
2

1
m + 1

n
, m, n ∈R \ {0}, m �= –n.
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(d) The logarithmic mean:

L(m, n) =
m – n

ln |m| – ln |n| , |m| �= |n|, mn �= 0.

(e) The generalized logarithmic mean:

Lr(m, n) =
[

nr+1 – mr+1

(n – m)(r + 1)

] 1
r
, r ∈ Z \ {–1, 0}, m �= n.

(f ) The identric mean:

I(m, n) =

⎧⎨
⎩

m, m = n,
1
e ( nn

mm ) 1
n–m , m �= n,

m, n > 0.

We have the following results.

Proposition 4.1 Let m, n ∈R, m < n, 0 ≤ λ ≤ 1 and r ∈ Z, |r| ≥ 2. Then

∣∣Lr
r(m, n) – (1 – λ)Ar(m, n) – λA

(
mr , nr)∣∣

≤ (n – m)2
(

1
12

+
1 – λ

8

)
r(r – 1)A

(|m|r–2, |n|r–2).

Proof Applying the mapping g(x) = xr , x ∈R, |r| ≥ 2 to Remark 2.1, we obtain the required
result. �

Proposition 4.2 Let m, n ∈R, 0 < m < n and 0 ≤ λ ≤ 1. Then

∣∣L–1(m, n) – (1 – λ)A–1(m, n) – λH–1(m, n)
∣∣

≤ (n – m)2(1 – λ)
(

2
p + 1

) 1
p
[(

1
2

+
1

4(1 – λ)

)p+1

–
(

1
4(1 – λ)

)p+1] 1
p

× A
1
q
(
m–3q, n–3q).

Proof Applying the mapping g(x) = 1
x , for x > 0 to Remark 2.4, we obtain the required

result. �

Proposition 4.3 Let m, n ∈R, 0 < m < n and 0 ≤ λ ≤ 1. Then

∣∣– ln I(m, n) + (1 – λ) ln A(m, n) + λ ln G(m, n)
∣∣

≤ (n – m)2

2

(
1 – λ

4
+

1
6

)
A

1
q
(
m–2q, n–2q).

Proof Applying the mapping g(x) = – ln x, for x > 0 to Remark 2.5, we obtain the required
result. �

Next, we give an application using trapezoid formula and midpoint formula. Let X : a =
x0 < x1 < · · · < xn–1 < xn = b be a division of the interval [a, b]. We consider the following
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quadrature formula:

∫ b

a
g(x) dx = Ti(g, X) + Ei(g, X), i = 1, 2, (4.1)

where

T1(g, X) =
n–1∑
i=0

g(xi) + g(xi+1)
2

(xi+1 – xi) (4.2)

is the trapezoid version, and

T2(g, X) =
n–1∑
i=0

g
(

xi + xi+1

2

)
(xi+1 – xi), (4.3)

is the midpoint version. The related approximation error is denoted by Ei(g, X), i = 1, 2.
Now, we derive an error estimate related to trapezoid formula and midpoint formula.

Proposition 4.4 Let g : [a, b] → R be a twice differentiable mapping on (a, b) with a < b.
If g ′′ ∈ L1([a, b]) and |g ′′| is convex on [a, b] with 0 ≤ λ ≤ 1, for every division X of [a, b], the
following inequality holds:

∣∣λE1(g, X) + (1 – λ)E2(g, X)
∣∣ ≤

n–1∑
i=0

(xi+1 – xi)3

2

(
1

12
+

1 – λ

8

)(∣∣g ′′(xi)
∣∣ +

∣∣g ′′(xi+1)
∣∣).

Proof Using Eqs. (4.1), (4.2) and (4.3), we have

λE1(g, X) = λ

∫ b

a
g(x) dx – λT1(g, X)

and

(1 – λ)E2(g, X) = (1 – λ)
∫ b

a
g(x) dx – (1 – λ)T2(g, X).

Applying Remark 2.1 on the subinterval [xi, xi+1] (i = 0, 1, . . . , n – 1) of the division X, we
deduce

∣∣∣∣
∫ xi+1

xi

g(x) dx – (1 – λ)g
(

xi + xi+1

2

)
(xi+1 – xi) – λ

g(xi) + g(xi+1)
2

(xi+1 – xi)
∣∣∣∣

≤ (xi+1 – xi)3

2

(
1

12
+

1 – λ

8

)(∣∣g ′′(xi)
∣∣ +

∣∣g ′′(xi+1)
∣∣).

Summing over from 0 to n – 1 and utilizing the convexity of |g ′′|, we have

∣∣λE1(g, u) + (1 – λ)E2(g, u)
∣∣

=
∣∣∣∣
∫ b

a
g(x) dx – (1 – λ)T2(g, X) – λT1(g, X)

∣∣∣∣
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=

∣∣∣∣∣
n–1∑
i=0

[∫ xi+1

xi

g(x) dx – (1 – λ)g
(

xi + xi+1

2

)
(xi+1 – xi) – λ

g(xi) + g(xi+1)
2

(xi+1 – xi)
]∣∣∣∣∣

≤
n–1∑
i=0

∣∣∣∣
∫ xi+1

xi

g(x) dx – (1 – λ)g
(

xi + xi+1

2

)
(xi+1 – xi) – λ

g(xi) + g(xi+1)
2

(xi+1 – xi)
∣∣∣∣

≤
n–1∑
i=0

(xi+1 – xi)3

2

(
1

12
+

1 – λ

8

)(∣∣g ′′(xi)
∣∣ +

∣∣g ′′(xi+1)
∣∣).

Thus, the proof is completed. �

Remark 4.1 For λ = 0, we have

∣∣E2(g, X)
∣∣ ≤

n–1∑
i=0

5(xi+1 – xi)3

48
(∣∣g ′′(xi)

∣∣ +
∣∣g ′′(xi+1)

∣∣),

which is given by Wu et al. in [34], Proposition 4.

Remark 4.2 For λ = 1, we have

∣∣E1(g, X)
∣∣ ≤

n–1∑
i=0

(xi+1 – xi)3

24
(∣∣g ′′(xi)

∣∣ +
∣∣g ′′(xi+1)

∣∣).

5 Conclusion
Using the fractional integrals with exponential kernels, certain inequalities related to the
Hermite–Hadamard and Simpson inequalities for convex mappings are established. The
inequalities are parameterized by the parameter 0 ≤ λ ≤ 1. These inequalities general-
ize and extend parts of the results provided by Wu et al. in [34]. Some applications of
the obtained results to special means and quadrature formula are also presented. With
these contributions, we hope to motivate the interested researcher to further explore this
enchanting field of the fractional integral inequalities based on these techniques and the
ideas developed in the present paper.
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