
Tan Journal of Inequalities and Applications        (2020) 2020:151 
https://doi.org/10.1186/s13660-020-02417-6

R E S E A R C H Open Access

Concentration inequalities for upper
probabilities
Yuzhen Tan1*

*Correspondence:
tanyuzhensdu@gmail.com
1Zhongtai Securities Institute for
Financial Studies, Shandong
University, Jinan, China

Abstract
In this paper, we obtain a Bernstein-type concentration inequality and McDiarmid’s
inequality under upper probabilities for exponential independent random variables.
Compared with the classical result, our inequalities are investigated under a family of
probability measures, rather than one probability measure. As applications, the
convergence rates of the law of large numbers and the
Marcinkiewicz–Zygmund-type law of large numbers about the random variables in
upper expectation spaces are obtained.
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1 Introduction
Concentration inequalities are useful technique tools for studying the limit theory in the
classical probability and statistics, which describe the bounds of a random variable de-
viating from some value. The law of large numbers, central limit theorem, and law of the
iterated logarithm could all be regarded as derivative results of concentration inequalities.
The Bernstein-type inequality plays an important role among concentration inequalities
especially, which provides a bound for the sum of independent random variables devi-
ating from its mean value, while McDiarmid’s inequality is established to bound the de-
viations for Doob martingale in the probability space. More precisely, let Ω be a sample
space, F be a Borel field of subsets of Ω , and P be a probability measure on F . Suppose
that X1, X2, . . . , Xn, . . . is a sequence of independent, zero-mean random variables defined
in the probability space (Ω ,F , P). Denote by Sn the partial sum of this sequence, namely
Sn �

∑n
k=1 Xk and v2

n � 1
n
∑n

k=1 E[X2
k ]. For any x > 0, Bernstein proved in [2] that

P(Sn ≥ nx) ≤ e
– nx2

2(v2n+cx) (1.1)

under the standard Bernstein condition which supposes that there exists a positive con-
stant c, for any 1 ≤ k ≤ n and any integer p ≥ 3,

E
[|Xk|p

] ≤ p!cp–2

2
E
[
X2

k
]
.
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Since then, some special cases of Bernstein’s inequality were established, known as Ho-
effding’s inequality [1], Bennett’s inequality [1], and so on. Especially, Rio [21] improved
(1.1) under a weaker condition

n∑

k=1

E
[(

X+
k
)p] ≤ p!cp–2

2

n∑

k=1

E
[
X2

k
]
. (1.2)

McDiarmid’s inequality was first proved in [17] by using martingale theory and reproved
by Ying in [23]. This inequality shows that, for any ε > 0, any f : Rn → R with bounded
differences {ck}n

k=1,

P
(
f (X1, . . . , Xn) – E

[
f (X1, . . . , Xn)

] ≥ ε
) ≤ e

– 2ε2
∑n

k=1 c2
k . (1.3)

A function f with bounded differences {ck}n
k=1 means that

sup
x1,...,xk–1,xk ,x′

k ,xk+1··· ,xn

∣
∣f (x1, . . . , xk–1, xk , xk+1, . . . , xn) – f

(
x1, . . . , xk–1, x′

k , xk+1, . . . , xn
)∣
∣ ≤ ck

for all 1 ≤ k ≤ n.
Stimulated by the uncertainties of the model, the theory of nonlinear expectations and

nonadditive probabilities emerges as the times require. Nonlinear expectations have been
used in a wide range of realistic situations, such as risk measures in finance and statistical
uncertainty in decisions. The general framework of the nonlinear expectation space was
proposed by Peng [20]. In [20], Peng established the fundamental theoretical framework
of the sublinear expectation space and redefined the concepts of independence, identical
distribution, law of large numbers, central limit theorem in this system. Recently, some
researchers have already got the large deviation principle under the nonlinear framework.
Chen and Xiong [8] studied the large deviation principle for diffusion processes under the
g-expectation; Hu [10] obtained the upper bound of Cramér’s theorem for capacities; Gao
and Xu [11] proved the large deviation principle for independent random variables in a
sublinear expectation space; Chen and Feng [24] established the large deviation principle
for negatively dependent random variables under sublinear expectations. Many authors
began to study the corresponding inequalities in sublinear framework, including upper
expectation spaces, where upper expectations are typical sublinear expectations gener-
ated by a family of probabilities. For instance, Chen et al. [7] presented several elemen-
tary inequalities in an upper expectation space, Hölder’s inequality, Chebyshev’s inequal-
ity, and Jensen’s inequality included; Wu [22] proved the maximal inequalities, exponen-
tial inequalities, and the Marcinkiewicz–Zygmund inequality for the partial sums of ran-
dom variables which are independent in an upper expectation space; Zhang [25] showed
Rosenthal’s inequalities for negatively dependent random variables; Zhang [26] proved
the Kolmogorov-type exponential inequalities of the partial sums of independent random
variables as well as negatively dependent random variables under the sublinear expecta-
tions; Huang and Wu [14] obtained the equivalent relations between Kolmogorov maximal
inequality and Hájek–Rényi maximal inequality both in the moment and capacity types
in sublinear expectation spaces. All of these inequalities could be used to investigate the
limit theory. More detailed information about these results under sublinear expectations
can be found in [3–5, 7–9, 12, 16, 18–20] and the references therein.
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As is well known, concentration inequalities play an important role in the limit theory
area, especially for the large deviation principle and the convergence rates. However, there
are few results about the convergence rate of limit theory in sublinear expectation space.
Our motivation is to study the Bernstein-type inequality (1.1) under Rio–Bernstein con-
dition (1.2) and McDiarmid’s inequality (1.3) in upper expectation spaces, and then apply
them to improve several types law of large numbers and obtain the convergence rates.

The organization of this paper is as follows. We first recall some preliminary definitions
and notations about upper probabilities and sublinear expectation spaces in Sect. 2. Sec-
tion 3 is to study the Bernstein-type inequality under the Rio–Bernstein condition and
McDiarmid’s inequality for the upper probability, which will be used to discuss the con-
vergence rates of the laws of large numbers in Sect. 4.

2 Preliminaries
Let (Ω ,F ) be a measurable space and H be a linear space of random variables defined
on Ω . In this paper, we suppose that H satisfies c ∈ H for each constant c and |X| ∈ H if
X ∈H.

Definition 2.1 ([20, Definition 1.1.1]) A sublinear expectationE is a functionalE : H →R

satisfying
(1) Monotonicity: X ≥ Y implies E[X] ≥ E[Y ].
(2) Constant preserving: E[c] = c for c ∈R.
(3) Subadditivity: For each X, Y ∈H, E[X + Y ] ≤ E[X] + E[Y ].
(4) Positive homogeneity: E[λX] = λE[X] for λ ≥ 0.

The triplet (Ω ,H,E) is called a sublinear expectation space. Generally, we consider the
following sublinear expectation space (Ω ,H,E): if X1, . . . , Xn ∈ H, then ϕ(X1, . . . , Xn) ∈ H
for each ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of functions ϕ satisfying
the following local Lipschitz condition:

∣
∣ϕ(x) – ϕ(y)

∣
∣ ≤ C

(
1 +

∣
∣xm∣

∣ + |y|m)|x – y| for x, y ∈R
n,

some C > 0, m ∈N depending on ϕ.

In this case X = (X1, . . . , Xn) is called an n-dimensional random vector, denoted by X ∈Hn.

Definition 2.2 ([20, Definition 1.3.1, Proposition 1.3.2]) Let X1 and X2 be two n-
dimensional random vectors defined on nonlinear expectation spaces (Ω1,H1,E1) and
(Ω2,H2,E2), respectively. They are called identically distributed, denoted by X1

d= X2, if

E1
[
ϕ(X1)

]
= E2

[
ϕ(X2)

]
for all ϕ ∈ Cl,Lip

(
R

n).

Definition 2.3 ([20, Definition 1.3.11]) In a sublinear expectation space (Ω ,H,E), a ran-
dom vector Y ∈ Hn is said to be independent of another random vector X ∈ Hm under
E[·] if, for each function ϕ ∈ Cl,Lip(Rm+n), we have

E
[
ϕ(X, Y )

]
= E

[
E

[
ϕ(x, Y )

]|x=X
]
.
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Remark 2.1 It is important to observe that, under a nonlinear expectation, Y is indepen-
dent of X does not in general imply that X is independent of Y . An example constructed
in [20, Example 1.3.15] shows this nonsymmetric property. In fact, Hu and Li [13, The-
orem 15] showed that, for two nontrivial random variables X and Y under a sublinear
expectation space, if X is independent of Y and Y is independent of X, then X and Y must
be maximally distributed.

Let M be the collection of all probability measures on (Ω ,F ). Any given nonempty
subset P ⊆M, define

V(A) := sup
P∈P

P(A), A ∈F ,

ν(A) := inf
P∈P

P(A), A ∈F ,

as the upper probability and lower probability, respectively. Obviously, V and ν are conju-
gate to each other, that is,

V(A) + ν
(
Ac) = 1,

where Ac is the complement set of A.
The upper expectationE[·] and the lower expectation E[·] generated byP can be defined

respectively as follows [15]:

E[X] = E
P [X] := sup

P∈P
EP[X],

E[X] = EP [X] := inf
P∈P

EP[X],

for each X ∈ L0(Ω), where L0(Ω) is the space of all X ∈ H such that EP[X] exists for each
P ∈ P . In this case, (Ω ,H,E) is called an upper expectation space. It is easy to check that
the upper expectation E[·] is also a sublinear expectation. We also consider the random
variables in the following spaces:

Lp :=
{

X ∈ L0(Ω) : E
[|X|p] < ∞}

; L :=
⋂

p≥1

Lp;

L∞ :=
{

X ∈ L0(Ω) : exists a constant M, s.t. |X| ≤ M
} ⊂L.

In the end of this section, we give an example of the sublinear expectation [20, Exam-
ple 1.1.5].

Example In a game a gambler randomly picks a ball from an urn containing W white, B
black, and Y yellow balls. The owner of the urn, who is the banker of the game, does not tell
the gambler the exact numbers of W , B, and Y . He/She only ensures that W + B + Y = 100
and W = B ∈ [20, 25]. Let ξ be a random variable defined by

ξ =

⎧
⎪⎪⎨

⎪⎪⎩

1, if the picked ball is white;

0, if the picked ball is yellow;

–1, if the picked ball is black.
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We know that the distribution of ξ is
{

–1 0 1
p
2 1 – p p

2

}

with uncertainty: p ∈ [0.4, 0.5].

Thus the robust expectation of ξ is

E
[
ϕ(ξ )

]
� sup

p∈[0.4,0.5]

[
p
2
(
ϕ(1) + ϕ(–1)

)
+ (1 – p)ϕ(0)

]

, ∀ϕ ∈ Cl,Lip(R).

Especially, E[ξ ] = 0.

3 Concentration inequalities for upper probabilities
The following theorem gives the Bernstein-type inequality in an upper probability space.

Theorem 3.1 Let {Xi}∞i=1 ⊂ L be a sequence of random variables in an upper expectation
space (Ω ,H,E). Assume that eX ∈H if X ∈H, and for any given integer n ≥ 1, all t ≥ 0,

E

[n+1∏

i=1

etXi

]

= E

[ n∏

i=1

etXi

]

·E[
etXn+1

]
. (3.1)

Denote

S̄n =
n∑

i=1

(
Xi – E[Xi]

)
,

B2
n =

n∑

i=1

E
[(

Xi – E[Xi]
)2],

b2
n =

1
n

n∑

i=1

E
[(

Xi – E[Xi]
)2] =

B2
n

n
.

Suppose that there exists a constant c > 0 such that, for any integer p ≥ 3,

n∑

i=1

E
[((

Xi – E[Xi]
)+)p] ≤ cp–2p!

2
B2

n. (Rio–Bernstein condition). (3.2)

Then, for any x > 0,

V(S̄n ≥ nx) ≤
(

1 +
x2

2(b2
n + cx)

)n

e
– nx2

b2n+cx

≤ e
– nx2

2(b2n+cx) . (3.3)

Proof Notice that

1
n

log
n∏

i=1

E
[
et(Xi–E[Xi])

]
=

1
n

n∑

i=1

logE
[
et(Xi–E[Xi])

]

≤ log

(
1
n

n∑

i=1

E
[
et(Xi–E[Xi])

]
)

. (3.4)
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Meanwhile, for any x ∈R, note the fact that

ex ≤ 1 + x +
x2

2
+

∞∑

p=3

(x+)p

p!
,

where x+ denotes 0 ∨ x. That is,

et(Xi–E[Xi]) ≤ 1 + t
(
Xi – E[Xi]

)
+

t2(Xi – E[Xi])2

2
+

∞∑

p=3

tp

p!
((

Xi – E[Xi]
)+)p.

Because of the monotonicity, constant-preserving property, positive homogeneity, and
countable subadditivity of E, we have

E
[
et(Xi–E[Xi])

]

≤ 1 + tE
[(

Xi – E[Xi]
)]

+
t2

2
E

[(
Xi – E[Xi]

)2] +
∞∑

p=3

tp

p!
E

[((
Xi – E[Xi]

)+)p]

= 1 +
t2

2
E

[(
Xi – E[Xi]

)2] +
∞∑

p=3

tp

p!
E

[((
Xi – E[Xi]

)+)p].

It follows from (3.2) that

log

(
1
n

n∑

i=1

E
[
et(Xi–E[Xi])

]
)

≤ log

(

1 +
1
n

n∑

i=1

(
t2

2
E

[(
Xi – E[Xi]

)2] +
∞∑

p=3

tp

p!
E

[((
Xi – E[Xi]

)+)p]
))

= log

(

1 +
1
n

(
t2

2

n∑

i=1

E
[(

Xi – E[Xi]
)2] +

∞∑

p=3

(
tp

p!
·

n∑

i=1

E
[((

Xi – E[Xi]
)+)p]

)))

≤ log

(

1 +
∞∑

p=2

cp–2tp

2
b2

n

)

= log

(

1 +
t2b2

n
2(1 – ct)

)

. (3.5)

In addition, according to Jensen’s inequality [7, Proposition 2.1],

E
[
et(Xi–E[Xi])

] ≥ eE[t(Xi–E[Xi])] = 1,

namely, 0 < ct < 1 in (3.5).
For all t > 0, by (3.1),

V(S̄n ≥ nx) = V

( n∑

i=1

(
Xi – E[Xi]

) ≥ nx

)

≤ E

[
et

∑n
i=1(Xi–E[Xi])

etnx

]
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= e–tnx
E

[
et

∑n
i=1(Xi–E[Xi])

]

= e–tnx
n∏

i=1

E
[
et(Xi–E[Xi])

]
. (3.6)

Thus, taking t = x
b2

n+cx in (3.5) and (3.6), together with (3.4), we get

V(S̄n ≥ nx) ≤
(

1 +
x2

2(b2
n + cx)

)n

· e
– nx2

b2n+cx

≤ e
– nx2

2(b2n+cx) .

The proof is completed. �

Remark 3.1 The exponential independence in [6, Definition 2.3], which is similar to (3.1),
is defined for all bounded Lipschitz functions.

Remark 3.2 Particularly, when Xi ≤ M uniformly, the Rio–Bernstein condition is satisfied
with c = M. Then the conclusion holds. The similar result for {Xi}∞i=1 ⊂ L∞ with different
upper bounds is proved by Wu [22].

Remark 3.3 Suppose that {–Xi}∞i=1 satisfies the condition in Theorem 3.1. More precisely,
for any fixed n, there exists c > 0, for all p > 2,

n∑

i=1

E
[((

Xi – E[Xi]
)–)p] ≤ cp–2p!

2

n∑

i=1

E
[(

Xi – E[Xi]
)2].

Then we have

V

( n∑

i=1

(
Xi – E[Xi]

) ≤ –nx

)

≤ e
– nx2

2(b̃2n+cx) ,

where b̃2
n � 1

n
∑n

i=1 E[(Xi – E[Xi])2]. This inequality could be regarded as the other side of
the Bernstein-type inequality.

Particularly, if E[Xi] = E[Xi] = 0 for any i ≥ 1 and

n∑

i=1

E
[|Xi|p

] ≤ cp–2p!
2

n∑

i=1

E
[
X2

i
]
,

the result degenerates to the two-side inequality, i.e.,

V
(|Sn| > nx

) ≤ 2e
– nx2

2(b2n+cx) ,

where b2
n = b̃2

n = 1
n
∑n

i=1 E[X2
i ].

Next we provide an example (E[Xi] �= 0) under which assumption (3.2) holds.
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Example Reconsider the example in Sect. 2. Let W + B = 90 and W ∈ [30, 60]. Let ξ be a
random variable defined by

ξ =

⎧
⎨

⎩

1, if the picked ball is white;

0, if the picked ball is black.

We know that the distribution of ξ is

{
0 1

1 – q q

}

with uncertainty: q ∈
[

1
3

,
2
3

]

.

Thus the robust expectation of ξ is

E
[
ϕ(ξ )

]
� sup

q∈[1/3,2/3]

[
qϕ(1) + (1 – q)ϕ(0)

]
, ∀ϕ ∈ Cl,Lip(R),

and E[ξ ] = 2/3, E[(ξ – E[ξ ])2] = 1/3, E[((ξ – E[ξ ])+)p] = 2/3p+1 for every p ≥ 3. Then we
define a sequence of random variables which are identically distributed with ξ . By some
simple computations, Rio–Bernstein condition (3.2) holds for c = 1/3.

Before presenting McDiarmid’s inequality in the upper expectation space, we recall the
definition of a bounded differences function and a crucial lemma whose proof could be
found in [12, Lemma 3.1].

Definition 3.1 We say f : Rn →R is a function with bounded differences {ck}n
k=1 if

sup
x1,...,xk–1,xk ,x′

k ,xk+1,...,xn

∣
∣ϕ(x1, . . . , xk–1, xk , xk+1, . . . , xn) – ϕ

(
x1, . . . , xk–1, x′

k , xk+1, . . . , xn
)∣
∣ ≤ ck

for all 1 ≤ k ≤ n, where {ck}n
k=1 is a finite sequence of bounded numbers.

Lemma 3.1 ([12, Lemma 3.1]) If a random variable X satisfies E[X] ≤ 0 and m ≤ X ≤ M,
m, M ∈R, then for all h > 0,

E
[
ehX] ≤ e

1
8 h2(M–m)2

.

The following result tells McDiarmid’s inequality in upper expectation spaces.

Theorem 3.2 Let {Xi}∞i=1 be a sequence of random variables in an upper expectation space
(Ω ,H,E). For any given integer n ≥ 1, Xn+1 is independent of (X1, . . . , Xn). Suppose that
ϕ : Rn → R is any local Lipschitz function with bounded differences {ck}n

k=1. Then, for any
ε > 0, it holds that

V
(
ϕ(X1, . . . , Xn) – E

[
ϕ(X1, . . . , Xn)

] ≥ ε
) ≤ e

– 2ε2
∑n

k=1 c2
k . (3.7)



Tan Journal of Inequalities and Applications        (2020) 2020:151 Page 9 of 14

Proof Note that

ϕ(X1, . . . , Xn) – E
[
ϕ(X1, . . . , Xn)

]

= ϕ(X1, . . . , Xn) – E
[
ϕ(x1, . . . , xn–1, Xn)

]| xi=Xi ,
1≤i≤n–1

+ E
[
ϕ(x1, . . . , xn–1, Xn)

]| xi=Xi ,
1≤i≤n–1

– E
[
ϕ(x1, . . . , xn–2, Xn–1, Xn)

]| xi=Xi ,
1≤i≤n–2

+ E
[
ϕ(x1, . . . , xn–2, Xn–1, Xn)

]| xi=Xi ,
1≤i≤n–2

– E
[
ϕ(x1, . . . , xn–3, Xn–2, . . . , Xn)

]| xi=Xi ,
1≤i≤n–3

...

+ E
[
ϕ(x1, X2, . . . , Xn)

]|x1=X1 – E
[
ϕ(X1, . . . , Xn)

]

=
n∑

k=1

gk(X1, . . . , Xk), (3.8)

where

gn(X1, . . . , Xn) = gn(x1, . . . , xn)|xi=Xi ,
1≤i≤n

= ϕ(X1, . . . , Xn) – E
[
ϕ(x1, . . . , xn–1, Xn)

]| xi=Xi ,
1≤i≤n–1

,

gn–1(X1, . . . , Xn–1) = gn–1(x1, . . . , xn–1)| xi=Xi ,
1≤i≤n–1

= E
[
ϕ(x1, . . . , xn–1, Xn)

]| xi=Xi ,
1≤i≤n–1

– E
[
ϕ(x1, . . . , xn–2, Xn–1, Xn)

]| xi=Xi ,
1≤i≤n–2

,

...

gk(X1, . . . , Xk) = gk(x1, . . . , xk)|xi=Xi ,
1≤i≤k

= E
[
ϕ(x1, . . . , xk , Xk+1, . . . , Xn)

]|xi=Xi ,
1≤i≤k

– E
[
ϕ(x1, . . . , xk–1, Xk , . . . , Xn)

]| xi=Xi ,
1≤i≤k–1

,

...

g1(X1) = g1(x1)|x1=X1 = E
[
ϕ(x1, X2, . . . , Xn)

]|x1=X1 – E
[
ϕ(X1, . . . , Xn)

]
.

(3.9)

Applying Chebyshev’s inequality [7, Proposition 2.3], we obtain, for any h > 0,

V
(
ϕ(X1, . . . , Xn) – E

[
ϕ(X1, . . . , Xn)

] ≥ ε
)

≤ e–hε
E

[
eh(ϕ(X1,...,Xn)–E[ϕ(X1,...,Xn)])]

= e–hε
E

[
eh

∑n
k=1 gk (X1,...,Xk )]. (3.10)

Denote

Mk � sup
xk

gk(x1, x2, . . . , xk) and mk � inf
xk

gk(x1, x2, . . . , xk).

By the definition of gk(x1, . . . , xk), we have

mk ≤ gk(x1, . . . , xk) ≤ Mk and 0 ≤ Mk – mk ≤ ck .
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In fact, by the monotonicity and subadditivity of E[·],

Mk – mk

= sup
xk

gk(x1, x2, . . . , xk) – inf
xk

gk(x1, x2, . . . , xk)

= sup
xk

E
[
ϕ(x1, . . . , xk , Xk+1, . . . , Xn)

]
– inf

xk
E

[
ϕ(x1, . . . , xk , Xk+1, . . . , Xn)

]

= sup
xk ,xk′

(
E

[
ϕ(x1, . . . , xk–1, xk , Xk+1, . . . , Xn)

]
– E

[
ϕ(x1, . . . , xk–1, xk′ , Xk+1, . . . , Xn)

])

≤ sup
xk ,xk′

E
[∣
∣ϕ(x1, . . . , xk–1, xk , Xk+1, . . . , Xn) – ϕ(x1, . . . , xk–1, xk′ , Xk+1, . . . , Xn)

∣
∣
]

≤ ck .

Then due to the independence, it follows that

V
(
ϕ(X1, . . . , Xn) – E

[
ϕ(X1, . . . , Xn)

] ≥ ε
)

≤ e–hε
E

[
eh

∑n–1
k=1 gk (X1,...,Xk )

E
[
ehgn(x1,...,xn–1,Xn)]| xi=Xi ,

1≤i≤n–1

]

≤ e–hε
E

[
eh

∑n–1
k=1 gk (X1,...,Xk )e

h2(Mn–mn)2
8

]

≤ e–hε
E

[
eh

∑n–1
k=1 gk (X1,...,Xk )e

h2c2n
8

]

...

≤ e–hε+
h2 ∑n

k=1 c2
k

8 .

Choosing h = 4ε∑n
k=1 c2

k
, McDiarmid’s inequality (3.7) holds. �

4 Applications
As applications of Bernstein-type inequality, we get the following strong laws of large num-
bers.

Corollary 4.1 Let {Xi}∞i=1 and {–Xi}∞i=1 both satisfy the conditions in Theorem 3.1. Suppose
that there exists some constant M such that b2

n ≤ M and b̃2
n ≤ M uniformly for any n. For

every i ≥ 1, E[Xi] = μ, E[Xi] = –E[–Xi] = μ, and set Sn =
∑n

i=1 Xi. Then we have

V

({
lim inf

n→∞ Sn/n < μ
}

∪
{

lim sup
n→∞

Sn/n > μ
})

= 0. (4.1)

Moreover,

lim sup
n→∞

1
n

logV
({Sn/n ≥ μ + ε} ∪ {Sn/n ≤ μ – ε}) ≤ –

ε2

2(M + cε)
, (4.2)

lim sup
ε→0

ε2
∞∑

n=1

V
({Sn/n ≥ μ + ε} ∪ {Sn/n ≤ μ – ε}) ≤ 2M. (4.3)
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Proof By the lower continuity and subadditivity of V, it is obvious that result (4.1) is equiv-
alent to the conjunction of

V

(
lim sup

n→∞
Sn/n ≥ μ + ε

)
= 0

and

V

(
lim inf

n→∞ Sn/n ≤ μ – ε
)

= 0

for any ε > 0. Given any ε > 0, a direct result of Bernstein-type inequality (3.3) is

V(Sn/n – μ ≥ ε) ≤ e
– nε2

2(b2n+cε) ≤ e– nε2
2(M+cε) . (4.4)

Thus, we obtain

∞∑

n=1

V(Sn/n – μ ≥ ε) < ∞.

It follows from the Borel–Cantelli lemma [7, Lemma 2.2] that

V

( ∞⋂

n=1

∞⋃

k=n

{Sk/k ≥ μ + ε}
)

= 0.

Then

V

(
lim sup

n→∞
Sn/n ≥ μ + ε/2

)
= 0.

More precisely, by (4.4),

1
n

logV(Sn/n ≥ μ + ε) ≤ –
ε2

2(M + cε)

and

lim sup
ε→0

ε2
∞∑

n=1

V(Sn/n ≥ μ + ε) ≤ 2M.

Similarly, by applying the other side of the Bernstein-type inequality, we can get

V

(
lim inf

n→∞ Sn/n ≤ μ – ε
)

= 0,

1
n

logV(Sn/n ≤ μ – ε) ≤ –
ε2

2(b̃2
n + cε)

≤ –
ε2

2(M + cε)
,

and

lim sup
ε→0

ε2
∞∑

n=1

V(Sn/n ≤ μ – ε) ≤ 2M.

Together with the subadditivity of V, (4.2) and (4.3) follow. �
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Remark 4.1 The exponential moment condition is stronger for result (4.1). In fact, Chen
et al. proved the strong law of large numbers (4.1) in upper expectation spaces in [7, Theo-
rem 3.1] and [4, Theorem 3.1] under different conditions without the exponential moment
condition. We strengthen the conditions to apply the Bernstein-type inequality and obtain
results (4.2) and (4.3). Formula (4.2) illustrates the convergence rate of (4.1). In the prob-
ability theory, (4.3) characterizes the complete convergence and it is precise asymptotic.

Corollary 4.2 (Marcinkiewicz–Zygmund-type law of large numbers) Let {Xi}∞i=1 be the
sequence in Corollary 4.1. For any 1 < r < 2, we have

V

({
lim inf

n→∞ S̃n/n1/r < 0
}

∪
{

lim sup
n→∞

S̄n/n1/r > 0
})

= 0, (4.5)

lim sup
n→∞

1
n 2

r –1
logV

({
S̄n/n1/r ≥ ε

} ∪ {
S̃n/n1/r ≤ μ – ε

}) ≤ –
ε2

4M
, (4.6)

where S̄n =
∑n

i=1(Xi – E[Xi]) and S̃n =
∑n

i=1(Xi – E[Xi]).

Proof For any given 1 < r < 2, ε > 0, we take x = n1/r–1ε in Theorem 3.1, we have

V

(
S̄n

n1/r ≥ ε

)

≤ e
– n1/rε2

2(b2n ·n1–1/r+cε) ≤ e
– n1/rε2

2(M·n1–1/r+cε) .

Thus, we get

∞∑

n=1

V

(
S̄n

n1/r ≥ ε

)

< ∞.

Similar to the above Corollary 4.1, we can get

V

({
lim inf

n→∞ S̃n/n1/r < 0
}

∪
{

lim sup
n→∞

S̄n/n1/r > 0
})

= 0.

Moreover, for n large enough,

1
n 2

r –1
logV

(
S̄n

n1/r ≥ ε

)

≤ –
ε2

4b2
n

,

1
n 2

r –1
logV

(
S̃n

n1/r ≤ –ε

)

≤ –
ε2

4b̃2
n

.

Result (4.6) is obvious. �

Remark 4.2 The similar result to (4.5) was considered by Lan [16, Theorem 4.4] under
some weaker moment condition. Result (4.6) is our main result.

Corollary 4.3 Suppose that {Xi}∞i=1 satisfies the conditions in Corollary 4.1. Then, for any
ε > 0, we have

V

(
1√
n

n∑

i=1

(
Xi – E[Xi]

) ≥ ε

)

≤ e
– ε2

2(b̄2n+c· ε√
n ) ≤ e

– ε2
2(M+c· ε√

n )
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and

V

(
1√
n

n∑

i=1

(
Xi – E[Xi]

) ≤ –ε

)

≤ e
– ε2

2(b̃2n+c· ε√
n ) ≤ e

– ε2
2(M+c· ε√

n ) .

Moreover,

lim sup
n→∞

V

(
1√
n

n∑

i=1

(
Xi – E[Xi]

) ≥ ε

)

≤ e– ε2
2M

and

lim sup
n→∞

V

(
1√
n

n∑

i=1

(
Xi – E[Xi]

) ≤ –ε

)

≤ e– ε2
2M .

Proof It is a straightforward result of Theorem 3.1 by taking x = 1√
n · ε, and we omit the

proof. �
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