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Abstract
The primary objective of this study is to handle new generalized Hermite–Hadamard
type inequalities with the help of the Katugampola fractional integral operator, which
generalizes the Hadamard and Riemann–Liouville fractional integral operators into
one system. In order to do this, a new fractional integral identity is obtained. Then, by
using this identity, some inequalities for the class of functions whose derivatives in
absolute values at certain powers are ρ-convex are derived. It is observed that the
obtained inequalities are generalizations of some results in the literature.
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1 Introduction
It is a well known fact that inequalities have important roles to play in the studies of linear
programming, extremum problems, optimization, error estimates and game theory (see
for example [2]). Over the years, only integer real order integrals were taken into account
while handling new results about integral inequalities. However, in recent years, fractional
calculus has been considered by many scientists (see [3–5, 7–10, 12, 13]). There are some
inequalities in the literature that accelerated studies on integral inequalities. One of the
most famous and practical inequalities in the literature was the Hermite–Hadamard in-
equality given in the following theorem.

Theorem 1.1 Let f be defined from interval I (a nonempty subset of R) to R to be a convex
function on I and a, b ∈ I with a < b. Then the double inequality given in the following holds:

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
. (1)

Zhang and Wan introduced p-convex functions in [13] and İşcan gave a different version
of this definition in [3] as follows.
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Definition 1.1 Let I be an interval composed of positive real numbers and p ∈ R\{0}.
f : I →R is called a p-convex function if it satisfies

f
([

txp + (1 – t)yp] 1
p
) ≤ tf (x) + (1 – t)f (y) (2)

for all t ∈ [0, 1] and x, y ∈ I .

It is easy to see that ordinary convexity is retrieved from p-convexity for p = 1 and har-
monically convexity is retrieved from p-convexity for p = –1.

Now we will mention some kinds of fractional integral operators and the definition in
the space Xp

c (a, b).
The first of them is the Riemann–Liouville fractional integral, which makes the integra-

tion of fractional order possible (see [9]).

Definition 1.2 Let f ∈ L1[a, b]. Jα
a+f and Jα

b–f , which are called left-sided and right-sided
Riemann–Liouville integrals of order α > 0 with a ≥ 0, are defined by

Jα
a+f =

1
Γ (α)

∫ x

a
(x – t)α–1f (t) dt, x > a, (3)

and

Jα
b–f =

1
Γ (α)

∫ b

x
(t – x)α–1f (t) dt, x < b, (4)

respectively, where Γ (α) =
∫ ∞

0 e–tuα–1 du. Here J0
a+ f (x) = J0

b– f (x) = f (x).

Definition 1.3 ([9]) The left-sided and right-sided Hadamard fractional integrals of order
α ∈ R

α are defined as

Hα
a+ϕ =

1
Γ (α)

∫ x

a

ϕ(t)
(ln x

t )1–α

dt
t

, x > a > 0, (5)

Hα
b–ϕ =

1
Γ (α)

∫ b

x

ϕ(t)
(ln t

x )1–α

dt
t

, 0 < x < b, (6)

where Γ is the gamma function.

Definition 1.4 ([8]) Let us consider the space Xp
c (a, b) (1 ≤ p ≤ ∞, c ∈ R) of the Lebesque

measurable complex-valued mappings f on [a, b] which satisfy ‖f ‖xp
c < ∞ where the norm

is defined for the case 1 ≤ p ≤ ∞, c ∈ R as follows:

‖f ‖xp
c –

(∫ b

a

∣∣tcf (t)
∣∣p dt

t

) 1
p

< ∞ (7)

and, for the case p = ∞,

‖f ‖xp
c = ess sup

a≤t≤b

[
tc∣∣f (t)

∣∣] (c ∈R). (8)
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Katugampola revealed a new fractional integration operator which generalizes both the
Riemann–Liouville and the Hadamard fractional integration operators. This integration
operator possesses the semigroup properties (see [4, 5]) and is defined as follows.

Definition 1.5 Let [a, b] ⊂ R be a finite interval. Then, the left- and right-side Katugam-
pola fractional integrals of order (α > 0) of f ∈ Xp

c (a, b) are defined by

ρIα
a+f (x) =

ρ1–α

Γ (α)

∫ x

a

tρ–1

(xρ – tρ)1–α
f (t) dt (9)

and

ρIα
b–f (x) =

ρ1–α

Γ (α)

∫ b

x

tρ–1

(tρ – xρ)1–α
f (t) dt (10)

with a < x < b and ρ > 0 if the integral exists. Equations (9) and (10) look quite the same
as the Erdelyi–Kober operator. But besides the Hadamard fractional integrals not being a
direct consequence of the Erdelyi–Kober operator, they are a direct consequence of the
Katugampola fractional integral operators.

Theorem 1.2 ([5]) Let α > 0 and ρ > 0. Then, for x > a,

1. lim
ρ→1

ρIα
a+f (x) = Jα

a+f (x), (11)

2. lim
ρ→0+

ρIα
a+f (x) = Hα

a+f (x). (12)

For right-sided operators, a similar conclusion can be drawn.

For more studies of fractional integral inequalities, see [10, 12] and the references
therein.

Erdelyi et al. were deeply involved in hypergeometric functions given in the following
(see [1]):

2F1(a, b; c; z) =
1

β(b, b – c)

∫ 1

0
tb–1(1 – t)c–b–1(1 – zt)–a dt, c > b > 0, |z| < 1 (13)

and the regularized hypergeometric function is

pF̃q[a1, . . . , ap; b1, . . . , bq; z] ≡ pFq[a1, . . . , ap; b1, . . . , bq; z]
Γ (b1) · · ·Γ (bq)

(14)

given in [11]. We will define Tf (α,ρ; a, x, b) by

Tf (α,ρ; a, x, b) =
ρ

b – a
[(

xρ – aρ
)αf (a) +

(
bρ – xρ

)αf (b)
]

–
ρα+1Γ (α + 1)

b – a
[
ρIα

x– f (a) + ρIα
x+ f (b)

]
(15)

and Γ is the Euler Gamma function, i.e., Γ (α) =
∫ ∞

0 e–uuα–1 du.
Kavurmacı et al. obtained new Ostrowski type results after proving the next lemma in

2011 in [6].
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Lemma 1.1 ([6]) Let f be defined from an interval I to R as a differentiable mapping on
the interior of I , where a, b ∈ I , a < b and f ′ ∈ L[a, b]. Then the equality given here is valid:

(x – a)f (a) + (b – x)f (b)
b – a

–
1

b – a

∫ b

a
f (x) dx

=
(x – a)2

b – a

∫ 1

0
(t – 1)f ′(tx + (1 – t)a

)
dt

+
(b – x)2

b – a

∫ 1

0
(1 – t)f ′(tx + (1 – t)b

)
dt. (16)

Kavurmacı et al. presented the next lemma to handle Ostrowski type inequalities for
Riemann–Liouville fractional integrals in 2012 in [7].

Lemma 1.2 ([7]) Let f be defined from interval I to R as a differentiable function on I◦,
where a and b belong to I with a < b and f ′ ∈ L[a, b]. Then we get

(x – a)αf (a) + (b – x)αf (b)
b – a

–
Γ (α + 1)

b – a
[
Jα
x– f (a) + Jα

x+ f (b)
]

=
(x – a)α+1

b – a

∫ 1

0

(
tα – 1

)
f ′(tx + (1 – t)a

)
dt

+
(b – x)α+1

b – a

∫ 1

0

(
1 – tα

)
f ′(tx + (1 – t)b

)
dt (17)

for all x ∈ [a, b] and α > 0.

In this paper, a new kernel and Ostrowski type new theorems including the Katugampola
fractional integral operator have been retrieved inspired by Lemma 1.2.

2 Main results
Lemma 2.1 Let f be defined from interval I which consists of positive real numbers to R

as a differentiable function on I◦, where a, b ∈ I with a < b and f ′ ∈ L[a, b]. Then we have

Tf (α,ρ; a, x, b) =
(xρ – aρ)α+1

b – a

∫ 1

0

(tα – 1)f ′([txρ + (1 – t)aρ]
1
ρ )

(txρ + (1 – t)aρ)1– 1
ρ

dt

+
(bρ – xρ)α+1

b – a

∫ 1

0

(1 – tα)f ′([txρ + (1 – t)bρ]
1
ρ )

(txρ + (1 – t)bρ)1– 1
ρ

dt (18)

for all x ∈ [a, b], ρ > 0 and α > 0.

Proof With the help of partial integration we have

I1 =
∫ 1

0

(tα – 1)f ′([txρ + (1 – t)aρ]
1
ρ )

(txρ + (1 – t)aρ)1– 1
ρ

dt

=
ρf (a)

xρ – aρ
–

αρ

xρ – aρ

∫ 1

0
tα–1f

([
txρ + (1 – t)aρ

] 1
ρ
)

dt. (19)
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By changing the variable [txρ + (1 – t)aρ]
1
ρ = u we get

I1 =
ρf (a)

xρ – aρ
–

αρ

xρ – aρ

∫ x

a

(
uρ – aρ

xρ – aρ

)α–1
ρuρ–1

xρ – aρ
f (u) du

=
ρf (a)

xρ – aρ
–

αρ2

(xρ – aρ)α+1

∫ x

a

uρ–1

(uρ – aρ)1–α
f (u) du

=
ρf (a)

xρ – aρ
–

αρ2Γ (α)
(xρ – aρ)α+1ρ1–α

ρIα
x– f (a)

=
ρf (a)

xρ – aρ
–

ρα+1Γ (α + 1)
(xρ – aρ)α+1

ρIα
x– f (a). (20)

Similarly we have

I2 =
∫ 1

0

(1 – tα)f ′([txρ + (1 – t)bρ]
1
ρ )

(txρ + (1 – t)bρ)1– 1
ρ

dt, (21)

I2 =
ρ(1 – tα)
xρ – bρ

f
([

txρ + (1 – t)bρ
] 1

ρ
)∣∣∣∣

1

0

+
αρ

xρ – bρ

∫ 1

0
tα–1f

([
txρ + (1 – t)bρ

] 1
ρ
)

dt

=
ρf (b)

bρ – xρ
–

αρ

bρ – xρ

∫ 1

0
tα–1f

([
txρ + (1 – t)bρ

] 1
ρ
)

dt. (22)

By changing the variable [txρ + (1 – t)bρ]
1
ρ = u we get

I2 =
ρf (b)

bρ – xρ
–

αρ

bρ – xρ

∫ x

b

(
uρ – bρ

xρ – bρ

)α–1
ρuρ–1

xρ – bρ
f (u) du

=
ρf (b)

bρ – xρ
–

αρ2

(bρ – xρ)α+1

∫ b

x

uρ–1

(bρ – uρ)1–α
f (u) du

=
ρf (b)

bρ – xρ
–

αρ2Γ (α)
(bρ – xρ)α+1ρ1–α

ρIα
x+ f (b)

=
ρf (b)

bρ – xρ
–

ρα+1Γ (α + 1)
(bρ – xρ)α+1

ρIα
x+ f (b). (23)

By multiplying (20) and (23) with (xρ–aρ )α+1

b–a and (bρ–xρ )α+1

b–a , respectively, and then summing
them side by side, we have

(xρ – aρ)α+1

b – a

∫ 1

0

(tα – 1)f ′([txρ + (1 – t)aρ]
1
ρ )

(txρ + (1 – t)aρ)1– 1
ρ

dt

+
(bρ – xρ)α+1

b – a

∫ 1

0

(1 – tα)f ′([txρ + (1 – t)bρ]
1
ρ )

(txρ + (1 – t)bρ)1– 1
ρ

dt

=
ρf (a)(xρ – aρ)α

b – a
–

ρα+1Γ (α + 1)ρIα
x– f (a)

b – a

+
ρf (b)(bρ – xρ)α

b – a
–

ρα+1Γ (α + 1)ρIα
x+ f (b)

b – a
. (24)

By rearranging the last equality we get the desired equality. �
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Remark 2.1 If we choose ρ → 1 in Lemma 2.1, we get Lemma 1.2 proved in [7].

Remark 2.2 By choosing ρ → 1 and α = 1 in Lemma 2.1, we get Lemma 1.1 proved in [6].

Theorem 2.1 Let f be defined from interval I which consists of positive real numbers to
R as a differentiable mapping on I◦ and a, b ∈ I with a < b such that f ′ ∈ L[a, b]. If |f ′| is
ρ-convex on I we have

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a
{∣∣f ′(x)

∣∣K(a) +
∣∣f ′(a)

∣∣L(a)
}

+
(bρ – xρ)α+1

b – a
{∣∣f ′(x)

∣∣K(b) +
∣∣f ′(b)

∣∣L(b)
}

(25)

where

K(a) =
ρ(x1+ρ – aρ(–aρ + x + ρx))

(1 + ρ)(xρ – aρ)2

– a1–ρΓ (2 + α)1F̃2

(
2 + α,

ρ – 1
ρ

; 3 + α; 1 –
(

x
a

)ρ)
, (26)

K(b) =
ρ(x1+ρ – bρ(–bρ + x + ρx))

(1 + ρ)(xρ – bρ)2

– b1–ρΓ (2 + α)1F̃2

(
2 + α,

ρ – 1
ρ

; 3 + α; 1 –
(

x
b

)ρ)
, (27)

L(a) =
(txρ + aρ)

1–ρ
ρ [2F1(1, p – 1; p + 2; aρ

txρ+aρ )]
1
ρ

(ρ + 1)
1
ρ

(
Γ (q + 1)Γ (1 + 1

α
)

Γ (1 + q + 1
α

)

) 1
q

, (28)

L(b) =
(txρ + bρ)

1–ρ
ρ [2F1(1, p – 1; p + 2; bρ

txρ+bρ )]
1
ρ

(ρ + 1)
1
ρ

(
Γ (q + 1)Γ (1 + 1

α
)

Γ (1 + q + 1
α

)

) 1
q

, (29)

and for all x ∈ (a, 2
1
ρ a) (if 2

1
ρ a < b, otherwise x ∈ (a, b)), α > 0, ρ > 1, q > 1 and 1

ρ
+ 1

q = 1.

Proof Using Lemma 2.1 and the properties of the absolute value we get

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)aρ]
1
ρ )|

(txρ + (1 – t)aρ)1– 1
ρ

dt

+
(bρ – xρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)bρ]
1
ρ )|

(txρ + (1 – t)bρ)1– 1
ρ

dt.

Then by taking into account the ρ-convexity of |f ′| and the Hölder inequality we get

Tf (α,ρ; a, x, b)

≤ (xρ – aρ)α+1

b – a

{∫ 1

0

(t – tα+1)|f ′(x)|
(txρ + (1 – t)aρ)1– 1

ρ

dt +
∫ 1

0

(1 – t)(1 – tα)|f ′(a)|
(txρ + (1 – t)aρ)1– 1

ρ

dt
}

+
(bρ – xρ)α+1

b – a

{∫ 1

0

(t – tα+1)|f ′(x)|
(txρ + (1 – t)bρ)1– 1

ρ

dt +
∫ 1

0

(1 – t)(1 – tα)|f ′(b)|
(txρ + (1 – t)bρ)1– 1

ρ

dt
}
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≤ (xρ – aρ)α+1

b – a

{∫ 1

0

(t – tα+1)|f ′(x)|
(txρ + (1 – t)aρ)1– 1

ρ

dt

+
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)aρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q ∣∣f ′(a)
∣∣}

+
(bρ – xρ)α+1

b – a

{∫ 1

0

(t – tα+1)|f ′(x)|
(txρ + (1 – t)bρ)1– 1

ρ

dt

+
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)bρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q ∣∣f ′(b)
∣∣}. (30)

By the necessary computations we have

K(a) =
∫ 1

0

(t – tα+1)

(txρ + (1 – t)aρ)1– 1
ρ

dt, (31)

K(b) =
∫ 1

0

(t – tα+1)

(txρ + (1 – t)bρ)1– 1
ρ

dt, (32)

L(a) =
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)aρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q
, (33)

L(b) =
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)bρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q
, (34)

where K(a), K(b), L(a) and L(b) are defined as in (26), (27), (28) and (29), respectively. So
the proof is completed. �

Theorem 2.2 Let f be defined from an interval I which consists of positive real numbers
to R as a differentiable mapping on I◦ and a, b ∈ I with a < b such that f ′ ∈ L[a, b]. If |f ′|q
is ρ-convex on I we have

∣∣Tf (α,ρ; a, x, b)
∣∣

≤ (xρ – aρ)α+1

b – a
M

1
r (a)

(∣∣f ′(x)
∣∣qN1 +

∣∣f ′(a)
∣∣qN2

) 1
q

+
(bρ – xρ)α+1

b – a
M

1
r (b)

(∣∣f ′(x)
∣∣qN1 +

∣∣f ′(b)
∣∣qN2

) 1
q , (35)

where

M(a) =
ρ(ax)–ρr(–aρ+rxρr + aρrxρ+r)

(ρ(1 – r) + r)(xρ – aρ)
, (36)

M(b) =
ρ(bx)–ρr(–bρ+rxρr + bρrxρ+r)

(ρ(1 – r) + r)(xρ – aρ)
, (37)

N1 =
Γ (1 + q)Γ ( 2+α

α
)

2Γ (1 + q + 2
α

)
, (38)

N2 =
Γ (1 + q)

2

( 2Γ (1 + 1
α

)
Γ (1 + q + 1

α
)

–
Γ (1 + 2

α
)

Γ (1 + q + 2
α

)

)
, (39)

and for all x ∈ (a, b], α > 0, ρ > 0, r > 1, q > 1, 1
r + 1

q = 1, r �= ρ

ρ–1 .
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Proof Using Lemma 2.1 and the properties of the absolute value we get

∣∣Tf (α,ρ; a, x, b)
∣∣

≤ (xρ – aρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)aρ]
1
ρ )|

(txρ + (1 – t)aρ)1– 1
ρ

dt

+
(bρ – xρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)bρ]
1
ρ )|

(txρ + (1 – t)bρ)1– 1
ρ

dt. (40)

By using the Hölder inequality we have

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a

(∫ 1

0

((
txρ + (1 – t)aρ

) 1
ρ –1)r dt

) 1
r

×
(∫ 1

0

(
1 – tα

)q∣∣f ′([txρ + (1 – t)aρ
] 1

ρ
)∣∣q dt

) 1
q

+
(bρ – xρ)α+1

b – a

(∫ 1

0

((
txρ + (1 – t)bρ

) 1
ρ –1)r dt

) 1
r

×
(∫ 1

0

(
1 – tα

)q∣∣f ′([txρ + (1 – t)bρ
] 1

ρ
)∣∣q dt

) 1
q

. (41)

Since |f ′|q is ρ-convex on I we get

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a

(∫ 1

0

((
txρ + (1 – t)aρ

) 1
ρ –1)r dt

) 1
r

×
(∫ 1

0

(
1 – tα

)qt
∣∣f ′(x)

∣∣q dt +
∫ 1

0

(
1 – tα

)q(1 – t)
∣∣f ′(a)

∣∣q dt
) 1

q

+
(bρ – xρ)α+1

b – a

(∫ 1

0

((
txρ + (1 – t)bρ

) 1
ρ –1)r dt

) 1
r

×
(∫ 1

0

(
1 – tα

)qt
∣∣f ′(x)

∣∣q dt +
∫ 1

0

(
1 – tα

)q(1 – t)
∣∣f ′(b)

∣∣q dt
) 1

q
. (42)

With simple calculation we get

M(a) =
∫ 1

0

((
txρ + (1 – t)aρ

) 1
ρ –1)r dt, (43)

M(b) =
∫ 1

0

((
txρ + (1 – t)bρ

) 1
ρ –1)r dt, (44)

N1 =
∫ 1

0

(
1 – tα

)qt dt, and N2 =
∫ 1

0

(
1 – tα

)q(1 – t) dt, (45)

where M(a), M(b), N1 and N2 are defined as in (36), (37), (38), and (39), respectively. So
we get the desired result. �

Theorem 2.3 Let f be defined from an interval I which consists of positive real numbers
to R as a differentiable mapping on I◦ and a, b ∈ I with a < b such that f ′ ∈ L[a, b]. If |f ′|q
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is ρ-convex on I we have

∣∣Tf (α,ρ; a, x, b)
∣∣

≤ (xρ – aρ)α+1

b – a

(
ρ(x – a)
xρ – aρ

)1– 1
q (∣∣f ′(x)

∣∣qK(a) +
∣∣f ′(a)

∣∣qL(a)
) 1

q

+
(bρ – xρ)α+1

b – a

(
ρ(b – x)
bρ – xρ

)1– 1
q (∣∣f ′(x)

∣∣qK(b) +
∣∣f ′(a)

∣∣qL(b)
) 1

q , (46)

where K(a), K(b), L(a) and L(b) are defined as in Theorem 2.1 and for all x ∈ (a, 2
1
ρ a) (if

2
1
ρ a < b, otherwise x ∈ (a, b)), α > 0, ρ > 1, q > 1, 1

ρ
+ 1

q = 1.

Proof Using Lemma 2.1 and the properties of the absolute value we get

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)aρ]
1
ρ )|

(txρ + (1 – t)aρ)1– 1
ρ

dt

+
(bρ – xρ)α+1

b – a

∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)bρ]
1
ρ )|

(txρ + (1 – t)bρ)1– 1
ρ

dt. (47)

With the help of the power-mean inequality we have

∣∣Tf (α,ρ; a, x, b)
∣∣ ≤ (xρ – aρ)α+1

b – a

(∫ 1

0

1 – tα

(txρ + (1 – t)aρ)1– 1
ρ

dt
)1– 1

q

×
(∫ 1

0

(1 – tα)|f ′([txρ + (1 – t)aρ]
1
ρ )|q

(txρ + (1 – t)aρ)1– 1
ρ

dt
) 1

q

+
(bρ – xρ)α+1

b – a

(∫ 1

0

1 – tα

(txρ + (1 – t)bρ)1– 1
ρ

dt
)1– 1

q

×
∫ 1

0

(
(1 – tα)|f ′([txρ + (1 – t)bρ]

1
ρ )|q

(txρ + (1 – t)bρ)1– 1
ρ

dt
) 1

q
(48)

and by using the ρ-convexity of |f ′|q, then using the Hölder inequality we have

Tf (α,ρ; a, x, b) ≤ (xρ – aρ)α+1

b – a

(∫ 1

0

1 – tα

(txρ + (1 – t)aρ)1– 1
ρ

dt
)1– 1

q
(49)

×
{

|f ′(x)|q ∫ 1
0 (t – tα+1)(txρ + (1 – t)bρ)

1
ρ –1 dt

|f ′(a)|q ∫ 1
0 (1 – t)(1 – tα)(txρ + (1 – t)aρ)

1
ρ –1 dt

} 1
q

+
(bρ – xρ)α+1

b – a

(∫ 1

0

1 – tα

(txρ + (1 – t)aρ)1– 1
ρ

dt
)1– 1

q

×
{

|f ′(x)|q ∫ 1
0 (t – tα+1)(txρ + (1 – t)bρ)

1
ρ –1 dt

|f ′(b)|q ∫ 1
0 (1 – t)(1 – tα)(txρ + (1 – t)bρ)

1
ρ –1 dt

} 1
q

≤ (xρ – aρ)α+1

b – a

(∫ 1

0

(1 – tα)

(txρ + (1 – t)aρ)1– 1
ρ

dt
)1– 1

q
(50)
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×
{

|f ′(x)|q ∫ 1
0 (t – tα+1)(txρ + (1 – t)bρ)

1
ρ –1 dt

|f ′(a)|q(
∫ 1

0 (1 – t)ρ(txρ + (1 – t)aρ)1–ρ dt)
1
ρ (

∫ 1
0 (1 – tα)q dt)

1
q

} 1
q

+
(bρ – xρ)α+1

b – a

(∫ 1

0

1 – tα

(txρ + (1 – t)aρ)1– 1
ρ

dt
)1– 1

q

×
{

|f ′(x)|q ∫ 1
0 (t – tα+1)(txρ + (1 – t)bρ)

1
ρ –1 dt

|f ′(b)|q(
∫ 1

0 (1 – t)ρ(txρ + (1 – t)bρ)1–ρ dt)
1
ρ (

∫ 1
0 (1 – tα)q dt)

1
q

} 1
q

.

By simple computation we get

∫ 1

0

1 – tα

(txρ + (1 – t)aρ)1– 1
ρ

dt =
ρ

xρ – aρ

[
(x – a) –

∫ x

a

(
uρ – aρ

xρ – aρ

)α

du
]

<
ρ(x – a)
xρ – aρ

, (51)
∫ 1

0

1 – tα

(txρ + (1 – t)bρ)1– 1
ρ

dt =
ρ

bρ – xρ

[
(b – x) –

∫ b

x

(
bρ – uρ

bρ – xρ

)α

du
]

<
ρ(b – x)
bρ – xρ

, (52)

and

K(a) =
∫ 1

0

(
t – tα+1)(txρ + (1 – t)aρ

) 1
ρ –1 dt, (53)

K(b) =
∫ 1

0

(
t – tα+1)(txρ + (1 – t)bρ

) 1
ρ –1 dt, (54)

L(a) =
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)aρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q
, (55)

L(b) =
(∫ 1

0

(1 – t)ρ

(txρ + (1 – t)bρ)ρ–1 dt
) 1

ρ
(∫ 1

0

(
1 – tα

)q dt
) 1

q
, (56)

where K(a), K(b), L(a) and L(b) are defined as in (26), (27), (28) and (29), respectively. So
the proof is completed. �
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