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Abstract
The purpose of the present paper is to introduce and study a sequence of positive
linear operators defined on suitable spaces of measurable functions on [0,∞) and
continuous function spaces with polynomial weights. These operators are
Kantorovich type generalization of Jakimovski–Leviatan operators based on multiple
Appell polynomials. Using these operators, we approximate suitable measurable
functions by knowing their mean values on a sequence of subintervals of [0,∞) that
do not constitute a subdivision of it. We also discuss the rate of convergence of these
operators using moduli of smoothness.
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1 Introduction
A multiple polynomial system [10] {sn1,n2 (x)} is called multiple Appell if it has a generating
function of the form

H(t1, t2)ex(t1+t2) =
∞∑

n1=0

∞∑

n2=0

sn1,n2 (x)
n1!n2!

tn1
1 tn2

2 , (1.1)

where H(t1, t2) has a series expansion

H(t1, t2) =
∞∑

n1=0

∞∑

n2=0

an1,n2

n1!n2!
tn1
1 tn2

2 , (1.2)

with H(0, 0) = a0,0 �= 0 and an1,n2
H(1,1) ≥ 0 for all n1, n2 ∈ N. Also, (1.1) and (1.2) converge for

|t1| ≤ R1, |t2| ≤ R2 (R1, R2 > 1). sn1,n2 is a multiple polynomial system, and for every n1 +
n2 ≥ 1, this satisfies the following relationship:

s′
n1,n2 (x) = n1sn1–1,n2 (x) + n2sn1,n2–1(x).
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Also, for the multiple Appell polynomial systems sn1,n2 (x), there exists a sequence
{an1,n2}∞n1,n2=0 with a0,0 �= 0 such that

sn1,n2 (x) =
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
an1–k1,n2–k2 xk1+k2 . (1.3)

Therefore, sn1,n2 (x) is a polynomial in x of degree n1 + n2.
Using these Appell polynomials, Varma [18] defined a generalization of Szász operators

[17] as follows:

Sn(f ; x) =
e–nx

H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!
f
(

n1 + n2

n

)
. (1.4)

He also defined the Kantorovich type modification of these operators as follows:

K∗
n (f ; x) =

ne–nx

H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!

∫ n1+n2+1
n

n1+n2
n

f (u) du, (1.5)

and obtained the rate of convergence of these operators in terms of the classical modulus
of continuity. Alternatively, the operator given by (1.5) may be expressed as

K∗
n (f ; x) =

∫ ∞

0
Kn(x, u)f (u) du,

where Kn(x, u) = ne–nx

H(1,1)
∑∞

n1=0
∑∞

n2=0
sn1,n2 ( nx

2 )
n1!n2! χ[ n1+n2

n , n1+n2+1
n ](u), χ[ n1+n2

n , n1+n2+1
n ](u) being the

characteristic function of [ n1+n2
n , n1+n2+1

n ] on [0,∞).
The purpose of the present paper is to make a generalization of these operators that

extends to the unbounded setting an idea given in [6] where the authors studied a modifi-
cation of Kantorovich operators. We refer the reader to some of the related papers [1, 2, 7–
9, 11–14, 16].

In this paper we will study the following sequence (Pn) of positive linear operators:

Pn(h; x) =
ne–nx

(bn – cn)H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!

∫ n1+n2+bn
n

n1+n2+cn
n

h(u) du (n ≥ 1, x ≥ 0). (1.6)

For every h ∈ 	[0,∞) (the space of all Borel measurable locally integrable functions g :
[0,∞) → R such that the antiderivative G(x) =

∫ x
0 g(t) dt (x ≥ 0) belongs to �([0,∞)), the

space of all functions b : [0,∞) → R such that |b(x)| ≤ Merx (x ≥ 0) for some M ≥ 0 and
r ∈R).

Here (cn)n≥1 and (bn)n≥1 are two sequences of real numbers satisfying 0 ≤ cn < bn ≤ 1
for every n ≥ 1. If cn = 0 and bn = 1 for all n ≥ 1, then the Pn ’s (operators in (1.6) turn into
(1.5). By using Pn ’s we can reconstruct some suitable continuous or integrable functions
by knowing their mean values on subinterval of [0,∞) which do not necessarily constitute
a subdivision of [0,∞).

We will study the approximation properties of (Pn) for every n ≥ 1 on several continuous
and weighted continuous function spaces as well as on Lebesgue spaces. We also discuss
the rate of convergence of these operators by using appropriate moduli of smoothness.
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2 Generalizing Jakimovski–Leviatan operators
Throughout this paper the following notations are used:

℘[0,∞): The space of all continuous real-valued functions on [0,∞).
℘b[0,∞): The subspace of all functions in ℘[0,∞) which are bounded. This space en-

dowed with the sup-norm and the natural pointwise ordering is a Banach lattice.
℘∗[0,∞): The space of all continuous functions converging at infinity. This space is a

Banach sublattice of ℘b([0,∞)).
℘0[0,∞): subspace of ℘∗[0,∞), consisting of all those functions that vanish at infinity.

Moreover, for every m ≥ 1, we set rm(y) = (1 + ym)–1 (y ≥ 0) and

Gm :=
{

h ∈ ℘[0,∞)
∣∣ sup

y≥0
rm(y)

∣∣h(y)
∣∣ ∈R

}
;

Gm is a Banach lattice endowed with the pointwise ordering and the weighted norm

‖h‖m := sup
y≥0

rm(y)
∣∣h(y)

∣∣ (h ∈ Gm).

The following space is the Banach sublattices of Gm:

G∗
m :=

{
h ∈ Gm

∣∣ lim
y→∞ rm(y)h(y) ∈R

}
.

For a given g ∈ 	([0,∞)) and G(x) =
∫ x

0 g(t) dt, the antiderivative of g(x), operators given
in (1.6) may be expressed as

Pn(g; x) =
ne–nx

(bn – cn)H(1, 1)

×
∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!

[
G

(
n1 + n2 + bn

n

)
– G

(
n1 + n2 + cn

n

)]
(2.1)

=
n

(bn – cn)
Sn

(
τn(G)

)
(x), (2.2)

where Sn is given by (1.4) and the mapping τn is defined as

τn(G)(x) := G
(

n1 + n2 + bn

n

)
– G

(
n1 + n2 + cn

n

)
(x ≥ 0),

Pn(g) can also be written as

Pn(g)(x) =
∫ +∞

0
g dμn,x (n ≥ 1, x ≥ 0), (2.3)

where

μn,x =
ne–nx

(bn – cn)H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!
μn,k ,

and each μn,k denotes the Borel measure on [0,∞) having density, the characteristic func-
tion of [ n1+n2+cn

n , n1+n2+bn
n ] w.r.t. the Borel–Lebesgue measure on [0,∞). Throughout the
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paper the symbol cm denotes the function xm by setting cm(x) = xm for every m ≥ 0 and
for every x ≥ 0. Particularly c0 = 1, where 1 denotes the constant function on [0,∞) of
constant value 1. Finally, we shall set ρx(y) = y – x (y ≥ 0) and x is a fixed nonnegative real
number.

3 Preliminaries
Lemma 1 For operators (1.6), the estimates of moments are as follows [18]:

(i) Pn(1; y) = 1;

(ii) Pn(t; y) = y +
1
2

bn + cn

n
+

Ht1 (1, 1) + Ht2 (1, 1)
nH(1, 1)

;

(iii) Pn
(
t2; y

)
= y2 +

y
n

(
1 +

bn + cn

n
+ 2

(Ht1 (1, 1) + Ht2 (1, 1))
H(1, 1)

)
+

b2
n + c2

n + bncn

3n2

× 1
n2H(1, 1)

{
Ht1 (1, 1)(1 + bn + cn) + Ht2 (1, 1)(1 + bn + cn)

+ Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)
}

;

(iv) Pn
(
ρy(t); y

)
=

1
2

bn + cn

n
+

Ht1 (1, 1) + Ht2 (1, 1)
nH(1, 1)

;

(v) Pn
(
ρ2

y (t); y
)

=
y
n

+
1

n2H(1, 1)
{

Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1)

+ Ht2t2 (1, 1) + 2Ht1t2 (1, 1)
}

+
b2

n + c2
n + bncn

n2 +
1
n

(bn + cn)
(

Ht1 (1, 1) + Ht2 (1, 1)
nH(1, 1)

)
.

Proposition 1 For every ρ > 0, let fρ(x) = e–ρx where x ≥ 0. Then

Sn(fρ)(x) =
H(e

–ρ
n , e

–ρ
n )

H(1, 1)
exp

(
nx

(
e

–ρ
n – 1

))
. (3.1)

Proof

Sn(fρ)(x) =
e–nx

H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!
e–ρ( n1+n2

n ). (3.2)

Putting x = nx
2 and t1 = t2 = e( –ρ

n ) in (1.1), we get

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!
e–ρ( n1+n2

n ) = H
(
e

–ρ
n , e

–ρ
n

)
e

nx
2 (e

–ρ
n +e

–ρ
n ). (3.3)

Using (3.3) in (3.2), we have the result. �

Proposition 2

Pn(fρ) =
n

ρ(bn – cn)
(
e

–ρcn
n – e

–ρbn
n

)
Sn(fρ) (3.4)

for every n ≥ 1.
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Moreover, for every n ≥ 1 and ρ > 0,

Pn(fρ) ≤ Sn(fρ). (3.5)

Proof (3.4) holds after a straightforward computation, and the proof of (3.5) is as follows:

n
ρ(bn – cn)

(
e

–ρcn
n – e

–ρbn
n

) ≤ n
ρ(bn – cn)

(
1 – e–( ρbn

n – ρcn
n )) ≤ 1

since 1 – e–x ≤ x (x ≥ 0). �

Theorem 1 The operator Pn for every n ≥ 1 defined by (1.6) has the following properties:
(i) Pn is a positive and continuous linear operator from ℘b([0,∞)) to ℘b([0,∞)) and

‖Pn‖℘b([0,∞)) = 1.
(ii) Pn(℘0([0,∞))) ⊂ ℘0([0,∞)).

Proof (i) For any f ∈ ℘b([0,∞)), there exists an Mf depending on f such that |f | ≤ Mf .
Therefore, for every n ≥ 1,

∣∣Pn(f )
∣∣ ≤ ne–nx

(bn – cn)H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!

∫ n1+n2+bn
n

n1+n2+cn
n

∣∣f (u)
∣∣du

≤ Mf ,

and Pn(1) = 1. Hence ‖Pn‖℘b([0,∞)) = 1.
(ii) For fixed h ∈ ℘0([0,∞)) and ε ≥ 0, there exists u ≥ 0 such that |h(x)| ≤ ε

4 for any
x ≥ u – 1. Now, since Tm(x)e–nx → 0 as x → ∞, where Tm(x) is any polynomial of degree
m ∈N in x for every m, therefore there exists v > u such that, for every x ≥ v,

Tm(x)e–nx ≤ ε

4‖h‖∞(n[u] + 1)2

for any m = 0, 1, . . . , 2n[u], where [u] denotes the integer part of u.
Using (1.3), we have sn1,n2 ( nx

2 )
H(1,1) is a polynomial of degree n1 +n2. Therefore, for every x ≥ v,

we have

∣∣Pn(h; x)
∣∣ ≤ n

bn – cn

n[u]∑

n1=0

n[u]∑

n2=0

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

∫ n1+n2+bn
n

n1+n2+cn
n

∣∣h(t)
∣∣dt

+
n

bn – cn

∞∑

n1=n[u]+1

n[u]∑

n2=0

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

∫ n1+n2+bn
n

n1+n2+cn
n

∣∣h(t)
∣∣dt

+
n

bn – cn

n[u]∑

n1=0

∞∑

n2=n[u]+1

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

∫ n1+n2+bn
n

n1+n2+cn
n

∣∣h(t)
∣∣dt

+
n

bn – cn

∞∑

n1=n[u]+1

∞∑

n2=n[u]+1

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

∫ n1+n2+bn
n

n1+n2+cn
n

∣∣h(t)
∣∣dt

≤ ε

4
+

ε

4

∞∑

n1=0

∞∑

n2=0

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)
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+
ε

4

∞∑

n1=0

∞∑

n2=0

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

+
ε

4

∞∑

n1=0

∞∑

n2=0

e–nx sn1,n2 ( nx
2 )

n1!n2!H(1, 1)

= ε. �

Theorem 2 If f ∈ ℘∗([0,∞)), then limn→∞ Pn(f ) = f uniformly on [0,∞).
Moreover, if f ∈ ℘b([0,∞)), then limn→∞ Pn(f ) = f uniformly on every compact subset of

[0,∞).

Proof To prove the first part, it suffices to show that Pn(f ) → f for every f ∈ ℘0([0,∞))
or, in fact, for each function fρ defined in Proposition 1 since the subspace generated by
them is dense in ℘0([0,∞)) and the sequence (Pn)n≥1 is equibounded on ℘0([0,∞)). Now,
by using (3.1), for every x ≥ 0 and n ≥ 1, we get

∣∣Pn(fρ)(x) – fρ(x)
∣∣

≤
∣∣∣∣

n
ρ(bn – cn)

(
e–ρ

cn
n – e–ρ

bn
n

)
– 1

∣∣∣∣Sn(fρ)(x) +
∣∣Sn(fρ)(x) – fρ(x)

∣∣.

Now since

Sn(fρ)(x) =
e–nx

H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!
e–ρ( n1+n2

n )

≤ e–nx

H(1, 1)

∞∑

n1=0

∞∑

n2=0

sn1,n2 ( nx
2 )

n1!n2!

= 1.

We have

∣∣Pn(fρ)(x) – fρ(x)
∣∣

≤
∣∣∣∣

n
ρ(bn – cn)

(
e–ρ

cn
n – e–ρ

bn
n

)
– 1

∣∣∣∣ +
∣∣Sn(fρ)(x) – fρ(x)

∣∣,

and by using the inequality n
ρ(bn–cn) (e–ρ

cn
n – e–ρ

bn
n ) ≤ 1 (proved in Proposition 2), we get

∣∣Pn(fρ)(x) – fρ(x)
∣∣

≤
(

1 –
n

ρ(bn – cn)
(
e–ρ

cn
n – e–ρ

bn
n

))
+

∣∣Sn(fρ)(x) – fρ(x)
∣∣

≤
(

1 –
n

ρ(bn – cn)
(
e–ρ

cn
n – e–ρ

bn
n

))
+

∥∥Sn(fρ) – fρ
∥∥∞.

Now from [[5], p. 845], we have

(
1 –

n
ρ(bn – cn)

(
e–ρ

cn
n – e–ρ

bn
n

)) ≤ ρ

n
.



Swarup et al. Journal of Inequalities and Applications        (2020) 2020:156 Page 7 of 11

Therefore

∣∣Pn(fρ)(x) – fρ(x)
∣∣ ≤ ρ

n
+

∥∥Sn(fρ) – fρ
∥∥∞.

Now since the sequence (Sn(fρ))n≥1 converges uniformly to fρ by Proposition 1, the result
is achieved.

For the second part of the theorem, we see that, from Lemma 1, limn→∞ Pn(g) = g uni-
formly on compact subsets of [0,∞) for every g ∈ {1, c1, c2} ⊂ G∗

2, the result holds from
[[3], Theorem 3.5]. �

4 Estimating the rate of convergence
We now present some estimates of the rate of convergence of (Pn(h))n≥1 to h by using the
moduli of smoothness of first and second order ω(h,γ ) and ω2(h,γ ). For the definitions
of ω(h,γ ) and ω2(h,γ ), we refer the reader to [[4], Sect. 5.1].

Theorem 3 Let h ∈ ℘b([0,∞)), n ≥ 1, and y ≥ 0. Then

∣∣Pn(h)(y) – h(y)
∣∣

≤
(

bn + cn

2
√

n
+

Ht1 (1, 1) + Ht2 (1, 1)√
nH(1, 1)

)
ω

(
h,

1√
n

)

+
[

1 +
1
2

(
y +

1
nH(1, 1)

{
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1)

+ Ht2t2 (1, 1) + 2Ht1t2 (1, 1)
}

+
b2

n + c2
n + bncn

n
+ (bn + cn)

(
Ht1 (1, 1) + Ht2 (1, 1)

H(1, 1)

))]
ω2

(
h,

1√
n

)
.

Proof Since (2.3) holds, by [[15], Theorem 2.2.1] and Lemma 1, for every γ > 0,

∣∣Pn(h)(y) – h(y)
∣∣

≤ ∣∣Pn(1)(y) – 1
∣∣∣∣h(y)

∣∣ +
1
γ

∣∣Pn(ρy)(y)
∣∣ω(h,γ ) +

[
Pn(1)(y) +

1
2γ 2 Pn

(
ρ2

y
)
y)

]
ω2(h,γ )

=
1
γ

(
bn + cn

2n
+

Ht1 (1, 1) + Ht2 (1, 1)
nH(1, 1)

)
ω(h,γ )

+
[

1 +
1

2γ 2

(
y
n

+
1

n2H(1, 1)
{

Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1)

+ Ht2t2 (1, 1) + 2Ht1t2 (1, 1)
}

+
b2

n + c2
n + bncn

n2 +
1
n

(bn + cn)
(

Ht1 (1, 1) + Ht2 (1, 1)
nH(1, 1)

))]
ω2(h,γ ).

Putting γ = 1√
n , we get the result. �
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5 Quantitative estimates
Lemma 2 Let 0 ≤ cn ≤ bn ≤ 1 (n ≥ 1), h ∈ ℘b([0,∞)), and G(x) =

∫ x
0 g(t) dt (≥ 0). Then,

for every x ≥ 0 and n ≥ 1,

∣∣∣∣
n

cn – an
τn(G)(x) – g(x)

∣∣∣∣ ≤ ω

(
g,

bn – cn

n

)
. (5.1)

Moreover, for every γ > 0,

ω
(
τn(G),γ

) ≤ bn – cn

n
ω

(
g,γ +

bn – cn

n

)
. (5.2)

Proof Let x ≥ 0 be fixed and n ≥ 1; then by applying Lagrange’s theorem to the function
G in the interval [x + cn

n , x + bn
n ], we have

n
bn – cn

τn(G)(x) = g(ξn,x),

where ξn,x is a point in [x + cn
n , x + bn

n ].
Now,

∣∣∣∣
n

bn – cn
τn(G)(x) – g(x)

∣∣∣∣ =
∣∣g(ξn,x) – g(x)

∣∣ ≤ ω
(
g, |ξn,x – x|) ≤ ω

(
g,

bn – cn

n

)
.

Now, for x, y ≥ 0 such that |x – y| ≤ γ where γ ≥ 0 is a fixed number, again by Lagrange’s
theorem,

∣∣τn(G)(x) – τn(G)(y)
∣∣ =

bn – cn

n
∣∣g(ξn,x) – g(ζn,y)

∣∣ ≤ bn – cn

n
ω

(
g, |ξn,x – ζn,y|

)
,

where ζn,y is some element in the interval [y + cn
n , y + bn

n ], and hence the result since

|ξn,x – ζn,y| ≤ |x – y| +
bn – cn

n
≤ γ +

bn – cn

n
. �

Theorem 4 Consider g ∈ ℘b([0,∞)), n ≥ 1, and x ≥ 0. Then

∣∣Pn(g)(x) – g(x)
∣∣

≤
(

2 +

√

x +
1

nH(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω

(
g,

√
n + bn – cn

n

)
. (5.3)

Furthermore, if g is differentiable on [0,∞) and g ′ ∈ ℘b([0,∞)), then

∣∣Pn(g)(x) – g(x)
∣∣

≤
(√

x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))
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×
(

1 +

√

x +
1

nH(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω

(
g ′,

√
n + bn – cn

n

)
+

∥∥g ′∥∥∞
bn – cn

n
. (5.4)

Proof From [[4], Theorem 5.2.4], it follows that, for every γ > 0,

∣∣Sn(g)(x) – g(x)
∣∣

≤
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω(g,γ ). (5.5)

From this and from (5.1) and (5.2), we have

∣∣Pn(g)(x) – g(x)
∣∣

≤ n
bn – cn

∣∣Sn
(
τn(G)

)
(x) – τn(G)(x)

∣∣ +
∣∣∣∣

n
bn – cn

τn(G)(x) – g(x)
∣∣∣∣

≤
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× n
bn – cn

ω
(
τn(G),γ

)
+ ω

(
g,

bn – cn

n

)

≤
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω

(
g,γ +

bn – cn

n

)
+ ω

(
g,

bn – cn

n

)

≤
(

2 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω

(
g,γ +

bn – cn

n

)
.

Taking γ = 1√
n , we have (5.3).

And for (5.4), assume that g is differentiable on [0,∞) and g ′ ∈ ℘b([0,∞)); then

ω

(
g,

bn – cn

n

)
≤ ∥∥g ′∥∥∞

bn – cn

n
. (5.6)

Moreover, from [[4], Theorem 5.2.4], we have, for γ > 0,

∣∣Sn(g)(x) – g(x)
∣∣

≤
√

x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

)
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×
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω
(
g ′,γ

)
. (5.7)

Since g is differentiable, τn(G) is also differentiable with bounded and continuous deriva-
tive, and for every x ≥ 0 and n ≥ 1,

τn(G)′(x) = g
(

x +
bn

n

)
– g

(
x +

cn

n

)
.

Now, if x, y ≥ 0 are two elements such that |x – y| ≤ γ , then by Lagrange’s theorem, there
exist ηn,x ∈ [x + cn

n , x + bn
n ] and ξn,y ∈ [y + cn

n , y + bn
n ] such that

∣∣τn(G)′(x) – τn(G)′(y)
∣∣ =

∣∣∣∣g
(

x +
bn

n

)
– g

(
x +

cn

n

)
– g

(
y +

bn

n

)
+ g

(
y +

cn

n

)∣∣∣∣

=
bn – cn

n
∣∣g ′(ηn,x) – g ′(ξn,y)

∣∣ ≤ bn – cn

n
ω

(
g ′,γ +

bn – cn

n

)
.

Hence,

ω
(
τn(G)′,γ

) ≤ bn – cn

n
ω

(
g ′,γ +

bn – cn

n

)
, (5.8)

and by (5.6), (5.7), and (5.8),

∣∣Pn(g)(x) – g(x)
∣∣

≤ n
bn – cn

∣∣Sn
(
τn(G)

)
(x) – τn(G)(x)

∣∣ +
∣∣∣∣

n
bn – cn

τn(G)(x) – g(x)
∣∣∣∣

≤ n
bn – cn

×
√

x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

)

×
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω
(
τn(G)′,γ

)
+ ω

(
g,

n
bn – cn

)

≤
√

x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

)

×
(

1 +
1
γ

√
x
n

+
1

n2H(1, 1)
(
Ht1 (1, 1) + Ht2 (1, 1) + Ht1t1 (1, 1) + Ht2t2 (1, 1) + 2Ht1t2 (1, 1)

))

× ω

(
g ′,γ +

bn – cn

n

)
+

∥∥g ′∥∥∞
bn – cn

n
.

In particular, for γ = 1

n
1
2

, we have (5.4). �
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