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1 Introduction
The well-known Bernstein polynomials belonging to a function f (x) defined on the inter-
val [0, 1] are given as follows:

Bn(f ; x) =
n∑

k=0

f
(

k
n

)(
n
k

)
xk(1 – x)n–k (n = 1, 2, . . .).

If f (x) is continuous on [0, 1], the polynomials Bn(f , x) converge uniformly to f (x). These
polynomials have an important role in approximation theory and also in other fields of
mathematics (see [14], [2], [25], [8], and [13]).

In [4] Balázs defined and studied approximation properties of Bernstein type rational
functions

Rn(f ; x) =
1

(1 + anx)n

n∑

k=0

f
(

k
bn

)(
n
k

)
(anx)k (n = 1, 2, . . .), (1)

where f is a real- and single-valued function defined on [0,∞), an and bn are real numbers
which are suitably chosen and do not depend on x. In [5] Balázs and Szabados together
improved the estimate in [4] by choosing suitable an and bn under some restrictions for
f (x).

On the other hand, in the last three decades q-calculus has gained a significant role in
the approximation of functions by positive linear operators. Firstly, we give some notations
and definitions of q-calculus. For any nonnegative integer n, the q-integer of the number
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n is defined as

[n]q =

⎧
⎨

⎩

1–qn

1–q if q �= 1,

n if q = 1,
where q is a positive real number.

The q-factorial is defined by [n]q! = [1]q[2]q...[n]q and [0]q! = 1. For integers 0 ≤ k ≤ n, the
q-binomial is defined by

[
n
k

]

q

=

⎧
⎨

⎩

[n]q !
[k]q ![n–k]q ! if q �= 1,

( n
k ) if q = 1.

The definite q-integral is defined by

∫ b

0
f (t) dqt = b(1 – q)

∞∑

j=0

f
(
bqj)qj, 0 < q < 1, b > 0,

and

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt, 0 < a < b.

For example, the q-integral of the function f (t) = tn on the interval [0, 1] is

∫ 1

0
tn dqt =

1
[n + 1]

.

One may read [2], [3], and [12] for more information on q-calculus.
Bernstein polynomials based on the q-integers were firstly introduced by Lupas [15] in

1987, and another generalization of Bernstein polynomials based on the q-integers was
introduced by Phillips [23] in 1996. The q-Bernstein polynomials quickly gained the pop-
ularity, and then many operators based on the q-integers were introduced and examined
by some other authors.

Different q-analogues of Balázs–Szabados operators have recently been studied by
Doğru [7] and Ozkan ([22] and [21]). Approximation properties of the q-Balázs–Szabados
complex operators are studied by Mahmudov in [16] and by İspir and Özkan in [11]. The
Balázs–Szabados operator based on the q-integers defined by Mahmudov in [16] is as fol-
lows:

Rn,q(f , x) =
1

(1 + anx)n

n∑

k=0

f
(

[k]q

bn

)[
n
k

]

q

(anx)k
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)
, (2)

where q > 0, f is a real-valued function defined on [0,∞), an = [n]β–1
q , bn = [n]βq , 0 < β ≤ 2

3 ,
n ∈N, and x �= – 1

an
.

In [16] the following equalities for the q-Balázs–Szabados operators Rn,q(f , x) are given:

Rn,q(1, x) = 1, Rn,q(t, x) =
x

(1 + anx)
,
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Rn,q
(
t2, x

)
=

x
bn(1 + anx)2 +

x2

(1 + anx)2 ,

Rn,q
(
(t – x), x

)
=

–anx2

1 + anx
, Rn,q

(
(t – x)2, x

)
=

x + a2
nbnx4

bn(1 + anx)2 .

On the other hand, q-Balázs–Szabados–Kantorovich operator (q-BSK operator) defined
by Ozkan in [22] is as follows:

∼
Rn(f ; q, x) =

bn∏n–1
s=0 (1 + qsanx)

n∑

j=0

qj(j–1)/2

[
n
j

]

q

(anx)j
∫ q[j+1]q

bn

q[j]q
bn

f (t) dqt, (3)

where f is a nondecreasing and continuous function on [0,∞), an = [n]β–1
q and bn = [n]βq

for all n ∈N, q ∈ (0, 1), and 0 < β ≤ 2
3 . Since f is nondecreasing and from the definition of

q-integral, q-BSK operator is a positive operator.
The operators defined by (2) are summation type operators, which are not capable of

approximating integrable functions. On the other hand, to guarantee the positivity of the
q-BSK operators defined by (3), f must be a nondecreasing function. The main motivation
of this paper is to construct a new Kantorovich type q-analogue of the Balázs–Szabados
operators that approximates also the integrable functions on the interval [0,∞) and main-
tain the positivity without nondecreasing restriction on f , obtain the local approximation
properties, and establish a Voronovskaja type theorem for these new operators. We define
the operators as follows:

R∗
n,q(f , x) =

n∑

k=0

rn,k(q, x)
∫ 1

0
f
(

[k]q + qkt
bn

)
dqt,

where rn,k(q, x) = 1
(1+anx)n

[ n
k
]

q(anx)k ∏n–k–1
s=0 (1 + (1 – q)[s]qanx), q ∈ (0, 1), an = [n]β–1

q , bn =
[n]βq , 0 < β ≤ 2

3 , n ∈N, x ≥ 0, and f is a real-valued continuous function defined on [0,∞).
The operators R∗

n,q(f , x) are positive and linear operators. Since the lower limit of the q-
integral is 0, f does not need to be a nondecreasing function, the operators are positive
for all real-valued continuous functions defined on [0,∞).

The paper is organized as follows. In Sect. 2 we introduce a new Kantorovich type q-
analogue of the Balázs–Szabados operators, we give a recurrence formula and evaluate
the moments of these operators. In Sect. 3 we study local approximation properties and
prove a Voronovkaja type theorem.

2 Operators and estimation of moments
Definition 1 Let 0 < q < 1. For f : [0,∞) → R, a new Kantorovich type q-analogue of the
Balázs–Szabados operator is defined as follows:

R∗
n,q(f , x) =

n∑

k=0

rn,k(q, x)
∫ 1

0
f
(

[k]q + qkt
bn

)
dqt,

where rn,k(q, x) = 1
(1+anx)n

[ n
k
]

q(anx)k ∏n–k–1
s=0 (1 + (1 – q)[s]qanx), an = [n]β–1

q , bn = [n]βq , 0 <
β ≤ 2

3 , n ∈N, x ≥ 0.



Hamal and Sabancigil Journal of Inequalities and Applications        (2020) 2020:159 Page 4 of 16

In the case q = 1, these polynomials reduce to

R∗
n(f , x) =

n∑

k=0

rn,k(x)
∫ 1

0
f
(

k + t
bn

)
dt,

where rn,k(x) = 1
(1+anx)n ( n

k )(anx)k , an = nβ–1, bn = nβ , 0 < β ≤ 2
3 , n ∈N, x ≥ 0, and in this case

they coincide with the q-BSK operators defined by (3). It can be easily seen that R∗
n(tm, x) =

∼
Rn(tm; x) for m = 0, 1, 2.

Lemma 2 For all n ∈ N, x ∈ [0,∞), m ∈ Z
+ ∪ {0}, and 0 < q < 1, we have

R∗
n,q

(
tm, x

)
=

m∑

j=0

(
m
j

)
1

bm–j
n [m – j + 1]q

m–j∑

i=0

(
m – j

i

)
(an)i(qn – 1

)iRn,q
(
ti+j, x

)
,

where Rn,q(f , x) is the q-Balázs–Szabados operator defined in [16].

Proof By direct calculation, the recurrence formula is obtained as follows:

R∗
n,q

(
tm, x

)
=

n∑

k=0

rn,k(q, x)
∫ 1

0

(
[k]q + qkt

bn

)m

dqt.

Using the binomial formula for ([k]q + qkt)m and evaluating the q-integral, we get

R∗
n,q

(
tm, x

)
=

n∑

k=0

rn,k(q, x)
m∑

j=0

(
m
j

)
q(m–j)k[k]j

q

bm
n [m – j + 1]q

=
m∑

j=0

(
m
j

)
1

[m – j + 1]q

n∑

k=0

q(m–j)k [k]j
q

(bn)m rn,k(q, x)

=
m∑

j=0

(
m
j

)
1

(bn)m–j[m – j + 1]q

×
n∑

k=0

m–j∑

i=0

(
m – j

i

)
(
qk – 1

)i [k]j
q

bj
n

rn,k(q, x)

=
m∑

j=0

(
m
j

)
1

(bn)m–j[m – j + 1]q

×
m–j∑

i=0

(
m – j

i

)
(qn – 1)i

[n]i
q

n∑

k=0

[k]i+j
q

(bn)j rn,k(q, x)

=
m∑

j=0

(
m
j

)
1

(bn)m–j[m – j + 1]q

×
m–j∑

i=0

(
m – j

i

)
(an)i(qn – 1

)i
n∑

k=0

[k]i+j
q

(bn)i+j rn,k(q, x).
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Since the last summation is Rn,q(ti+j, x), we get

R∗
n,q

(
tm, x

)
=

m∑

j=0

(
m
j

)
1

bm–j
n [m – j + 1]q

×
m–j∑

i=0

(
m – j

i

)
(an)i(qn – 1

)iRn,q
(
ti+j, x

)
. �

In the following lemma, we calculate Rn,q(f , x) for the monomials f (t) = tm for m = 3, 4,
and we give an estimation for Rn,q((t –x)4, x) which later will be used to estimate the fourth-
order central moment of R∗

n,q(f , x) that is needed for the Voronoskaja type theorem.

Lemma 3 For q ∈ (0, 1), for all n ∈ N, we have the following:

Rn,q
(
t3, x

)
=

q3[n – 1]q[n – 2]q

anb2
n

(
anx

1 + anx

)3

+
q[n – 1]q(2 + q)

anb2
n

(
anx

1 + anx

)2

+
1

anb2
n

anx
1 + anx

,

Rn,q
(
t4, x

)
=

q6[n]q[n – 1]q[n – 2]q[n – 3]q

b4
n

(
anx

1 + anx

)4

+
(q5 + 2q4 + 3q3)[n]q[n – 1]q[n – 2]q

b4
n

(
anx

1 + anx

)3

+
(q3 + 3q2 + 3q)[n]q[n – 1]q

b4
n

(
anx

1 + anx

)2

+
[n]q

b4
n

(
anx

1 + anx

)
,

Rn,q
(
(t – x)4, x

) ≤ 1
b2

n
C(q, a) for x ∈ [0, a],

where C(q, a) is a positive constant which depends on q and a.

Proof

Rn,q
(
t3, x

)
=

1
(1 + anx)n

n∑

k=0

[
n
k

]

q

[k]3
q

b3
n

(anx)k
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)
,

since [k]q[ n
k ]q = [n]q[ n–1

k–1 ]q and bn = [n]qan, we have

Rn,q
(
t3, x

)
=

1
a3

n

1
(1 + anx)n

n∑

k=1

[
n – 1
k – 1

]

q

[k]2
q

[n]2
q

(anx)k
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)
.

Now by using the facts that

[k]q = q[k – 1]q + 1 and [k – 1]q

[
n – 1
k – 1

]

q

= [n – 1]q

[
n – 2
k – 2

]

q

,

we get

Rn,q
(
t3, x

)
=

1
a3

n

1
(1 + anx)n
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×
n∑

k=1

[
n – 1
k – 1

]

q

(q[k – 1]q + 1)2

[n]2
q

(anx)k
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)

=
q3[n – 1]q[n – 2]q

anb2
n

(
anx

1 + anx

)3 n–3∑

k=0

rn–3,k(q, x)

+
q[n – 1]q(2 + q)

anb2
n

(
anx

1 + anx

)2 n–2∑

k=0

rn–2,k(q, x) +
1

anb2
n

anx
1 + anx

n–1∑

k=0

rn–1,k(q, x)

=
q3[n – 1]q[n – 2]q

anb2
n

(
anx

1 + anx

)3

+
q[n – 1]q(2 + q)

anb2
n

(
anx

1 + anx

)2

+
1

anb2
n

anx
1 + anx

Rn,q(t4, x) is calculated in a similar way.
For the estimation of Rn,q((t – x)4, x), we write the formula explicitly:

Rn,q
(
(t – x)4, x

)

= Rn,q(
(
t4, x

)
– 4xRn,q(

(
t3, x

)
+ 6x2Rn,q(

(
t2, x

)
– 4x3Rn,q((t, x) + x4

=
[

q6 [n – 1]q[n – 2]q[n – 3]q

[n]3
q(1 + anx)4 – 4q3 [n – 1]q[n – 2]q

[n]2
q(1 + anx)3 +

6
(1 + anx)2 –

4
1 + anx

+ 1
]

x4

+
[(

q5 + 2q4 + 3q3) [n – 1]q[n – 2]q

an[n]3
q(1 + anx)3 –

4q(2 + q)[n – 1]q

an[n]q(1 + anx)2 +
6

an[n]q(1 + anx)2

]
x3

+
[(

q3 + 3q2 + 3q
) [n – 1]q

a2
n[n]3

q(1 + anx)2 –
4

a2
n[n]2

q(1 + anx)

]
x2

+
1

a3
n[n]3

q(1 + anx)
x.

by using the facts that q[n–1]q = [n]q –1, q2[n–2]q = [n]q –[2]q, and q3[n–3]q = [n]q –[3]q,
we get

Rn,q
(
(t – x)4, x

)
=

S1

a3
n[n]3

q(1 + anx)
x +

S2

a2
n[n]3

q(1 + anx)2 x2

+
S3

an[n]3
q(1 + anx)3 x3 S4

[n]3
q(1 + anx)4 x4,

where

S1 = 1, S2 =
(
q2 + 3q + 3

)(
[n]q – 1

)
– 4[n]q(1 + anx),

S3 =
(
q2 + 2q + 3

)(
[n]q – 1

)(
[n]q – [2]q

)

– 4
(
1 + [2]q

)
[n]q

(
[n]q – 1

)
(1 + anx) + 6[n]2

q(1 + anx), and

S4 =
(
[n]q – 1

)(
[n]q – [2]q

)(
[n]q – [3]q

)
– 4[n]q

(
[n]q – 1

)(
[n]q – [2]q

)
(1 + anx)

+ 6[n]3
q(1 + anx)2 – 4[n]3

q(1 + anx)3 + [n]3
q(1 + anx)4.
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Now, if we take into account the powers of [n]q in S1, S2, S3, S4 and the facts that 1
1+anx ≤ 1

and anx
1+anx ≤ 1, we see that, for x ∈ [0, a], Rn,q((t – x)4, x) ≤ 1

b2
n

C(q, a). �

In the following lemma, we give a formula for the mth-order central moments of the q-
Balázs–Szabados operators Rn,q(f , x) in terms of the well-known q-Bernstein polynomials.

Lemma 4 For all n ∈ N, x ∈ [0,∞), we have

Rn,q
(
(t – x)m, x

)
=

1
am

n

m∑

j=0

(
m
j

)
(–anx)m–jBn,q

(
tj,

anx
1 + anx

)
,

where Bn,q(f , x) =
∑n

k=0f ( [k]q
[n]q

)[ n
k ]q(x)k ∏n–k–1

s=0 (1 – qsx) are the q-Bernstein polynomials.

Proof By writing Rn,q((t – x)m, x) explicitly, we have

Rn,q
(
(t – x)m, x

)
=

1
(1 + anx)n

n∑

k=0

[
n
k

]

q

(
[k]q

bn
– x

)m

(anx)k

×
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)
.

Now, since bn = [n]qan,

Rn,q
(
(t – x)m, x

)
=

1
(1 + anx)n

n∑

k=0

[
n
k

]

q

1
am

n

(
[k]q

[n]q
– anx

)m

(anx)k

×
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)

=
1

am
n

m∑

j=0

(
m
j

)
(–anx)m–j

n∑

k=0

(
[k]q

[n]q

)j
[

n
k

]

q

(
anx

1 + anx

)k( 1
1 + anx

)n–k

×
n–k–1∏

s=0

(
1 + (1 – q)[s]qanx

)

=
1

am
n

m∑

j=0

(
m
j

)
(–anx)m–j

×
n∑

k=0

(
[k]q

[n]q

)j
[

n
k

]

q

(
anx

1 + anx

)k n–k–1∏

s=0

(
1 – qs anx

1 + anx

)

=
1

am
n

m∑

j=0

(
m
j

)
(–anx)m–jBn,q

(
tj,

anx
1 + anx

)
,

which gives us the desired formula. �

Similar results for the new Kantorovich type q-analogue of the Balázs–Szabados opera-
tors R∗

n,q(f , x) as in Lemma 3 are given in the next lemma.
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Lemma 5 For all n ∈ N, x ∈ [0,∞), and 0 < q < 1, we have the following equalities:

R∗
n,q(1, x) = 1,

R∗
n,q(t, x) =

2q
[2]q

x
1 + anx

+
1

[2]qbn
,

R∗
n,q

(
t2, x

)
=

q[n – 1]q

[n]q

4q3 + q2 + q
[2]q[3]q

(
x

1 + anx

)2

+
4q3 + 5q2 + 3q

bn[2]q[3]q

x
1 + anx

+
1

[3]qb2
n

.

Proof The proof is done by using the recurrence formula given in Lemma 2. R∗
n,q(1, x) is

obvious.

R∗
n,q(t, x) =

1
[2]qbn

(
Rn,q(1, x) + an

(
qn – 1

)
Rn,q(t, x)

)
+ Rn,q(t, x)

=
1

[2]qbn
+

2q
[2]q

Rn,q(t, x).

Now, by using the equality for Rn,q(t, x) which is given in [16], we get

R∗
n,q(t, x) =

1
[2]qbn

+
2q

[2]q

x
1 + anx

.

In a similar way,

R∗
n,q

(
t2, x

)

=
1

[3]qb2
n

(
Rn,q(1, x) + 2an

(
qn – 1

)
Rn,q(t, x) + a2

n
(
qn – 1

)2Rn,q
(
t2, x

))

+
2

[2]qbn

(
Rn,q(t, x) + an

(
qn – 1

)
Rn,q

(
t2, x

))
+ Rn,q

(
t2, x

)

=
1

[3]qb2
n

+
4q2 + 2q

[2]q[3]qbn

x
1 + anx

+
4q3 + q2 + q

[2]q[3]q

(
x

bn(1 + anx)
+

q[n – 1]q

[n]q

(
x

1 + anx

)2)

=
1

[3]qb2
n

+
4q3 + 5q2 + 3q

bn[2]q[3]q

x
1 + anx

+
q[n – 1]q

[n]q

4q3 + q2 + q
[2]q[3]q

(
x

1 + anx

)2

. �

Lemma 6 For all n ∈ N and 0 < q < 1, we have the following estimations:

(
R∗

n,q(t – x, x)
)2 ≤ 2

bn

{
(1 – qn)2

bn

(
1

1 + q
+

anx
1 – q

)2

+
1
bn

}
, x ∈ [0,∞),

R∗
n,q

(
(t – x)2, x

) ≤ 2
bn

(
1

[3]qbn
+

x(1 + a2
nbnx3)

(1 + anx)2

)
, x ∈ [0,∞),
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R∗
n,q

(
(t – x)4, x

) ≤ 1
b2

n
C1(q, a) for x ∈ [0, a],

where C1(q, a) is a positive constant which depends on q and a.

Proof First, we estimate (R∗
n,q(t – x, x))2. For x ∈ [0,∞),

(
R∗

n,q(t – x, x)
)2 =

(
2q

[2]q

x
1 + anx

– x +
1

[2]qbn

)2

≤ 2
(

(1 – q)x
[2]q(1 + anx)

+
anx2

1 + anx

)2

+ 2
(

1
[2]qbn

)2

=
2
b2

n

(
1 – qn

1 + q
anx

1 + anx
+

1 – qn

1 – q
(anx)

anx
1 + anx

)2

+ 2
(

1
[2]qbn

)2

≤ 2
b2

n

(
1 – qn

1 + q
+

1 – qn

1 – q
(anx)

)2

+ 2
(

1
[2]qbn

)2

≤ 2
b2

n

{(
1 – qn)2

(
1

1 + q
+

anx
1 – q

)2

+ 1
}

=
2
bn

{
(1 – qn)2

bn

(
1

1 + q
+

anx
1 – q

)2

+
1
bn

}
.

For the estimation of R∗
n,q((t – x)2, x), we use Rn,q((t – x)2, x) which is calculated in [16]. For

x ∈ [0,∞),

R∗
n,q

(
(t – x)2, x

)
=

n∑

k=0

rn,k(q, x)
∫ 1

0

(
[k]q + qkt

bn
– x

)2

dqt

=
n∑

k=0

rn,k(q, x)
∫ 1

0

(
qkt
bn

+
[k]q

bn
– x

)2

dqt

≤ 2
n∑

k=0

rn,k(q, x)
∫ 1

0

(
qkt
bn

)2

dqt + 2
n∑

k=0

rn,k(q, x)
∫ 1

0

(
[k]q

bn
– x

)2

dqt

= 2
n∑

k=0

rn,k(q, x)
q2k

[3]qb2
n

+ 2Rn,q
(
(t – x)2, x

)

≤ 2
[3]qb2

n
+ 2

(
x + a2

nbnx4

bn(1 + anx)2

)

=
2
bn

(
1

[3]qbn
+

x(1 + a2
nbnx3)

(1 + anx)2

)
.

Now, for x ∈ [0, a], we use similar calculations for the estimation of R∗
n,q((t – x)4, x):

R∗
n,q

(
(t – x)4, x

)
=

n∑

k=0

rn,k(q, x)
∫ 1

0

(
[k]q + qkt

bn
– x

)4

dqt

=
n∑

k=0

rn,k(q, x)
∫ 1

0

(
qkt
bn

+
[k]q

bn
– x

)4

dqt
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≤ 4
n∑

k=0

rn,k(q, x)
∫ 1

0

(
qkt
bn

)4

dqt + 4
n∑

k=0

rn,k(q, x)
∫ 1

0

(
[k]q

bn
– x

)4

dqt

= 4
n∑

k=0

rn,k(q, x)
∫ 1

0

(
qkt
bn

)4

dqt + 4Rn,q
(
(t – x)4, x

)
.

By evaluating the q-integral and using Lemma 3, we get

R∗
n,q

(
(t – x)4, x

) ≤ 4
[5]qb4

n
+ 4

1
b2

n
C(q, a)

≤ 4
b2

n
+

4
b2

n
C(q, a)

≤ 1
b2

n
C1(q, a). �

Lemma 7 Assume that 0 < qn < 1, qn → 1, qn
n → μ as n → ∞ and 0 < β < 1

2 . Then we have
the following limits:

(i) lim
n→∞ bn,qn R∗

n,qn (t – x, x) =
1
2

,

(ii) lim
n→∞ bn,qn R∗

n,qn

(
(t – x)2, x

)
= x,

where bn,qn = [n]βqn

Proof To prove this lemma, we use the formulas of R∗
n,qn (t, x) and R∗

n,qn (t2, x) given in
Lemma 5. The first statement is trivial

lim
n→∞ bn,qn R∗

n,qn (t – x, x)

= lim
n→∞ bn,qn

(
R∗

n,qn (t, x) – x
)

= lim
n→∞ bn,qn

(
qn – 1
[2]qn

x
1 + an,qn x

–
an,qn x2

1 + an,qn x
+

1
[2]qn bn,qn

)

=
1
2

.

For the second statement, we write

lim
n→∞ bn,qn R∗

n,qn

(
(t – x)2, x

)

= lim
n→∞ bn,qn

{
R∗

n,qn

(
t2, x

)
– x2 – 2xR∗

n,qn (t – x, x)
}

= lim
n→∞ bn,qn

{
1

[3]qn b2
n,qn

+
4q3

n + 5q2
n + 3qn

bn,qn [2]qn [3]qn

x
1 + an,qn x

+
qn[n – 1]qn

[n]qn

4q3
n + q2

n + qn

[2]qn [3]qn

(
x

1 + an,qn x

)2

– x2 – 2xR∗
n,qn (t – x, x)

}

= lim
n→∞ bn,qn

{
1

[3]qn b2
n,qn

+
4q3

n + 5q2
n + 3qn

bn,qn [2]qn [3]qn

x
1 + an,qn x
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+
qn[n – 1]qn

[n]qn

4q3
n + q2

n + qn

[2]qn [3]qn

(
x

1 + an,qn x

)2

– x2 – 2xR∗
n,qn (t – x, x)

}
.

Now, by substituting the following limits into the last equality

lim
n→∞

qn[n – 1]qn

[n]qn
= 1, lim

n→∞
x2

(1 + an,qn x)2 = x2,

lim
n→∞ bn,qn

4q3
n + 5q2

n + 3qn

bn,qn [2]qn [3]qn

x
1 + an,qn x

= 2x,

lim
n→∞ bn,qn

1
[3]qn b2

n,qn

= 0 and lim
n→∞ bn,qn R∗

n,qn (t – x, x) =
1
2

,

we get

lim
n→∞ bn,qn R∗

n,qn

(
(t – x)2, x

)

= lim
n→∞ bn,qn

4q3
n + q2

n + qn

[2]qn [3]qn
x2 – lim

n→∞ bn,qn x2 + x

= lim
n→∞ bn,qn

(
4q3

n + q2
n + qn

[2]qn [3]qn
– 1

)
x2 + x

= lim
n→∞ an,qn

(
1 – qn

n
)(3q3

n – q2
n – qn – 1

1 + qn – q3
n – q4

n

)
x2 + x

= x,

which proves the lemma. �

3 Local approximation
In this section we establish local approximation theorem for the new Kantorovich type
q-analogue of the Balázs–Szabados operators. Let CB[0,∞) be the space of all real-valued
continuous bounded functions f on [0,∞), endowed with the norm ‖f ‖ = supx∈[0,∞) |f (x)|.
We consider the Peetre’s K-functional:

K2(f , δ) := inf
{‖f – g‖ + δ

∥∥g ′′∥∥ : g ∈ C2
B[0,∞)

}
, δ ≥ 0,

where

C2
B[0,∞) :=

{
g ∈ CB[0,∞) : g ′, g ′′ ∈ CB[0,∞)

}
.

Then, from the known result in [6], there exists an absolute constant C0 > 0 such that

K2(f , δ) ≤ C0ω2(f ,
√

δ), (4)

where

ω2(f ,
√

δ) := sup
0<h≤√

δ

sup
x±h∈[0,∞)

∣∣f (x – h) – 2f (x) + f (x + h)
∣∣
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is the second modulus of smoothness of f ∈ CB[0,∞). Also, we let

ω(f , δ) = sup
0<h≤δ

sup
x∈[0,∞)

∣∣f (x + h) – f (x)
∣∣.

The first main result of the local approximation for our operators R∗
n,q(f , x) is stated in

the following theorem.

Theorem 8 There exists an absolute constant C > 0 such that

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ Cω2
(
f ,

√
δn(x)

)
+ ω

(
f ,

∣∣∣∣θ
x

1 + anx
+ ηn

∣∣∣∣

)
,

where f ∈ CB[0,∞), θ = 2q
[2]q

, ηn = 1
[2]qbn

, 0 ≤ x < ∞, 0 < q < 1, and δn(x) = 2
bn

{( 1
[3]qbn

+
x(1+a2

nbnx3)
(1+anx)2 ) + ( (1–qn)2

bn
( 1

1+q + anx
1–q )2 + 1

bn
)}.

Proof Let

R̃∗
n,q(f , x) = R∗

n,q(f , x) + f (x) – f
(

θ
x

1 + anx
+ ηn

)
,

where f ∈ CB[0,∞], θ = 2q
[2]q

, ηn = 1
[2]qbn

. By using Taylor’s formula, we have

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – s)g ′′(s) ds, g ∈ C2

B[0,∞),

then we have

R̃∗
n,q(g, x) = g(x) + R∗

n,q

(∫ t

x
(t – s)g ′′(s) ds, x

)

–
∫ θ x

1+anx +ηn

x

(
θ

x
1 + anx

+ ηn – s
)

g ′′(s) ds.

Hence

∣∣̃R∗
n,q(g, x) – g(x)

∣∣

≤ R̃∗
n,q

(∣∣∣∣
∫ t

x
|t – s|∣∣g ′′(s)

∣∣ds
∣∣∣∣, x

)

+
∣∣∣∣
∫ θ x

1+anx +ηn

x

∣∣∣∣θ
x

1 + anx
+ ηn – s

∣∣∣∣
∣∣g ′′(s)

∣∣ds
∣∣∣∣ (5)

≤ ∥∥g ′′∥∥R∗
n,q

(
(t – x)2, x

)
+

∥∥g ′′∥∥
(

θ
x

1 + anx
+ ηn – x

)2

≤ ∥∥g ′′∥∥ 2
bn

(
1

[3]qbn
+

x(1 + a2
nbnx3)

(1 + anx)2

)

+
∥∥g ′′∥∥ 2

bn

{
(1 – qn)2

bn

(
1

1 + q
+

anx
1 – q

)2

+
1
bn

}
(6)

=
∥∥g ′′∥∥δn(x). (7)
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Using (7) and the uniform boundedness of R̃∗
n,q, we get

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ ∣∣̃R∗
n,q(f – g, x)

∣∣ +
∣∣̃R∗

n,q(g, x) – g(x)
∣∣

+
∣∣f (x) – g(x)

∣∣ +
∣∣∣∣f

(
θ

x
1 + anx

+ ηn

)
– f (x)

∣∣∣∣

≤ 4‖f – g‖ +
∥∥g ′′∥∥δn(x) + ω

(
f ,

∣∣∣∣θ
x

1 + anx
+ ηn – x

∣∣∣∣

)
.

If we take the infimum on the right-hand side over all g ∈ C2
B[0,∞), we obtain

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ 4K2
(
f ; δn(x)

)
+ ω

(
f ,

∣∣∣∣θ
x

1 + anx
+ ηn – x

∣∣∣∣

)
,

which together with (4) gives the proof of the theorem. �

Corollary 9 Let a > 0, qn ∈ (0, 1), qn → 1 as n → ∞. Then, for each f ∈ C[0,∞), the se-
quence of operators R∗

n,qn (f , x) converges to f uniformly on [0, a].

In the following theorem we give a Voronovskaja type result for the new Kantorovich
type q-analogue of the Balázs–Szabados operators.

Theorem 10 Assume that qn ∈ (0, 1), qn → 1, and qn
n → μ as n → ∞, and let 0 < β < 1

2 .
For any f ∈ C2

B[0,∞), the following equality holds:

lim
n→∞ bn,qn

(
R∗

n,qn (f , x) – f (x)
)

=
1
2

f ′(x) +
1
2

xf ′′(x)

uniformly on [0, a].

Proof Let f ∈ C2
B[0,∞) and x ∈ [0,∞) be fixed. By using Taylor’s formula, we write

f (t) = f (x) + f ′(x)(t – x) +
1
2

f ′′(x)(t – x)2 + r(t, x)(t – x)2, (8)

where the function r(t, x) is the Peano form of the remainder, r(t, x) ∈ CB[0,∞) and
limt→x r(t, x) = 0. Applying R∗

n,qn to (8), we obtain

bn,qn

(
R∗

n,qn (f , x) – f (x)
)

= f (́x)bn,qn R∗
n,qn (t – x, x) +

1
2

f ′′(x)bn,qn R∗
n,qn

(
(t – x)2, x

)

+ bn,qn R∗
n,qn

(
r(t, x)(t – x)2, x

)
.

By using the Cauchy–Schwarz inequality, we get

R∗
n,qn

(
r(t, x)(t – x)2, x

) ≤
√

R∗
n,qn

(
r2(t, x), x

)√
R∗

n,qn

(
(t – x)4, x

)
. (9)

We observe that r2(x, x) = 0 and r2(., x) ∈ CB[0,∞). Now from Corollary 9 it follows that

lim
n→∞ R∗

n,qn

(
r2(t, x), x

)
= r2(x, x) = 0 (10)
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uniformly with respect to x ∈ [0, a]. Finally, from (9), (10), and Lemma 7, we get immedi-
ately

lim
n→∞ bn,qn R∗

n,qn

(
r(t, x)(t – x)2, x

)
= 0,

which completes the proof. �

Theorem 11 Let α ∈ (0, 1] and A be any subset of the interval [0,∞). Then, if f ∈ CB[0,∞)
is locally Lip(α), i.e., the condition

∣∣f (y) – f (x)
∣∣ ≤ L|y – x|α , y ∈ A and x ∈ [0,∞) (11)

holds, then, for each x ∈ [0,∞), we have

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ L
{
λ

α
2
n (x) + 2

(
d(x, A)

)α}
,

where L is a constant depending on α and f ; and d(x, A) is the distance between x and A
defined as

d(x, A) = inf
{|t – x| : t ∈ A

}
.

Proof Let
–
A be the closure of A in [0,∞). Then there exists a point x0 ∈ –

A such that |x –
x0| = d(x, A). By the triangle inequality

∣∣f (t) – f (x)
∣∣ ≤ ∣∣f (t) – f (x0)

∣∣ +
∣∣f (x) – f (x0)

∣∣

and by (11), we get

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ R∗
n,q

(∣∣f (t) – f (x0)
∣∣, x

)
+ R∗

n,q
(∣∣f (x) – f (x0)

∣∣, x
)

≤ L
{

R∗
n,q

(|t – x0|α , x
)

+ |x – x0|α
}

≤ L
{

R∗
n,q

(|t – x|α + |x – x0|α , x
)

+ |x – x0|α
}

≤ L
{

R∗
n,q

(|t – x|α , x
)

+ 2|x – x0|α
}

.

Now, by using the Hölder inequality with p = 2
α

and q = 2
2–α

, we get

∣∣R∗
n,q(f , x) – f (x)

∣∣ ≤ L
{[

R∗
n,q

(|t – x|αp, x
)] 1

p
[
R∗

n,q
(
1q, x

)] 1
q + 2

(
d(x, A)

)α}

= M
{[

R∗
n,q

(|t – x|2, x
)] α

2 + 2
(
d(x, A)

)α}

≤ M
{[

2
bn

(
1

[3]qbn
+

x(1 + a2
nbnx3)

(1 + anx)2

)] α
2

+ 2
(
d(x, A)

)α

}

= M
{
λn(x)

α
2 + 2

(
d(x, A)

)α}
,

and the proof is completed. �
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4 Conclusion
By using the notion of q-integers, we introduced a new Kantorovich type q-analogue of
the Balázs–Szabados operators. The new operators have some advantages compared with
other studies: they are positive for all real-valued continuous functions on the interval
[0,∞) and they are capable of approximating integrable functions. In the case q = 1, the
operators coincide with the ones defined in [22]. We established the moments of the oper-
ators with the help of the recurrence formula. We studied the local approximation proper-
ties of these new operators in terms of modulus of continuity and proved a Voronovskaja
type theorem.
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