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Abstract
In (J. Optim. Theory Appl. 183:139–157, 2019) we introduced and studied the concept
of well-posedness in the sense of Tykhonov for abstract problems formulated on
metric spaces. Our aim of this current paper is to extend the results in (J. Optim.
Theory Appl. 183:139–157, 2019) to a system which consists of two independent
problems denoted by P and Q, coupled by a nonlinear equation. Following the
terminology used in literature we refer to such a system as a split problem. We
introduce the concept of well-posedness for the abstract split problem and provide
its characterization in terms of metric properties for a family of approximating sets
and in terms of the well-posedness for the problems P and Q, as well. Then we
illustrate the applicability of our results in the study of three relevant particular cases:
a split variational–hemivariational inequality, an elliptic variational inequality and a
history-dependent variational inequality. We describe each split problem and clearly
indicate the family of approximating sets. We provide necessary and sufficient
conditions which guarantee the well-posedness of the split
variational–hemivariational inequality. Moreover, under appropriate assumptions on
the data, we prove the well-posedness of the split elliptic variational inequality as well
as the well-posedness of the split history-dependent variational inequality. We
illustrate our abstract results with various examples, part of them arising in contact
mechanics.

Keywords: Split problem; Tykhonov well-posedness; Variational inequality;
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1 Introduction
Variational inequalities and their related problems represent a powerful mathematical tool
used in the study of various nonlinear boundary value problems. They have important
applications in mechanics, physics, economics and engineering sciences. The theory of
variational inequalities was developed in the early 1960s, by using arguments of mono-
tonicity and convexity. An unavoidable reference in the field is the book of Kinderlehrer
and Stampacchia[16], together with its second edition [17]. The literature on variational
inequalities and their related problems also include the references [1, 9, 10, 25, 41, 42]
and, more recently, [34]. The concept of split variational inequality was introduced in [6].
It concerns a couple of variational inequalities whose solutions, denoted u and σ , are con-
strained to satisfy an equality of the form σ = Tu. Split variational inequalities have many
applications in practical problems arising from signal recovery, image processing and ra-
diation therapy. References in the field are [5, 12, 23].
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Hemivariational inequalities have been introduced in order to solve nonsmooth and
nonmontone problems arising in mechanics and, in particular, in solid and contact me-
chanics. The theory of hemivariational inequalities started in the early 1980s and has as
main ingredients the properties of the subdifferential in the sense of Clarke, defined for
locally Lipschitz functions [2, 21, 24, 25, 31, 38, 39]. The concept of split hemivariational
inequality was inspired by the concept of split variational inequality and was studied in
a number of recent papers, including [27]. There, a split hemivariational inequality was
defined by a couple of hemivariational inequalities whose solutions satisfy an additional
equation of the form σ = Tu.

Variational–hemivariational inequalities represent a special class of inequalities, in
which both convex and nonconvex functions are involved [26, 30]. There, various exis-
tence and uniqueness results are presented in the abstract framework of reflexive Banach
spaces and used in a study of mathematical models arising in contact mechanics. Split
variational–hemivariational inequalities have been considered in [15]. There, equivalence
results which characterize the well-posedness of such inequalities were obtained.

History-dependent operators represent a special class of nonlinear operators defined
on the space of continuous functions. They arise in nonlinear analysis, solid mechanics
and contact mechanics. In contact mechanics, history-dependent operators are used in
order to model various memory effects which could appear in the constitutive laws of
materials and in the statement of contact conditions and friction laws. Inequality problems
with history-dependent operators have been studied intensively in the last decade, in the
variational, the hemivariational and the variational–hemivariational cases [21, 29, 30, 35].

Tykhonov’s well-posedness concept was introduced in [36] for an unconstrained min-
imization problem and then extended in the study of various mathematical problems in-
cluding variational and hemivariational inequalities, inclusions, fixed point and saddle
point problems. It is based on two main ingredients: the existence of a unique solution
for the problem and the convergence to it of any approximating sequence. The notion of
approximating sequence varies from problem to problem but, in general, is constructed
based on a family of approximating sets {Ω(ε)}ε>0 where ε is a small parameter which con-
verges to zero. The literature in the field is extensive. For instance, the well-posedness of
variational inequalities was first studied in [19, 20]. It was extended to hemivariational in-
equalities in [3, 11, 13, 14, 27, 33, 37, 40]. In [37] the authors deal with well-posedness of a
hemivariational inequality and its corresponding inclusion problem and provide a metric
characterization of well-posedness for such problem, together with various equivalence
results. The papers [27] and [15] extend these results in the study of split hemivariational
and split variational–hemivariational inequalities, respectively.

In our recent paper [32] we introduced the concept of well-posedness in the sense of
Tykhonov (well-posedness, for short) for a class of abstract problems in metric spaces.
We obtained metric characterizations of the well-posedness of such kind of problems,
then we illustrated the use of these abstract results in the study of several types of prob-
lems, including history-dependent variational and hemivariational inequalities. Our re-
sults in [32] provide a general framework in which the well-posedness of a large number
of problems already studied in the literature cast.

The present paper represents a natural continuation of [32], since our aim is to extend
the results in [32] to abstract split problems. Here and below, by a split problem we un-
derstand a mathematical object M, composed of two problems P and Q with solutions u
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and σ , respectively, associated to an implicit equation of the form G(u,σ ) = f . For such a
problem we use the notation M = M(P, Q, G, f ). We use in a constructive way the frame-
work introduced in [32] and provide necessary and sufficient conditions which guarantee
the well-posedness of the split problem M, expressed either in terms of metric character-
ization of a family of approximating sets or in terms of the well-posedness of the problems
P and Q. This represents the first trait of novelty of our paper. Next, we study the well-
posedness of three representative split problems: a variational–hemivariational inequality,
an elliptic variational inequality and a history-dependent variational inequality. The study
is carried out by using our abstract theory and leads to new and nonstandard results with
potential applications in mechanics. For instance, it could be used to obtain convergence
results which establish the link between different models of contact. This represents the
second trait of novelty of our current paper.

The rest of the paper is structured as follows. In Sect. 2 we introduce the functional
framework of split problems, then we state and prove three general results, Theorems 10,
13 and 14. Section 3 is devoted to results on the split variational–hemivariational inequal-
ity. Here we extend and complete our previous results obtained in [27]. We illustrate the
abstract results in Sects. 3 and 4 with some elementary examples. In Sect. 4 we consider a
split variational inequality for which we prove a well-posedness result. Finally, in Sect. 5,
we state and prove the well-posedness for a split history-dependent variational inequality.
We illustrate the abstract results in Sects. 4 and 5 with two examples which arise in contact
mechanics.

We end this Introduction with the remark that the split problems we consider below in
this paper are denoted by M or M(P, Q, G, f ), even if their statement vary from section
to section and from example to example. Unless stated otherwise, the references to a split
problem M concern the problem M introduced in the corresponding section or example.

2 Problem statement and abstract results
Everywhere in this paper X, Y , Z are assumed to be normed spaces, unless stated other-
wise. The elements of X will be denoted by u, v, . . . and the elements of Y by σ , τ , . . . . The
norms on these spaces will be denoted by ‖ · ‖X , ‖ · ‖Y and ‖ · ‖Z , respectively. We also use
the notation X for the product of the spaces X and Y , i.e., X = X × Y . The elements of X
will be denoted by x = (u,σ ), y = (v, τ ), . . . . We endow X with the norm ‖ · ‖X given by

‖x‖X = ‖u‖X + ‖σ‖Y ∀x = (u,σ ) ∈X . (2.1)

We write un → u in X for the strong convergence of a sequence {un} ⊂ X to an element
u ∈ X. The dual of X will be denoted by X∗ and 〈·, ·〉X will represent the duality paring
mapping. We use similar notations for the spaces Y , Z and X . All the limits, upper limits
and lower limits below are considered as n → ∞, even if we do not specify it explicitly.
For a sequence {εn} ⊂ R such that εn > 0 for all n ∈ N and εn → 0 as n → ∞ we use the
short hand notation 0 < εn → 0.

We now recall some basic definitions and results introduced in [32]. Consider an ab-
stract mathematical object P, called a generic “problem”, defined on the normed space X.
Problem P could be an equation, an inclusion, a fixed point problem, an optimization prob-
lem or an inequality problem. We associate to P a set SP ⊂ X, called the “set of solutions”.
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The elements of SP are called “solutions” of Problem P, i.e.,

Sp = {u ∈ X : u is a solution to Problem P}. (2.2)

Note that the precise meaning of the term “solution” arises in the statement of each prob-
lem, as exemplified in [32]. We say that Problem P has a unique solution if SP has a unique
element, i.e., SP is a singleton. Finally, we associate to P a family {ΩP(ε)}ε>0 of subsets of
X, called approximating sets, such that

SP ⊂ ΩP(ε) ∀ε > 0. (2.3)

This family is assumed to be given and, again, its definition varies from example to exam-
ple. With these notations, we recall the following definitions.

Definition 1 A sequence {un} ⊂ X is called an approximating sequence for Problem P if
there exists a sequence 0 < εn → 0 such that un ∈ ΩP(εn) for each n ∈N.

Definition 2 Problem P is said to be well-posed if it has a unique solution and every
approximating sequence for P converges in X to the solution of P.

The well-posedness of Problem P was characterized in the following result, proved in
[32].

Theorem 3 Problem P is well-posed if and only if its set of solution SP is nonempty and
diam(ΩP(ε)) → 0 as ε → 0.

Here and below, for a nonempty subset A of any normed space (W ,‖ · ‖W ) we use the
notation diam(A) for the diameter of A, defined by equality

diam(A) = sup
a,b∈A

‖a – b‖W . (2.4)

We also need the following definition considered in our previous paper [32].

Definition 4 A family {ΩP(ε)}ε>0 of subsets of X which satisfy (2.3) is called regular (for
Problem P) if the following hold:

(a) For all ε1, ε2 > 0, ε1 ≤ ε2 �⇒ ΩP(ε1) ⊂ ΩP(ε2).
(b) Any convergent approximating sequence for P converges to an element of SP , i.e., if

{un} is an approximating sequence for P and there exists u ∈ X such that un → u in
X as n → ∞, then u ∈ SP .

After these preliminaries, we introduce the concept of split problem and its well-
posedness. To this end, besides Problem P endowed with its set of solutions SP and the
associated family of approximating sets {ΩP(ε)}ε>0 which satisfy condition (2.3), we con-
sider a second problem, denoted by Q, defined on the space Y . We associate to Problem Q
a set of solutions SQ ⊂ Y , as well as a family of subsets of Y , denoted by {ΩQ(ε)}ε>0, such
that

SQ ⊂ ΩQ(ε) ∀ε > 0. (2.5)
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Finally, we assume that G : X × Y → Z is a given operator and f is a given element of Z.
With these data we construct a new problem which can be stated as follows.

Problem M Find an element x = (u,σ ) ∈ X such that u ∈ SP , σ ∈ SQ and G(u,σ ) = f .

We say in what follows that M represents a split problem. Note that this new mathe-
matical object is constructed by using the problems P and Q, together with their sets of
solutions SP and SQ, the families of approximating sets {ΩP(ε)}ε>0 and {ΩQ(ε)}ε>0, the
operator G and the element f . For this reason, we should write

M = M
(
P, Q, SP, SQ,

{
ΩP(ε)

}
ε>0,

{
ΩQ(ε)

}
ε>0, G, f

)
. (2.6)

Nevertheless, for simplicity, since the sets of solutions SP , SQ are defined from the state-
ment of the problems P and Q, when the families of approximating sets {ΩP(ε)}ε>0,
{ΩQ(ε)}ε>0 are fixed, we shall simply write

M = M(P, Q, G, f ).

Finally, when no confusion arises, for a split problem M = M(P, Q, G, f ) we shall use the
short hand notation M.

Definition 5 An element x = (u,σ ) ∈ X is said to be a solution to the split problem M =
M(P, Q, G, f ) if u ∈ SP , σ ∈ SQ and G(u,σ ) = f .

We denote in what follows by SM the set of solutions of the split problem M, i.e.,

SM =
{

x = (u,σ ) ∈X : u ∈ SP,σ ∈ SQ and G(u,σ ) = f
}

. (2.7)

It follows from above that a split problem represents a systems of two independent prob-
lems (P and Q) coupled by a (usually nonlinear) equation (G(u,σ ) = f ). Its solutions are
elements x = (u,σ ) of the product space X = X × Y such that their components solve the
two problems (u ∈ SP and σ ∈ SQ) and, moreover, they satisfy an additional constraint
(G(u,σ ) = f ).

Note that this concept of split problem is quite general and includes as particular cases
a number of split problems already studied in the literature, as mentioned in the Intro-
duction. For instance, if both P and Q represent variational inequalities we say that M
represents a split variational inequality, if P and Q are hemivariational inequalities we say
that M represents a split hemivariational inequality and, if P and Q are inclusions we say
that M represents a split inclusion. Nevertheless, we stress that the functional framework
described above is very flexible and allows one to study a large number of split problems,
in which P and Q could have different features. For instance, P could be a variational in-
equality and Q an inclusion, P could be a fixed point problem and Q an optimization prob-
lem, and so on. Also, we underline that, in contrast with the references mentioned above
(where an explicit equation of the form σ = Tu was considered), the concept of split prob-
lem we consider here is more general, since it is based on an implicit equation of the form
G(u,σ ) = f .
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Finally, note that, in general, a split problem M = M(P, Q, G, f ) is over determined and
has no solution. Indeed, assume that Problem P has a unique solution u0 and Problem Q
has a unique solution σ0. Then, if the element f ∈ Z is chosen such that f = G(u0,σ0) it
follows that the couple x0 = (u0,σ0) is the unique solution to the split Problem M. Never-
theless, if f �= G(u0,σ0), then Problem M has no solution. For this reason, it is important to
identify classes of split problems M = M(P, Q, G, f ) which have solutions, without having
a priori information on these solutions. And this is what we shall do in Sects. 4 and 5 of
this paper, where we present two examples of well-posed split variational inequalities.

Next, to proceed our abstract construction, for each ε > 0 we consider the set

ΩM(ε) =
{

x = (u,σ ) ∈X : u ∈ ΩP(ε),σ ∈ ΩQ(ε),
∥∥G(u,σ ) – f

∥∥
Z ≤ ε

}
. (2.8)

Note that ΩM(ε) ⊂ ΩP(ε) × ΩQ(ε). Moreover, (2.7), (2.3) and (2.5) imply that

SM ⊂ ΩM(ε) ∀ε > 0. (2.9)

We now extend Definitions 1 and 2 to split problems.

Definition 6 A sequence {xn} ⊂ X is called an approximating sequence for the split prob-
lem M = M(P, Q, G, f ) if there exists a sequence 0 < εn → 0 such that xn ∈ ΩM(εn) for all
n ∈N.

Definition 7 The split problem M is said to be well-posed if it has a unique solution and
every approximating sequence for M converges in X to the solution of M.

We now proceed with two elementary examples in the case when X = Y = Z = R.

Example 8 Consider the split problem M = M(P, Q, G, f ) defined as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Problem P. Find u ∈R such that u3 – u2 + 2u – 2 = 0.
ΩP(ε) = {u ∈ R : |u3 – u2 + 2u – 2| ≤ ε} ∀ε > 0.

Problem Q. Find σ ∈R such that σ 3 – 2σ 2 + σ – 2 = 0.
ΩQ(ε) = {σ ∈R : |σ 3 – 2σ 2 + σ – 2| ≤ ε} ∀ε > 0.

G(u,σ ) = σ – u, f ∈R.

(2.10)

It is easy to see that in this case SP = {1} and SQ = {2}. Moreover, we have the following
result.

Claim 1 The split problem M is well-posed if and only if f = 1.

Proof Assume that M is well-posed. Then using Definitions 7 and 5 it follows that
G(1, 2) = f and, therefore, f = 1. Conversely, assume that f = 1. Then, it is clear that the
couple x = (1, 2) is the unique solution to Problem M. Assume that {xn} is an approximat-
ing sequence for M. We have xn = (un,σn) for each n ∈N and, using Definition 6, (2.8) and
(2.10), there exists 0 < εn → 0 such that

∣∣u3
n – u2

n + 2un – 2
∣∣ ≤ εn,

∣∣σ 3
n – 2σ 2

n + σn – 2
∣∣ ≤ εn ∀n ∈N.
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Therefore,

|un – 1| ≤ εn

u2
n + 2

≤ εn

2
, |σn – 2| ≤ εn

σ 2
n + 1

≤ εn ∀n ∈N. (2.11)

It follows from (2.11) that un → 1 and σn → 2, i.e., xn → x in R
2. We now use Definition 7

to see that the split problem M is well-posed, which concludes the proof of the claim. �

Example 9 Consider the split problem M = M(P, Q, G, f ) in Example 8 in the case when
f = 1 and

ΩP(ε) =
{

u ∈R :
∣∣u3 – u2 + 2u – 2

∣∣ ≤ ε + 2
} ∀ε > 0,

ΩQ(ε) =
{
σ ∈R :

∣∣σ 3 – 2σ 2 + σ – 2
∣∣ ≤ ε + 2

} ∀ε > 0.

The unique solution of this problem is x = (1, 2). Nevertheless, it is easy to see that in
this case the element x′ = (0, 1) belongs to the set ΩM(ε), for each ε > 0. Therefore, using
Definition 6 it follows that the sequence {x′

n} defined by x′
n = x′ for each n ∈N is an approx-

imating sequence for Problem M. Since this sequence does not converge to x, Definition 7
implies that the split problem M is not well-posed.

Our first result in this section is the following.

Theorem 10 The split problem M = M(P, Q, G, f ) is well-posed if and only if its solution
set SM is nonempty and diam(ΩM(ε)) → 0 as ε → 0.

Proof Assume that M is well-posed. Then, by definition, the set SM is a singleton
and, therefore, SM �= ∅. Arguing by contradiction, we assume in what follows that
diam(ΩM(ε)) �→ 0 as ε → 0. Then, there exist δ0 ≥ 0, a sequence 0 < εn → 0 and two
sequences {xn}, {yn} ⊂ X such that xn, yn ∈ ΩM(εn) and

‖xn – yn‖X ≥ δ0

2
∀n ∈N. (2.12)

Now, since both {xn} and {yn} ⊂ X are approximating sequences for Problem M, the well-
posedness of M implies that xn → x and yn → x in X where x denotes the unique element
of SM . This is in contradiction with (2.12). We conclude from this that diam(Ω(ε)) → 0 as
ε → 0.

Conversely, assume that SM is nonempty and diam(ΩM(ε)) → 0 as ε → 0. We claim that
SM is a singleton. Indeed, let x, y ∈ SM . Then using (2.9) we deduce that x, y ∈ ΩM(ε) for
any ε > 0. Thus,

‖x – y‖X ≤ diam
(
Ω(εn)

) → 0,

which implies that x = y and proves the claim. We conclude from this that M has a unique
solution, denoted in what follows by x. Let now {xn} ⊂ X be an approximating sequence
for Problem M. Then there exists a sequence 0 < εn → 0 such that xn ∈ ΩM(εn) for each
n ∈N. We use (2.9) to see that x ∈ ΩM(εn) for each n ∈N and, therefore,

‖x – xn‖X ≤ diam
(
ΩM(εn)

) → 0.



Shu et al. Journal of Inequalities and Applications        (2020) 2020:153 Page 8 of 29

This implies that xn → x in X, which shows that Problem M is well-posed and concludes
the proof. �

Remark 11 Note that for the split problem M in Example 8 we have diam(ΩP(ε)) → 0
and diam(ΩQ(ε)) → 0 as ε → 0, which imply that diam(ΩM(ε)) → 0 as ε → 0. Therefore,
Theorem 10 can be used in order to prove the Claim 1 in Example 8. Consider now the
split problem M in Example 9. Note that in this case diam(ΩM(ε)) ≥ ‖x′ – x‖R2 ≥ 2 for
each ε > 0 and, therefore, Theorem 10 implies that this problem is not well-posed.

Note that Theorem 10 provides a necessary and sufficient condition for the well-
posedness of Problem M. Nevertheless, checking this condition requires one to prove
that SM �= ∅, i.e., to prove the solvability of Problem M. In what follows we introduce a
second characterization for the well-posedness of Problem M in which condition SM �= ∅
is removed. To this end, we need the following definition.

Definition 12 The family {ΩM(ε)}ε>0 of subsets in X given by (2.8) is said to be regular
(for the split problem M) if the families {ΩP(ε)} and {ΩQ(ε)} are regular for Problems P
and Q in the sense of Definition 4. In other words, we say that the family {ΩM(ε)}ε>0 is
regular if the following hold:

(a) For all ε1, ε2 > 0, ε1 ≤ ε2 �⇒ ΩP(ε1) ⊂ ΩP(ε2) and ΩQ(ε1) ⊂ ΩQ(ε2).
(b) If {un} is an approximating sequence of P and there exists u ∈ X such that un → u in

X as n → ∞, then u ∈ SP .
(c) If {σn} is an approximating sequence of Q and there exists σ ∈ X such that σn → σ

in Y as n → ∞, then σ ∈ SQ.

Our second result in this section is the following.

Theorem 13 Assume that X and Y are Banach spaces, {ΩM(ε)}ε>0 is a regular family
of subsets in X defined by (2.8) and G : X × Y → Z is a continuous operator. Then, the
split problem M is well-posed if and only if for each ε > 0 the set ΩM(ε) is nonempty and
diam(ΩM(ε)) → 0 as ε → 0.

Proof Assume that M is well-posed. Then, we use Theorem 10 and inclusion (2.9) to see
that for each ε > 0 the set ΩM(ε) is nonempty and, moreover, diam(ΩM(ε)) → 0 as ε → 0.

Conversely, assume that for each ε > 0 the set ΩM(ε) is nonempty and, moreover,
diam(ΩM(ε)) → 0 as ε → 0. Let {xn = (un,σn)} be an approximating sequence for M. Then
there exists a sequence 0 < εn → 0 such that xn ∈ ΩM(εn) for all n ∈N. This implies that

un ∈ ΩP(εn),σn ∈ ΩQ(εn),
∥∥G(un,σn) – f

∥∥
Z ≤ εn ∀n ∈N. (2.13)

Since diam(ΩM(ε)) → 0 as ε > 0, for any δ > 0 there exists a positive integer Nδ such that

diam
(
ΩM(εn)

) ≤ δ ∀n ≥ Nδ . (2.14)

Let n, m ∈ N with n, m ≥ Nδ and assume that εm ≤ εn. Then, using condition (a) in Defi-
nition 12 and (2.13) we have

um ∈ ΩP(εn),σm ∈ ΩQ(εn),
∥∥G(um,σm) – f

∥∥
Z ≤ εn,
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which imply that xm ∈ ΩM(εn). Thus, since xn, xm ∈ ΩM(εn), inequality (2.14) yields

‖xm – xn‖X ≤ δ.

This inequality holds even if εm > εn since, in this case, xn, xm ∈ ΩM(εm). We conclude
from this that {xn} is a Cauchy sequence in X which is a Banach space since, as we recall, X
and Y are assumed to be Banach spaces. It follows from this that there exists x = (u,σ ) ∈ X
such that

xn → x in X (2.15)

or, equivalently,

un → u in X, σn → σ in Y . (2.16)

The convergences (2.16) combined with conditions (b) and (c) in Definition 12 show
that u ∈ SP and σ ∈ SQ. Moreover, (2.13) and the continuity of the operator G imply that
G(u,σ ) = f . It follows now from Definition 5 that the element x = (u,σ ) belongs to SM and,
therefore, SM �= ∅. We are now in a position to use Theorem 10 to deduce that Problem M
is well-posed, which concludes the proof. �

The following result shows the link between the well-posedness of the split problem M
(in the sense of Definition 6) and the well-posedness of its components P and Q (in the
sense of Definition 2).

Theorem 14
(1) Assume that Problems P and Q are well-posed, denote by u and σ their solutions and

assume that G(u,σ ) = f . Then the split problem M is well-posed.
(2) Assume that the split problem M is well-posed. Moreover, assume that the following

conditions hold:
(a) For all ε > 0 and u ∈ ΩP(ε) there exists σ ∈ ΩQ(ε) such that (u,σ ) ∈ ΩM(ε).
(b) For all ε > 0 and σ ∈ ΩQ(ε) there exists u ∈ ΩP(ε) such that (u,σ ) ∈ ΩM(ε).

Then, Problems P and Q are well-posed and their solutions, denoted by u and σ , respec-
tively, satisfy the equation G(u,σ ) = f .

Proof (1) Let x = (u,σ ). Then, since u ∈ SP , σ ∈ SQ and G(u,σ ) = f , it follows from Defini-
tion 5 that x ∈ SM and, therefore

SM �= ∅. (2.17)

On the other hand, since Problems P and Q are well-posed it follows from Theorem 3
that

diam
(
ΩP(ε)

) → 0 and diam
(
ΩP(ε)

) → 0, as ε → 0. (2.18)
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Next, using the inclusion ΩM(ε) ⊂ ΩP(ε) × ΩQ(ε), the definition (2.1) of the norm in the
space X and (2.4), it is easy to see that for each ε > 0 we have

diam
(
ΩM(ε)

) ≤ diam
(
ΩP(ε)

)
+ diam

(
ΩQ(ε)

)
.

Therefore, (2.18) implies that

diam
(
ΩM(ε)

) → 0 as ε → 0. (2.19)

Equations (2.17) and (2.19) allow us to use Theorem 10 in order to deduce that Problem
M is well-posed.

(2) Assume now that the split problem M is well-posed and conditions (a), (b) above
are satisfied. Then, it follows from Theorem 10 that SM �= ∅ and (2.19) holds. Therefore,
there exists an element x = (u,σ ) such that

u ∈ SP,σ ∈ SQ, G(u,σ ) = f . (2.20)

It follows that

SP �= ∅ (2.21)

and

SQ �= ∅. (2.22)

Arguing by contradiction, we assume in what follows that diam(ΩP(ε)) �→ 0 as ε → 0.
Then, there exist δ0 ≥ 0, a sequence 0 < εn → 0 and two sequences {un}, {vn} ⊂ X such
that un, vn ∈ ΩP(εn) and

‖un – vn‖X ≥ δ0

2
∀n ∈N. (2.23)

We now use assumption (a) to deduce that there exist two sequences {σn}, {τn} ⊂ Y such
that (un,σn) ∈ ΩM(εn) and (vn, τn) ∈ ΩM(εn), for all n ∈ N. Denote xn = (un,σn) and yn =
(vn, τn). Then, (2.1) and (2.23) imply that

‖xn – yn‖X ≥ δ0

2
∀n ∈N. (2.24)

Now, since {xn} ∈ ΩM(εn) and {yn} ∈ ΩM(εn) it follows from (2.24) that

diam
(
ΩM(ε)

) ≥ δ0

2
,

which is in contradiction with (2.19) due to the well-posedness of the split problem M.
We conclude from this that

diam
(
ΩP(ε)

) → 0 as ε → 0. (2.25)



Shu et al. Journal of Inequalities and Applications        (2020) 2020:153 Page 11 of 29

Using similar arguments and assumption (b) we deduce that

diam
(
ΩQ(ε)

) → 0 as ε → 0. (2.26)

We now use (2.21), (2.25) and Theorem 10 to see that Problem P is well-posed. Based
on (2.22) and (2.26), a similar argument shows that Problem Q is well-posed, too. We now
recall equality G(u,σ ) = f in (2.20) to conclude the proof. �

We end this section with the remark that some elementary examples of split problems
M for which conditions (a) and (b) in Theorem 14 can be easily constructed.

Remark 15 Consider the Problems P and Q in Example 8 and recall that the solution of
these problems are u = 1 and σ = 2, respectively. Moreover, using the inequalities (2.11)
it is easy to see that these problems are well-posed. Assume now that f = 1. Then, The-
orem 14(1) implies that the corresponding split problem M is well-posed. This result
recovers one of the implication of the Claim 1 in Example 8.

3 A split variational–hemivariational inequality
In this section we use Theorem 13 in the study of the well-posedness for a split variational–
hemivariational inequality. The problem under consideration is of the form (2.6) and, to
introduce it, we start by introducing the problems P and Q together with the families of
approximating sets {ΩP(ε)}ε>0 and {ΩQ(ε)}ε>0, respectively.

Denote by X∗ and 〈·, ·〉 the dual of the space X and the duality pairing between X∗ and X.
Let U ⊂ X, A : X → X∗, ϕ : X × X → R, j : X → R and p ∈ X∗. We assume that j is a lo-
cally Lipshitz function and denote by j0(u; v) the Clarke generalized directional derivative
of j at the point u ∈ X in the direction v ∈ X. Then, Problem P concerns the following
variational–hemivariational inequality.

Problem P Find u such that

u ∈ U , 〈Au, v – u〉 + ϕ(u, v) – ϕ(u, u) + j0(u; v – u)

≥ 〈p, v – u〉 ∀v ∈ U . (3.1)

A solution for Problem P is an element u which solves (3.1). As usual, we denote in what
follows by SP the set of solutions to Problem P. Moreover, for each ε > 0 we consider the
set ΩP(ε) defined as follows:

ΩP(ε) =
{

u ∈ U : 〈Au – p, v – u〉 + ϕ(u, v) – ϕ(u, u)

+ j0(u; v – u) ≥ –ε‖u – v‖X ∀v ∈ U
}

. (3.2)

Note that condition (2.3) is satisfied.
We now move to Problem Q which is again a variational–hemivariational inequality,

defined as follows.
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Problem Q Find σ such that

σ ∈ Σ ,
〈〈Bσ , τ – σ 〉〉 + φ(σ , τ ) – φ(σ ,σ ) + k0(σ ; τ – σ )

≥ 〈〈q, τ – σ 〉〉 ∀τ ∈ Σ . (3.3)

Here Y ∗ is the dual of the space Y and 〈〈·, ·〉〉 represents the duality pairing between
Y ∗ and Y . Moreover, Σ ⊂ Y , B : Y → Y ∗, φ : Y × Y → R, q ∈ Y ∗, k : Y → R is a locally
Lipshitz function and k0(σ ; τ ) stands for the Clarke generalized directional derivative of k
at the point σ ∈ Y in the direction τ ∈ Y . We denote by SQ the set of solutions to Q and,
for each ε > 0, we consider the set ΩQ(ε) defined as follows:

ΩQ(ε) =
{
σ ∈ Σ :

〈〈Bσ – q, τ – σ 〉〉 + φ(σ , τ ) – φ(σ ,σ )

+ k0(σ ; τ – σ ) ≥ –ε‖τ – σ‖Y ∀τ ∈ Σ
}

. (3.4)

Note that condition (2.5) is, obviously, satisfied.
Then, given G : X × Y → Z and f ∈ Z, the split problem under consideration is the

following.

Problem M Find x = (u,σ ) such that u is a solution of (3.1), σ is a solution of (3.3) and
G(u,σ ) = f .

Note that, since both Problems P and Q are variational–hemivariational inequalities, we
refer to the split problem M as a split variational–hemivariational inequality.

We now study the well-posedness of this split variational–hemivariational inequality
and, to this end, we consider the following assumptions concerning Problem P.

U is a nonempty closed convex subset of X. (3.5)

A : X → X∗ is a monotone hemicontinuous operator. (3.6)

ϕ(u, ·) : X →R is a convex function, for all u ∈ X. (3.7)
⎧
⎪⎨

⎪⎩

ϕ : X × X → R and, for all sequences {un}, {vn}
such that un → u in X, vn → v in X, we have
lim sup(ϕ(un, vn) – ϕ(un, un)) ≤ ϕ(u, v) – ϕ(u, u).

(3.8)

j : X →R is a locally Lipschitz function. (3.9)

p ∈ X∗. (3.10)

Recall that an operator A : X → X∗ is said to be monotone, if for all u, v ∈ X, we have
〈Au – Av, u – v〉 ≥ 0. The operator A is said to be hemicontinuous if for all u, v, w ∈ X,
the function λ �→ 〈A(u + λv), w〉 is continuous on [0, 1]. A function j : X → R is said to
be locally Lipschitz, if for every u ∈ X, there exist Nu a neighborhood of u and a constant
Lu > 0 such that

∣∣j(x) – j(y)
∣∣ ≤ Lx‖x – y‖X
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for all x, y ∈ Nu. Moreover, the Clarke generalized directional derivative of j at the point
u ∈ X in the direction v ∈ X is defined by

j0(u; v) = lim sup
x→u,λ↓0

j(x + λv) – j(x)
λ

.

Details on the definitions above can be found in [7, 24, 30], for instance.
We proceed with the following assumptions which concern Problem Q:

Σ is a nonempty closed convex subset of Y . (3.11)

B : Y → Y ∗ is a monotone hemicontinuous operator. (3.12)

φ(σ , ·) : Y →R is a convex function, for all σ ∈ Y . (3.13)
⎧
⎪⎨

⎪⎩

φ : Y × Y →R and, for all sequences {σn}, {τn}
such that σn → σ in Y , τn → τ in Y , we have
lim sup(φ(σn, τn) – φ(σn,σn)) ≤ φ(σ , τ ) – ϕ(σ ,σ ).

(3.14)

k : Y →R is a locally Lipschitz function. (3.15)

q ∈ Y ∗. (3.16)

Finally, we consider the following assumptions on G and f :

G : X × Y → Z is a continuous operator. (3.17)

f ∈ Z. (3.18)

Our result in the study of Problem M is the following.

Theorem 16 Assume that X and Y are Banach spaces and (3.5)–(3.18) hold. Then, the
split variational–hemivariational inequality M is well-posed if and only if for each ε > 0
the set Ω(ε) is nonempty and diam(ΩM(ε)) → 0 as ε → 0.

Proof We claim that the family of approximating sets {ΩM(ε)}ε>0 defined by (2.8), (3.2)
and (3.4) is regular in the sense of Definition 12. First, it is easy to see that condition (a)
holds. Consider now an approximating sequence {un} of Problem P which converges to an
element u ∈ X. This implies that un ∈ ΩP(εn) with 0 < εn → 0. Therefore, the regularity
un ∈ U in (3.1) and assumption (3.5) yield

u ∈ U . (3.19)

Moreover, for any n ∈ N, we have

〈Aun, v – un〉 + ϕ(un, v) – ϕ(un, un) + j0(un; v – un)

≥ 〈f , v – un〉 – εn‖un – v‖X ∀v ∈ U
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and, using the monotonicity of the operator A, we deduce that

〈Av, v – un〉 + ϕ(un, v) – ϕ(un, un) + j0(un; v – un)

≥ 〈f , v – un〉 – εn‖un – v‖X ∀v ∈ U . (3.20)

Note that the upper semicontinuity of the Clarke generalized directional derivative (see
[30, Proposition 71], for instance) combined with the convergence un → u in X yields

lim sup j0(un; v – un) ≤ j0(u; v – u). (3.21)

We now pass to the upper limit as n → ∞ in (3.20) and use inequality (3.21), the conver-
gences εn → 0, un → u in X, together with assumption (3.8), to obtain

〈Av, v – u〉 + ϕ(u, v) – ϕ(u, u) + j0(u; v – u) ≥ 〈f , v – u〉 ∀v ∈ U .

Let w ∈ U and t ∈ (0, 1]. We test by the previous inequality with v = u + t(w – u) ∈ U , use
assumption (3.7), the positivity homogeneity of the Clarke generalized directional deriva-
tive (j0(u;λv) = λj0(u; v) for all v ∈ V , λ ≥ 0), and divide the resulting inequality with t to
find that

〈
A

(
u + t(w – u)

)
, w – u

〉
+ ϕ(u, w) – ϕ(u, u) + j0(u; w – u)

≥ 〈f , w – u〉 ∀w ∈ U .

Finally, we pass to the limit as t ↓ 0 and use the hemicontinuity of the operator A to see
that

〈Au, w – u〉 + ϕ(u, w) – ϕ(u, u) + j0(u; w – u) (3.22)

≥ 〈f , w – u〉 ∀w ∈ U .

We now combine (3.19) and (3.22) to see that u is a solution to the variational–
hemivariational inequality (3.1). This shows that condition (b) in Definition 12 is satisfied.

Based on assumptions (3.11)–(3.16), similar arguments show that condition (c) in Defi-
nition 12 is satisfied, too. Therefore, the family {ΩM(ε)}ε>0 is regular, as claimed. We are
now in a position to apply Theorem 13 to conclude the proof. �

Note that Theorem 16 provides only an equivalence result. Its statement does not
guarantee that the split problem M is well-posed. Sufficient conditions which guaran-
tee its well-posedness can be considered, based on the existence and uniqueness results
for variational–hemivariational inequalities obtained in [22, 30]. They involve the strong
monotonicity of the operator A, the relaxed monotonicity condition for the functions j as
well as a smallness condition related to A, ϕ and j.

We end this section with an elementary example in which Theorem 16 can be used.
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Example 17 Let X = Y = Z = R, let a, b, c, d, p, q ∈ R be such that a < b, c < d, p ∈ (a, b),
q ∈ (c, d) and consider the split problem M = M(P, Q, G, f ) defined as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Problem P. Find u such that u ∈ [a, b], u(v – u) ≥ p(v – u) ∀v ∈ [a, b],
ΩP(ε) = {u ∈ [a, b] : (u – p)(v – u) + ε|v – u| ≥ 0 ∀v ∈ [a, b]} ∀ε > 0.

Problem Q. Find σ such that σ ∈ [c, d], σ (τ – σ ) ≥ q(τ – σ ) ∀τ ∈ [c, d],
ΩQ(ε) = {σ ∈ [c, d] : (σ – q)(τ – σ ) + ε|τ – σ | ≥ 0 ∀τ ∈ [c, d]} ∀ε > 0.

G(u,σ ) = u2 + σ 2, f ∈ R.

(3.23)

Note that Problem M is a particular case of split variational–hemivariational inequality
studied above in this section, obtained when functions ϕ, φ, j and k vanish. Moreover,
using the properties of the projections it is easy to see that in this case SP = {p} and SQ = {q}.
In addition, we have the following result.

Claim 2 The split problem M is well-posed if and only if p2 + q2 = f .

Proof Assume that M is well-posed. Then using Definitions 7 and 5 it follows that
G(p, q) = f and, therefore, p2 + q2 = f .

Conversely, assume that p2 + q2 = f . Then it follows that Problem M has a unique solu-
tion x = (p, q). Let ε > 0 and let u ∈R be such that

(u – p)(v – u) + ε|v – u| ≥ 0 ∀v ∈ [a, b]. (3.24)

Then, taking v = p we deduce that

|u – p| < ε. (3.25)

On the other hand, if (3.25) holds we find that |(u – p)(v – u)| ≤ ε|v – u| for all v ∈ R,
which implies (3.24). We conclude from above that inequalities (3.24) and (3.25) are equiv-
alent and, therefore, since p ∈ (a, b), we deduce that for ε small enough we have ΩP(ε) =
[p–ε, p+ε]. Similar arguments show that for ε small enough we have ΩQ(ε) = [q–ε, q+ε].
We now use definition (2.8) to see that in this case ΩM(ε) ⊂ [p – ε, p + ε] × [q – ε, q + ε]
and, therefore, diam(ΩM(ε)) → 0 as ε → 0. Theorem 16 guarantees now that Problem M
is well-posed, which concludes the proof of the claim. �

4 A well-posed split variational inequality
In this section we present an example of well-posed split variational inequality in Hilbert
spaces. To this end we shall use the abstract framework in Sect. 2 in the particular case
when X = Y = Z and, therefore, X = X × X. We denote by (·, ·)X and 0X the inner product
and the zero element of the space X, respectively, and we consider a strongly monotone
Lipschitz continuous operator A on X, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A : X → Xis such that
(a) there exists mA > 0 such that

(Av1 – Av2, v1 – v2)X ≥ mA‖v1 – v2‖2
X ∀v1, v2 ∈ X;

(b) there exists LA > 0 such that
‖Av1 – Av2‖X ≤ LA‖v1 – v2‖X ∀v1, v2 ∈ X.

(4.1)



Shu et al. Journal of Inequalities and Applications        (2020) 2020:153 Page 16 of 29

Recall that, since A is strongly monotone Lipschitz continuous on X, it follows that A is
invertible and its inverse A–1 : X → X is strongly monotone and Lipschitz continuous, too.
A proof of this result can be found in [29, p.23]. Moreover, consider a function j such that

{
j : X →R+ is convex, lower semicontinuous and
positively homogenous, i.e., j(λv) = λj(v) ∀v ∈ X, λ ≥ 0.

(4.2)

Note that any continuous seminorm on the space X satisfies assumption (4.2). Finally,
assume that p ∈ X and consider the set Σ , which depends on j and p, defined by

Σ =
{
τ ∈ X : (τ , v)X + j(v) ≥ (p, v)X ∀v ∈ X

}
. (4.3)

With these data we consider the following problem.

Problem M Find x = (u,σ ) such that

u ∈ X, (Au, v – u)X + j(v) – j(u) ≥ (p, v – u)X ∀v ∈ X, (4.4)

σ ∈ Σ ,
(
A–1σ , τ – σ

)
X ≥ 0 ∀τ ∈ Σ , (4.5)

σ = Au. (4.6)

It is easy to see that Problem M is a split variational inequality of the form M =
M(P, Q, G, f ) in which Problem P is given by the variational inequality (4.4), Problem Q is
given by the variational inequality (4.5), G(u,σ ) = Au – σ and f = 0X .

The sets of solutions to inequalities (4.4) and (4.5) will be denoted by SP and SQ, as usual.
Moreover, the approximating sets of these problems are given by

ΩP(ε) =
{

u ∈ X : (Au – p, v – u)X + j(v) – j(u) ≥ –ε‖u – v‖X ∀v ∈ X
}

, (4.7)

ΩQ(ε) =
{
σ ∈ Σ :

(
A–1σ , τ – σ

)
X ≥ –ε‖σ – τ‖X ∀τ ∈ Σ

}
(4.8)

for each ε > 0. Therefore, using (2.8) we have

ΩM(ε) =
{

x = (u,σ ) : u ∈ ΩP(ε),σ ∈ ΩQ(ε),‖Au – σ‖X ≤ ε
}

. (4.9)

In addition, using notation (2.7) we see that condition (2.9) is, obviously, satisfied.
Our result in the study of Problem P is the following.

Theorem 18 Assume (4.1) and (4.2). Then, for each p ∈ X the split variational inequality
M is well-posed. Moreover, the operator p �→ x(p) which maps every p ∈ X into the solution
of Problem M is Lipschitz continuous.

Proof We shall use Theorem 14 and, to this end, we start by proving the well-posedness of
the variational inequalities (4.4) and (4.5) for an arbitrary p ∈ X, assumed in what follows
to be given.

First, we note that a standard result on variational inequalities ([29, Theorem 2.8], for in-
stance) guarantees that, under assumptions (4.1) and (4.2), problem (4.4) has a unique so-
lution. Assume now that {un} ⊂ X is an approximating sequence for (4.4), i.e. un ∈ ΩP(εn)
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with 0 < εn → 0. Let n ∈ N. We use (4.4) with v = un and (4.7) with v = u to see that

(Au, un – u)X + j(un) – j(u) ≥ (p, un – u)X ,

(Aun, u – un)X + j(u) – j(un) ≥ (p, u – un)X – εn‖un – u‖X .

We now add these inequalities to find that

(Aun – Au, un – u)X ≤ εn‖un – u‖X ,

then we use assumption (4.1)(a) to obtain

‖un – u‖X ≤ εn

mA
.

Finally, since εn → 0, we deduce that un → u in X. Therefore, using Definition 2 we deduce
that the variational inequality (4.4) is well-posed.

Next, we claim that the set Σ defined by (4.3) is nonempty. Indeed, assumption (4.2)
guarantees that j is a subdifferentiable function on X and, therefore there exists an element
θ such that θ ∈ ∂j(0X). Note that here and everywhere in this section we use the notion of
subdifferentiability in the sense of the convex analysis; see for instance [9, 18]. Therefore,
for z ∈ X, notation ∂j(z) represents the subgradient of j in z defined by

∂j(z) =
{
ξ ∈ X : j(v) – j(z) ≥ (ξ , v – z)X ∀v ∈ X

}
.

Since j(0X) = 0, inclusion θ ∈ ∂j(0X) yields j(v) ≥ (θ , v)X for any v ∈ X, which implies that
the element τ = p–θ belongs to Σ and proves the claim. On the other hand, it is easy to see
that Σ is a convex closed subset of X. Therefore, recalling that A–1 : X → X is a strongly
monotone Lipschitz continuous operator, we deduce that the arguments used in the study
of the variational inequality (4.4) can be used in the study of the variational inequality (4.5),
too. We conclude from this that the variational inequality (4.5) is well-posed. In particular,
this inequality has a unique solution that we denote in what follows by σ .

Let u ∈ X be the solution of inequality (4.4) and, moreover, let σ̃ = Au, which implies
that A–1σ̃ = u. Then,

(̃σ , v – u)X + j(v) – j(u) ≥ (p, v – u)X ∀v ∈ X. (4.10)

We now take v = 2u and v = 0X in (4.10) and use assumption (4.2) to deduce that

(̃σ , u)X + j(u) = (p, u)X . (4.11)

Next, we combine Eqs. (4.10) and (4.11) to see that

(̃σ , v)X + j(v) ≥ (p, v)X ∀v ∈ X,

which shows that

σ̃ ∈ Σ . (4.12)
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Let τ ∈ X. Then, using equality A–1σ̃ = u and (4.11) we find that

(
A–1σ̃ , τ – σ̃

)
X = (τ – σ̃ , u)X = (τ , u)X + j(u) – (p, u)X

and, using definition (4.3) we deduce that

(
A–1σ̃ , τ – σ̃

)
X ≥ 0 ∀τ ∈ Σ . (4.13)

We now combine Eqs. (4.12) and (4.13) to see that σ̃ is a solution to the variational inequal-
ity (4.5). On the other hand, recall that this inequality has a unique solution, denoted by σ .
It follows from this that σ̃ = σ and, therefore, σ = Au.

To conclude, we proved that inequalities (4.4) and (4.5) are well-posed and their solu-
tions are such that σ = Au. We are now in a position to use Theorem 14 1) to conclude
that the split variational inequality M is well-posed, which concludes the first part of the
proof.

For the second part, assume that p, p′ ∈ X and, for simplicity, denote x(p) = (u,σ ), x(p′) =
(u′,σ ′). We use (4.4) to see that

(Au, v – u)X + j(v) – j(u) ≥ (p, v – u)X ,
(
Au′, v – u′)

X + j(v) – j
(
u′) ≥ (

p′, v – u′)
X

for all v ∈ X. We now take v = u′ in the first inequality and v = u in the second one, then
we add the resulting inequalities to obtain

(
Au′ – Au, u′ – u

)
X ≤ (

p′ – p, u′ – u
)

X ≤ ∥
∥p′ – p

∥
∥

X‖un – u‖X .

This inequality combined with assumption (4.1)(a) yields

∥∥u′ – u
∥∥

X ≤ 1
mA

∥∥p′ – p
∥∥

X . (4.14)

Moreover, using (4.6) we obtain σ = Au, σ ′ = Au′ and, therefore, (4.14) combined with
assumption (4.1)(b) implies that

∥∥σ ′ – σ
∥∥

X ≤ LA

mA

∥∥p′ – p
∥∥

X . (4.15)

The Lipschitz continuity of the operator p �→ x(p) : X → X is now a direct consequence
of (4.14), (4.15) and (2.1). �

We end this section with the remark that split variational inequalities of the form (4.4)–
(4.6) arise in the study of static frictional contact problems with elastic materials. There,
u represents the displacement field and σ is related to the stress field. The operator A
describes the properties of the material, the function j is related to the frictional contact
conditions and p is determined by the external forces and tractions acting on the body.
Inequality (4.4) represents the variational formulation of the contact problem in terms of
displacements, the so-called primal variational formulation. Inequality (4.5) represents the
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variational formulation of the contact problem in terms of stress, the so-called dual varia-
tional formulation. Finally, Eq. (4.5) is related to the constitutive law of the material. More
details, comments and physical interpretation on such kind of problems can be found in
[4, 8, 29]. Here we restrict ourselves to the following example.

Example 19 Assume that D is a regular domain in R
2 with smooth boundary ∂D = Γ ,

composed of three measurable sets Γ 1, Γ 2 and Γ 3, with the mutually disjoint relatively
open sets Γ1, Γ2 and Γ3, such that the one-dimensional measure of Γ1 is strictly positive.
Consider the following boundary value problem.

Problem Pant Find a displacement field u : D →R and a stress field σ̃ : D →R
2 such that

σ̃ = μ∇u in D, (4.16)

div σ̃ + f0 = 0 in D, (4.17)

u = 0 on Γ1, (4.18)

σ̃ · ν = f2 on Γ2, (4.19)

|̃σ · ν| ≤ g, σ̃ · ν = –g
u
|u| if u �= 0 on Γ3. (4.20)

Problem Pant is a so-called antiplane contact problem see, for instance, [28, Sect. 9.1]. It
describes the equilibrium of an elastic cylinder of transversal section D under the action
of axial body forces of density f0 and surface traction of density f2. Equation (4.16) is the
constitutive law in which μ denotes the Lamé coefficient, (4.17) represents the equation
of equilibrium, (4.18) is the displacement boundary condition and (4.19) represents the
traction boundary condition. Here and below ν is the unit outward vector to Γ and “·” is
the inner product on R

2. Finally, (4.20) is a static version of Coulomb’s law in which g is
a positive function, the friction bound. Note that in (4.16)–(4.20) and below we skip the
dependence of various functions with respect to the spatial variable x ∈ D ∪ Γ .

For the variational analysis of Problem Pant we use the space X given by

X =
{

v ∈ H1(D) : v = 0 on Γ1
}

(4.21)

and we denote by (·, ·)X and ‖ · ‖X the inner product on X induced by the inner product of
H1(D) and the associated norm, respectively. Moreover, we use 0X for the zero element of
X and we assume that the data satisfy the following conditions:

μ ∈ L∞(D) and there exists μ∗ > 0 such that (4.22)

μ(x) ≥ μ∗ a.e. x ∈ D.

f0 ∈ L2(D), f2 ∈ L2(Γ2). (4.23)

g ∈ L∞(Γ3) and g(x) ≥ 0 a.e. x ∈ Γ3.
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Then, using standard arguments, it is easy to see that

∫

D
σ̃ · (∇v – ∇u) dx +

∫

Γ3

g|v|da –
∫

Γ3

g|u|da

≥
∫

D
f0(v – u) dx +

∫

Γ2

f2(v – u) da ∀v ∈ X. (4.24)

Define now the operator A : X → X, the function j : X → R, the element p ∈ X and the
set Σ ⊂ X by equalities

(Au, v)X =
∫

D
μ∇u · ∇v dx ∀u, v ∈ X, (4.25)

j(v) =
∫

Γ3

g|v|da ∀v ∈ X, (4.26)

(p, v)X =
∫

D
f0v dx +

∫

Γ2

f2v da ∀v ∈ X, (4.27)

Σ =
{
τ ∈ X : (τ , v)X + j(v) ≥ (p, v)X ∀v ∈ X

}
. (4.28)

Then, using (4.16), (4.24)–(4.27), we derive the following variational formulation of Prob-
lem Pant.

Problem P Find u such that

u ∈ X, (Au, v – u)X + j(v) – j(u) ≥ (p, v – u)X ∀v ∈ X. (4.29)

Next, we use the Riesz representation theorem to introduce the element σ ∈ X related
to the stress field σ̃ by equality

(σ , v)X =
∫

D
σ̃ · ∇v dx ∀v ∈ X. (4.30)

Note that (4.30), (4.16) and (4.25) imply that σ = Au and, therefore, testing in (4.29) with
v = 2u and v = 0X we deduce that

(σ , v)X + j(v) ≥ (p, v)X ∀v ∈ X, (σ , u)X + j(u) = (p, u)X . (4.31)

We now combine (4.31) and (4.28) to see that

σ ∈ Σ , (u, τ – σ )X ≥ 0 ∀τ ∈ Σ . (4.32)

Note that the operator A is inversible and, therefore, equality σ = Au yields u = A–1σ . We
now substitute this equality in (4.32) to deduce the following variational formulation of
Problem Pant.

Problem Q Find σ such that

σ ∈ Σ ,
(
A–1σ , τ – σ

)
X ≥ 0 ∀τ ∈ Σ . (4.33)
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Problems P and Q represent the primal and dual variational formulations of the an-
tiplane contact problem Pant, respectively. Recall that the solutions of these problems are
related by the equality σ = Au. Therefore, gathering these ingredients, it is natural to con-
sider the following split variational inequality.

Problem M Find x = (u,σ ) such that u is a solution of (4.29), σ is a solution of (4.33) and
σ = Au.

Note that, under the assumption (4.22)–(4.24) we are in a position to a apply The-
orem 18. Hence, we deduce that Problem M is well-posed and its solution depends
Lipschitz-continuously on the density of body forces and surface tractions.

5 A split history-dependent variational inequality
In this section we present an example of well-posed split variational inequality with
history-dependent operators in reflexive Banach spaces. To this end we start by recalling
the definition of history-dependent operators.

Let T > 0, let (U ,‖ · ‖U ), (V ,‖ · ‖V ) be real normed spaces and denote by C([0, T]; U),
C([0, T]; V ) the spaces of continuous functions on [0, T] with values in U and V , respec-
tively. An operator Λ : C([0, T]; U) → C([0, T]; V ) is said to be history-dependent if there
exists LΛ > 0 such that

{
‖Λu1(t) – Λu2(t)‖V ≤ LΛ

∫ t
0 ‖u1(s) – u2(s)‖U ds

∀u1, u2 ∈ C([0, T]; U), t ∈ [0, T].
(5.1)

Moreover, we recall that the norm on the space C([0, T]; U) is given by

‖u‖C([0,T];U) = max
t∈[0,T]

∥∥u(t)
∥∥

U . (5.2)

Below in this section we shall use history-dependent operators in the case when U = X,
V = X∗, and U = X∗, V = X, where X∗ represents the dual of X. Everywhere below we
denote by ‖ · ‖X∗ and 〈·, ·〉 the norm on the space X∗ and the duality pairing between X∗

and X.
The split problem we consider is governed by a set K ⊂ X, two operators A : X → X∗

and B : [0, T] × X × X∗ → X∗, and a function p : [0, T] → X∗, which are assumed to satisfy
the following conditions:

K is a nonempty, convex, and closed set ofX. (5.3)
⎧
⎪⎨

⎪⎩

There exists an element g̃ such that
(a) g̃ ∈ K ;
(b) 2v – g̃ ∈ K ∀v ∈ K .

(5.4)

{
A : X → X∗ is a linear continuous and positively defined operator,
i.e., there exists mA > 0 such that 〈Au, u〉 ≥ mA‖u‖2

X ∀u ∈ X.
(5.5)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B : [0, T] × X × X∗ → X∗ is such that
(a) the mapping t �→ B(t, u,σ ) : [0, T] → X∗ is continuous,

∀u ∈ X, σ ∈ X∗;
(b) there exists LB > 0 such that

‖B(t, u1,σ1) – B(t, u2,σ2)‖X∗

≤ LB(‖u1 – u2‖X + ‖σ1 – σ2‖X∗ )
∀u1, u2 ∈ X,σ1,σ2 ∈ X∗, t ∈ [0, T].

(5.6)

p ∈ C
(
[0, T]; X∗). (5.7)

Note that the assumption (5.5) implies that the operator A is invertible and its inverse
A–1 : X∗ → X is linear, positively defined, and satisfies the inequality

∥∥A–1σ
∥∥

X ≤ 1
mA

‖σ‖X∗ ∀σ ∈ X∗. (5.8)

Next, consider the implicit integral equation

σ (t) = Au(t) +
∫ t

0
B
(
s, u(s),σ (s)

)
ds ∀t ∈ [0, T], (5.9)

for which we recall the following result.

Theorem 20 Assume that X is a Banach space and (5.5) and (5.6) hold. Then:
(1) There exists a history-dependent operator S : C([0, T]; X) → C([0, T]; X∗) such that,

for all functions u ∈ C([0, T]; X) and σ ∈ C([0, T]; X∗), equality (5.9) holds if and
only if

σ (t) = Au(t) + Su(t) ∀t ∈ [0, T]. (5.10)

(2) There exists a history-dependent operator R : C([0, T]; X∗) → C([0, T]; X) such that,
for all functions u ∈ C([0, T]; X) and σ ∈ C([0, T]; X∗), equality (5.9) holds if and
only if

u(t) = A–1σ (t) + Rσ (t) ∀t ∈ [0, T]. (5.11)

Theorem 20 represents a particular case of two more general results obtained in [30].
Its proof can be obtained by taking Y = X∗ in Theorems 34 and 35 in [30]. The importance
of this theorem arises in the fact that it allows (at least theoretically) to express one of the
unknowns of the implicit equation (5.9) in function of the other one. And, for our aim
below, it guarantees the existence (and, obviously, the uniqueness) of the operators S and
R which will be involved in the split problem we consider in this section. Note that the
explicit expression S and R can be done in several particular cases as shown in [30].

Finally, for each t ∈ [0, T] we define the set

Σ(t) =
{
τ ∈ X∗ : 〈τ , v – g̃〉 ≥ 〈

p(t), v – g̃
〉 ∀v ∈ K

}
. (5.12)

Note that the set (5.12) is time-dependent and, in addition, it depends on K and p.
With these data we consider the following problem.
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Problem M Find x = (u,σ ) ∈ C([0, T]; X × X∗) such that, for all t ∈ [0, T],

u(t) ∈ K ,
〈
Au(t) + Su(t), v – u(t)

〉 ≥ 〈
p(t), v – u

〉 ∀v ∈ K , (5.13)

σ (t) ∈ Σ(t),
〈
τ – σ (t), A–1σ (t) + Rσ (t) – g̃

〉 ≥ 0 ∀τ ∈ Σ(t), (5.14)

σ (t) = Au(t) +
∫ t

0
B
(
s, u(s),σ (s)

)
ds. (5.15)

It is easy to see that Problem M is a split variational inequality of the form M =
M(P, Q, G, f ) in which the spaces X, Y and Z are replaced by the spaces C([0, T]; X),
C([0, T]; X∗) and C([0, T]; X∗), respectively. Problem P is given by the history-dependent
variational inequality (5.13), Problem Q is given by the history-dependent variational in-
equality (5.14), the operator G : C([0, T]; X) × C([0, T]; X∗) → C([0, T]; X∗) is given by

G(u,σ )(t) = Au(t) +
∫ t

0
B
(
s, u(s),σ (s)

)
ds – σ (t)

and, finally, f is the zero element of the space C([0, T]; X∗).
The sets of solutions of these inequalities will be denoted by SP and SQ, as usual. More-

over, for any ε > 0, the approximating for Problems P and Q are given by

ΩP(ε) =
{

u ∈ C
(
[0, T]; X

)
: u(t) ∈ K ,

〈
Au(t) + Su(t) – p(t), v – u(t)

〉 ≥ –ε
∥
∥u(t) – v

∥
∥

X ∀v ∈ K , t ∈ [0, T]
}

, (5.16)

ΩQ(ε) =
{
σ ∈ C

(
[0, T]; X∗) : σ (t) ∈ Σ(t),

〈
τ – σ (t), A–1σ (t) + Rσ (t) – g̃

〉 ≥ –ε
∥∥σ (t) – τ

∥∥
X∗ ∀τ ∈ Σ(t), t ∈ [0, T]

}
.
(5.17)

Using (2.8), it follows that

ΩM(ε) =
{

x = (u,σ ) : u ∈ ΩP(ε),σ ∈ ΩQ(ε),

∥
∥∥
∥Au(t) +

∫ t

0
B
(
s, u(s),σ (s)

)
ds – σ (t)

∥
∥∥
∥

X∗
≤ ε ∀t ∈ [0, T]

}
(5.18)

and thus the condition (2.9) is, obviously, satisfied.
Our result in the study of Problem M is the following.

Theorem 21 Assume X is a reflexive Banach space. Then, under the conditions (5.3)–(5.7),
the split history-dependent variational inequality M is well-posed.

Proof We shall use Theorem 14 and, to this end, we start by proving the well-posedness
of the history-dependent variational inequalities (5.13) and (5.14).

First, since X is reflexive and S is a history dependent operator, Theorem 93 in [30]
guarantees that, under assumptions (5.3), (5.5), (5.7) problem (5.13) has a unique solution
u ∈ C([0, T]; X). Assume now that {un} ⊂ C([0, T]; X) is an approximating sequence for
(5.13), i.e., un ∈ ΩP(εn) with 0 < εn → 0. Let n ∈ N and t ∈ [0, T]. We use (5.13) with
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v = un(t) and (5.16) with v = u(t) to see that

〈
Au(t) + Su(t) – p(t), un(t) – u(t)

〉 ≥ 0,
〈
Aun(t) + Sun(t) – p(t), u(t) – un(t)

〉 ≥ –εn
∥∥un(t) – u(t)

∥∥
X .

We now add the above two inequalities to find that

(
Aun(t) – Au(t), un(t) – u(t)

)
X

≤ εn
∥∥un(t) – u(t)

∥∥
X +

〈
Sun(t) – Su(t), un(t) – u(t)

〉
. (5.19)

On the other hand, since S is a history-dependent operator, inequality (5.1) implies that

∥∥Sun(t) – Su(t)
∥∥

X∗ ≤ LS

∫ t

0

∥∥un(s) – u(s)
∥∥

X ds (5.20)

with LS > 0. We now combine (5.19), (5.20) and use assumption (5.5) to obtain

∥
∥un(t) – u(t)

∥
∥

X ≤ εn

mA
+

LS

mA

∫ t

0

∥
∥un(s) – u(s)

∥
∥

X ds.

We now use the Gronwall argument to deduce that

∥∥un(t) – u(t)
∥∥

X ≤ εn

mA
e

LS
mA

t

which, together with (5.2) and the convergence εn → 0, implies that un → u in C([0, T]; X).
Therefore, using Definition 2 we deduce that the variational inequality (5.13) is well-posed.

For any t ∈ [0, T], it is easy to see that the set Σ(t) defined by (5.12) satisfies the equality

Σ(t) = p(t) + Σ0, (5.21)

where Σ0 is the time-independent set given by

Σ0 =
{
τ ∈ X∗ : 〈τ , v – g̃〉 ≥ 0 for all v ∈ K

}
. (5.22)

Using this property and the regularity (5.7) it is easy to see that a function σ ∈ C([0; T]; X∗)
is solution of the history-dependent equation (5.14) if and only if the function σ = σ – p
is continuous and satisfies the following auxiliary problem: find σ : [0, T] → X∗ such that

σ (t) ∈ Σ0,
〈
τ – σ (t), A–1σ (t) + A–1p(t) + R

(
σ (t) + p(t)

)
– g̃)

〉 ≥ 0

∀τ ∈ Σ0, t ∈ [0, T]. (5.23)

On the other hand, it is easy to see Σ0 is a convex closed subset of X∗. Recall also that
A–1 : X∗ → X is a linear continuous and positively defined operator, R : C([0, T]; X∗) →
C([0, T]; X) is a history-dependent operator and X∗ is a reflexive Banach space. There-
fore, using again Theorem 93 in [30] and arguments similar to those used in the study to
the history-dependent variational inequality (5.13) we deduce that the auxiliary problem
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(5.23) is well-posed. Moreover, using the particular structure (5.21) of the set Σ(t), we find
that the history-dependent variational inequality (5.14) is well-posed, too. We denote in
what follows by σ its unique solution.

Let u ∈ C([0, T]; X) be the solution of inequality (5.13), t ∈ [0, T] and, moreover, let

σ̃ (t) = Au(t) + Su(t). (5.24)

Then, using Theorem 20(2) and (5.13) we deduce that

u(t) = A–1σ̃ (t) + Rσ̃ (t) (5.25)

and, moreover,

〈
σ̃ (t), v – u(t)

〉 ≥ 〈
p(t), v – u(t)

〉 ∀v ∈ K . (5.26)

We now use assumptions (5.4)(a) and (b) and test successively in (5.26) with v = 2u(t) – g̃
and v = g̃ . As a result we find that

〈
σ̃ (t), u(t) – g̃

〉
=

〈
p(t), u(t) – g̃

〉
. (5.27)

We now combine inequality (5.26) and equality (5.27) to see that

〈
σ̃ (t), v – g̃

〉 ≥ 〈
p(t), v – g̃

〉 ∀v ∈ K ,

which shows that

σ̃ ∈ Σ(t). (5.28)

Let τ ∈ X∗. We use Eqs. (5.25) and (5.27) to see that

〈
τ – σ̃ (t), A–1σ̃ (t) + Rσ̃ (t) – g̃

〉
=

〈
τ – σ̃ (t), u(t) – g̃

〉

=
〈
τ , u(t) – g̃

〉
–

〈
p(t), u(t) – g̃

〉

and, since u(t) ∈ K , definition (5.12) yields

〈
τ – σ̃ (t), A–1σ̃ (t) + Rσ̃ (t) – g̃

〉 ≥ 0 ∀τ ∈ Σ(t). (5.29)

We now combine Eqs. (5.28) and (5.29) to deduce that the function σ̃ , which clearly be-
longs to C([0, T], X∗), is a solution of the history-dependent variational inequality (5.14).
On the other hand, we know that this inequality has a unique solution, denoted by σ . It
follows from this that σ̃ = σ and, therefore, using (5.24) we find that σ = Au(t) + Su(t).
Finally, using Theorem 20 1) we deduce that (5.15) holds.

To conclude, we proved that inequalities (5.13) and (5.14) are well-posed and their solu-
tions are such that (5.15) holds. We are now in a position to use Theorem 14 1) to conclude
that the split history-dependent variational inequality M is well-posed, which completes
the proof. �
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We end this section with the remark that split history-dependent variational inequalities
of the form (5.13)–(5.15) arise in the study of quasistatic frictionless contact problems
with unilateral constraints for viscoelastic or rate-type viscoplastic materials. There, u
represents the displacement field and σ is related to the stress field. The operators A and
B describe the properties of the material, the set K is determined by the unilateral contact
conditions used in the model and p is related to the external forces and tractions acting
on the deformable body. Inequality (5.13) represents the variational formulation of the
contact problem in terms of displacements, the so-called primal variational formulation.
Inequality (5.14) represents the variational formulation in terms of stress of the contact
problem, the so-called dual variational formulation. Finally, Eq. (5.15) is related to the
constitutive law of the material. More details, comments and physical interpretation on
such kind of problems can be found in [29, 30]. Here we restrict ourselves to the following
one-dimensional example.

Example 22 Consider the following initial and boundary problem.

Problem PSig Find a displacement field u : [0, 1] × [0, T] →R and a stress field σ̃ : [0, 1] ×
[0, T] →R such that

σ̃ (x, t) = E
∂u
∂t

(x, t) + η

∫ t

0
e–(t–s) ∂u

∂x
(x, s) ds ∀(x, t) ∈ (0, 1) × (0, T), (5.30)

∂σ̃ (x, t)
∂x

+ p(x, t) = 0 ∀(x, t) ∈ (0, 1) × (0, T), (5.31)

u(0, t) = 0 ∀t ∈ (0, T), (5.32)

u(1, t) ≤ 0, σ̃ (1, t) ≤ 0, σ̃ (1, t)u(1, t) = 0 ∀t ∈ (0, T). (5.33)

Problem PSig is a Signorini-type one-dimensional problem; see [30] for details. It de-
scribes the equilibrium of a viscoelastic rod which occupies the interval [0, 1] on the Ox
axis, is fixed at x = 0 and is in contact at x = 1 with an obstacle. The interval of time of
interest is [0, T] with T > 0. Equation (5.30) represents the constitutive law of the ma-
terial in which E is the Young modulus and η is a relaxation coefficient. Equation (5.31)
is the equation of equilibrium in which p denotes the density of body forces and (5.32)
represents the displacement boundary condition. Finally, conditions (5.33) represent the
Signorini conditions which model the contact with a rigid obstacle.

For the variational analysis of Problem PSig we use the space X given by

X =
{

v ∈ H1(0, 1) : v(0) = 0
}

(5.34)

equipped with the inner product

(u, v)X =
∫ 1

0

du
dx

· dv
dx

dx

and the associated norm ‖ · ‖X . We denote by X∗ the dual of X and, as usual, we use 〈·, ·〉
for the dualty pairing mapping. Assume that

E > 0, η > 0, p ∈ C
(
[0, T]; L2(0, 1)

) ⊂ C
(
[0, T]; X∗). (5.35)
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Then, we define the set K and operators A : X → X∗, B : [0, T]×X ×X∗ → X∗ by equalities

K =
{

v ∈ X : v(1) ≤ 0
}

, (5.36)

〈Au, v〉 = E
∫ 1

0

du
dx

· dv
dx

dx ∀u, v ∈ X, (5.37)

〈
B(t, u,σ ), v

〉
= η

∫ 1

0
e–(t–s) du

dx
· dv

dx
dx ∀t ∈ [0, T], u, v ∈ X,σ ∈ X∗. (5.38)

Note that in this case conditions (5.3)–(5.7) are satisfied with g̃ = 0X , mA = E and LB = η.
Next, we use the Riesz representation theorem to introduce the function σ : [0, T] → X∗

related to the stress field σ̃ by equality

〈
σ (t), v

〉
=

∫ 1

0
σ̃ (t)

dv
dx

dx ∀v ∈ X, t ∈ [0, T]. (5.39)

Note that (5.39) and (5.30) imply that (5.9) holds with A and B defined above. There-
fore, we are in a position to use Theorem 20 to find two history-dependent operators
S : C([0, T]; X) → C([0, T]; X∗) and R : C([0, T]; X∗) → C([0, T]; X) such that (5.10) and
(5.11) hold. Note that in this particular case we can give the following explicit expression
for the operator S :

〈
Su(t), v

〉
= η

∫ t

0
e–(t–s)

(∫ 1

0

∂u
∂x

(x, s)
dv
dx

dx
)

ds (5.40)

for all u ∈ C([0, T]; X), t ∈ [0, T], v ∈ X.
Using now standard arguments and (5.31)–(5.33), it is easy to see that

u(t) ∈ K ,
∫ 1

0
σ̃ (t)

(
∂u
∂x

(x, t) –
dv
dx

)
dx ≥

∫ 1

0
p(t)

(
v – u(t)

)
dx ∀v ∈ K , t ∈ [0, T]

and, therefore, (5.39) yields

u(t) ∈ K ,
〈
σ (t), v – u(t)

〉 ≥ 〈
p(t), v – u(t)

〉 ∀v ∈ K , t ∈ [0, T]. (5.41)

We now combine (5.41) and (5.10) to obtain the following variational formulation of Prob-
lem PSig in terms of displacements.

Problem P Find u : [0, T] → X such that, for all t ∈ [0, T],

u(t) ∈ K ,
〈
Au(t) + Su(t), v – u(t)

〉 ≥ 〈
p(t), v – u

〉 ∀v ∈ K . (5.42)

Next, for each t ∈ [0, T], we define the set

Σ(t) =
{
τ ∈ X∗ : 〈τ , v〉 ≥ 〈

p(t), v
〉 ∀v ∈ K

}
. (5.43)

Then, the variational formulation of Problem PSig in terms of stress, obtained by testing
in (5.41) with v = 2u(t) and v = 0X and using (5.11), is as follows.
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Problem Q Find σ : [0, T] → X∗ such that, for all t ∈ [0, T],

σ (t) ∈ Σ(t),
〈
τ – σ (t), A–1σ (t) + Rσ (t)

〉 ≥ 0 ∀τ ∈ Σ(t), (5.44)

Problems P and Q represent the primal and dual variational formulations of the Sig-
norini contact problem PSig, respectively. Recall that the solutions of these problems are
related by the equality (5.9). Therefore, gathering these ingredients, it is natural to con-
sider the following split history-dependent variational inequality.

Problem M Find x = (u,σ ) such that u is a solution of (5.42), σ is a solution of (5.44) and
(5.9) holds.

Then, it is easy to see that, under the assumption (5.36)–(5.38), we can apply Theorem 21
in order to find that Problem M is well-posed.
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