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Abstract
In this paper, we present a functional model theorem for completely non-coisometric
n-tuples of operators in the noncommutative variety Vf ,ϕ ,I (H) in terms of constrained
characteristic functions. As an application, we prove that the constrained
characteristic function is a complete unitary invariant for this class of elements, which
can be viewed as the noncommutative analogue of the classical Sz.-Nagy–Foiaş
functional model for completely nonunitary contractions. On the other hand, we
provide a Sarason-type commutant lifting theorem. Applying this result, we solve the
Nevanlinna–Pick-type interpolation problem in our setting. Moreover, we also obtain
a Beurling-type characterization of the joint invariant subspaces under the operators
B1, . . . ,Bn, where the n-tuple (B1, . . . ,Bn) is the universal model associated with the
abstract noncommutative variety Vf ,ϕ ,I .

MSC: Primary 46L52; 47A45; secondary 46L07; 46T25

Keywords: Noncommutative Poisson transform; Characteristic function; Universal
model; Interpolation

1 Introduction
In the last fifty years, the study of the closed operator unit ball

[
B(H)

]–
1 :=

{
T ∈ B(H) :

∥∥TT∗∥∥ 1
2 ≤ 1

}

has generated the celebrated Sz.-Nagy–Foiaş theory of contractions on Hilbert spaces.
This research has evolved into a well-developed theory, which plays an important role
in modern functional analysis. In 1963, Sz.-Nagy and Foiaş obtained an effective H∞-
functional calculus for completely nonunitary contractions on Hilbert spaces based on
the existence of a unitary dilation of a contraction T (see [33]). An important application
of this functional calculus to the theory of contraction semigroups has also been given in
Foiaş [5]. Moreover, the characteristic function of a contraction T appears as the operator-
valued analytic function corresponding to a certain orthogonal projection in the space of
the minimal unitary dilation of T . This yields a functional model for T , which is a useful
tool for analyzing the structure of contractions.
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In the multivariable case, the study of the closed operator unit n-ball

[
B(H)n]–

1 :=
{

(T1, . . . , Tn) ∈ B(H)n :
∥∥T1T∗

1 + · · · + TnT∗
n
∥∥

1
2 ≤ 1

}

has generated a noncommutative analogue of Sz.-Nagy–Foiaş theory (see [2–4, 6–8], and
more recently [1, 11, 34]). In particular, Popescu developed a theory of holomorphic func-
tions in several noncommuting variables and provided a framework for the study of arbi-
trary n-tuples of operators. A free analytic functional calculus was introduced and studied
in connection with Hausdorff derivations, noncommutative Cauchy and Poisson trans-
forms, and von Neumann inequalities (see [15, 16, 18, 20–23, 26, 29, 30]). Moreover, we
remark the work of Helton, McCullough, and Vinnikov on symmetric noncommutative
polynomials (see [9, 10]). We should also remark that, in recent years, many results con-
cerning the theory of row contractions were extended by Muhly and Solel ([12–14]) to
representations of tensor algebras over C∗-correspondences and Hardy algebras.

In [28], Popescu developed an operator model theory for pure n-tuples of operators in
noncommutative domains Df ,ϕ(H) ⊂ B(H)n generated by positive regular free holomor-
phic functions f and certain classes of n-tuples ϕ = (ϕ1, . . . ,ϕn) of formal power series
in noncommutative indeterminates Z1, . . . , Zn. An important role in his study was played
by noncommutative Poisson transforms. Using these transforms, he proved that each ab-
stract noncommutative domain Df ,ϕ has a universal model (MZ1 , . . . , MZn ). Unlike the case
of the ball [B(H)n]–

1 , the operators MZ1 , . . . , MZn are not isometries and do not have orthog-
onal ranges in general, which leads to considerable technical difficulties in developing an
operator model theory. Moreover, notice that the study of Df ,ϕ(H) is closely related to
the study of the operators MZ1 , . . . , MZn , their joint invariant subspaces, and the represen-
tations of the algebras they generate: the noncommutative domain algebra A(Df ,ϕ), the
noncommutative Hardy algebra H∞(Df ,ϕ), and the C∗-algebra C∗(MZ1 , . . . , MZn ). Indeed,
this noncommutative domain Df ,ϕ(H) has been studied in several particular cases. Ac-
cording to [22, 24] and [33], if f = Z and ϕ = Z, then the corresponding domain Df ,ϕ(H)
coincides with the closed operator unit ball [B(H)]–

1 , the study of which has generated
Sz.-Nagy–Foiaş theory of contractions. If f = Z1 + · · · + Zn and ϕ = (Z1, . . . , Zn), then the
corresponding domain Df ,ϕ(H) coincides with the closed operator unit n-ball [B(H)n]–

1 ,
the study of which has generated a free analogue of Sz.-Nagy–Foiaş theory. In particular,
if ϕ = (Z1, . . . , Zn), then the corresponding domain Df ,ϕ(H) coincides with the noncom-
mutative Reinhardt domain Df (H), which was first studied by Popescu [24].

In this paper, we continue the research line of Popescu to develop an operator model
theory for completely non-coisometric n-tuples of operators in noncommutative varieties
Vf ,ϕ,I(H). To present our results, we need some notation. Let S[Z1, . . . , Zn] be the algebra
of all formal power series in noncommutative indeterminates Z1, . . . , Zn and complex co-
efficients. We denote by F

+
n the unital free semigroup on n generators g1, . . . , gn and the

identity g0. The length of α ∈ F
+
n is defined by |α| := 0 if α = g0 and |α| := k if α = gi1 · · · gik ,

where i1, . . . , ik ∈ {1, . . . , n}. We set Zα := Zi1 · · ·Zik and Zg0 := I . If f ∈ S[Z1, . . . , Zn] has the
representation f :=

∑
α∈F+

n
aαZα and the coefficients aα ∈C satisfy the conditions

r(f )–1 := lim sup
k→∞

(∑

|α|=k

|aα|2
) 1

2k
< ∞,
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aα ≥ 0 for any α ∈ F
+
n , ag0 = 0, and agi > 0, i = 1, . . . , n, we say that f is a positive regular free

holomorphic function. The number r(f ) is called the radius of convergence of f .
Denote by Mf the set of all n-tuples ϕ = (ϕ1, . . . ,ϕn) of formal power series ϕi ∈

S[Z1, . . . , Zn] with the model property (see Sect. 2). H is a Hilbert space and B(H) is
the algebra of all bounded linear operators on H. If X = (X1, . . . , Xn) ∈ B(H)n, we denote
Xα := Xi1 · · ·Xik if α = gi1 · · · gik ∈ F

+
n , and Xg0 := IH. We introduce the noncommutative

domain Df ,ϕ(H) associated with f ,ϕ ∈Mf and a Hilbert space H and defined by

Df ,ϕ(H) :=
{

X ∈ B(H)n : ψ
(
ϕ(X)

)
= X and

∑

|α|≥1

aα

[
ϕ(X)

]
α

[
ϕ(X)

]∗
α

≤ IH
}

,

where ψ := (ψ1, . . . ,ψn) is the inverse of ϕ with respect to composition of formal power
series, and the evaluations are well defined (see Sect. 2). We refer to Df ,ϕ := {Df ,ϕ(H) :
H is a Hilbert space} as the abstract noncommutative domain, and to Df ,ϕ(H) as its rep-
resentation on the Hilbert space H. We associate with each Df ,ϕ a Hilbert space H

2
f (ϕ) of

formal power series in S[Z1, . . . , Zn] with the property that the indeterminates Z1, . . . , Zn

are in the Hilbert space H
2
f (ϕ) and each left multiplication operator MZi : H2

f (ϕ) → H
2
f (ϕ)

defined by

MZiζ := Ziζ , ζ ∈H
2
f (ϕ),

is a bounded multiplier of H
2
f (ϕ). Similarly, each right multiplication operator RZi :

H
2
f (ϕ) →H

2
f (ϕ) defined by

RZiζ := ζZi, ζ ∈ H
2
f (ϕ),

is also a bounded multiplier of H2
f (ϕ).

Let I 	= H∞(Df ,ϕ) be a WOT-closed two-sided ideal of the noncommutative Hardy al-
gebra H∞(Df ,ϕ), where H∞(Df ,ϕ) is the WOT-closure of all noncommutative polynomials
in MZ1 , . . . , MZn and the identity. Now we define the noncommutative variety

Vf ,ϕ,I(H) :=
{

(X1, . . . , Xn) ∈Df ,ϕ(H) : ω(X1, . . . , Xn) = 0 for any ω ∈ I
}

.

Denote by H∞(Vf ,ϕ,I) the WOT-closed algebra generated by the constrained weighted
shifts Bi := PNf ,ϕ,I MZi |Nf ,ϕ,I for i = 1, . . . , n and the identity, where

Nf ,ϕ,I := H
2
f (ϕ) 
Mf ,ϕ,I and Mf ,ϕ,I := IH2

f (ϕ).

Similarly, denote by R∞(Vf ,ϕ,I) the WOT-closed algebra generated by the constrained
weighted shifts Ci := PNf ,ϕ,I RZi |Nf ,ϕ,I for i = 1, . . . , n and the identity.

In Sect. 2, we collect some notation and preliminaries which are needed in the sequel. In
Sect. 3, we obtain a factorization result for the constrained characteristic function, namely

INf ,ϕ,I⊗DCf ,ϕ,T
– Θ

(I)
f ,ϕ,T

(
Θ

(I)
f ,ϕ,T

)∗ = K (I)
f ,ϕ,T

(
K (I)

f ,ϕ,T
)∗,

where Θ
(I)
f ,ϕ,T is the constrained characteristic function and K (I)

f ,ϕ,T is the corresponding con-
strained Poisson kernel. Moreover, we present a functional model theorem for completely
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non-coisometric n-tuples of operators in the noncommutative variety Vf ,ϕ,I(H) in terms
of constrained characteristic functions. Applying this result, we prove that the constrained
characteristic function is a complete unitary invariant for this class of elements. Indeed,
this result can be viewed as the noncommutative analogue of the classical Sz.-Nagy–Foiaş
functional model for completely nonunitary contractions.

In Sect. 4, we prove a Sarason-type commutant lifting theorem. As an application,
we obtain the Nevanlinna–Pick-type interpolation result in our setting. We show that
if λ1, . . . ,λk are k distinct points in the strict noncommutative variety V<

f ,ϕ,I(C) and
A1, . . . , Ak ∈ B(K), then there exists Φ(C1, . . . , Cn) ∈ R∞(Vf ,ϕ,I) ⊗ B(K) such that

∥∥Φ(C1, . . . , Cn)
∥∥ ≤ 1 and Φ(λj) = Aj, j = 1, . . . , k,

if and only if the operator matrix

[
Kf ,ϕ(λi,λj)

(
IK – AiA∗

j
)]

k×k

is positive semidefinite, where

Kf ,ϕ(λi,λj) :=

√
1 –

∑
|α|≥1 aα|ϕα(λi)|2

√
1 –

∑
|α|≥1 aα|ϕα(λj)|2

1 –
∑

|α|≥1 aα[ϕ(λi)]α[ϕ(λj)]α
.

Moreover, we provide a Beurling-type characterization of the joint invariant subspaces
under the constrained weighted shifts B1, . . . , Bn. More precisely, a subspace M⊆Nf ,ϕ,I ⊗
K is invariant under Bi ⊗ IK, i = 1, . . . , n, if and only if there are a Hilbert space G and an
inner multi-analytic operator

Φ : Nf ,ϕ,I ⊗ G →Nf ,ϕ,I ⊗K

with respect to the constrained weighted shifts B1, . . . , Bn such that

M = Φ[Nf ,ϕ,I ⊗ G].

2 Preliminaries
In this section we collect some notation and preliminaries which are needed in the sequel.
For more information, we refer to [24, 27] and [28].

2.1 Weighted Fock space
Let f :=

∑
α∈F+

n
aαZα , aα ∈ C, be a positive regular free holomorphic function. Define the

noncommutative domain

Df (H) :=
{

(X1, . . . , Xn) ∈ B(H)n :
∑

|α|≥1

aαXαX∗
α ≤ IH

}
,

where the convergence of the series is in the weak operator topology. Define the strict
noncommutative domain

Df ,<(H) :=
{

(X1, . . . , Xn) ∈ B(H)n :
∥∥∥
∥

∑

|α|≥1

aαXαX∗
α

∥∥∥
∥ < 1

}
,
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where the convergence is in the weak operator topology. Now, we define

bg0 = 1 and bα =
|α|∑

j=1

∑

γ1···γj=α

|γ1|≥1,...,|γj|≥1

aγ1 · · ·aγj if |α| ≥ 1. (2.1)

We introduce an inner product on the algebra of noncommutative polynomials
C[Z1, . . . , Zn] by setting

〈Zα , Zβ〉f :=
1

bα

δαβ , α,β ∈ F
+
n .

Let F2
f be the completion of C[Z1, . . . , Zn] in this inner product. Notice that the elements

of F2
f are formal power series ζ ∈ S[Z1, . . . , Zn] of the form ζ =

∑
α∈F+

n
cαZα , where

‖ζ‖2
f :=

∑

α∈F+
n

|cα|2 1
bα

< ∞.

Indeed, F2
f is a weighted Fock space on n generators. For each i = 1, . . . , n, we define the

left multiplication operator Vi : F2
f → F2

f by setting Viζ := Ziζ . Notice that (V1, . . . , Vn) is
in the noncommutative domain Df (F2

f ), and

IF2
f

–
∑

|α|≥1

aαVαV ∗
α = PC, (2.2)

where PC is the orthogonal projection from F2
f onto C.

Let F∞
f be the set of all ζ ∈F2

f with the property that

‖ζ‖∞ := sup
{‖ζp‖f : p ∈ C[Z1, . . . , Zn],‖p‖f ≤ 1

}
< ∞.

Notice that F∞
f is a Banach algebra with respect to the norm ‖ · ‖∞. Let ζ =

∑
β∈F+

n
cβZβ

be a formal power series with the property that
∑

β∈F+
n
|cβ |2 1

bβ
< ∞, where the coefficients

bβ , β ∈ F
+
n , are given by relation (2.1). One can see that

∑
β∈F+

n
cβVβ (p) ∈ F2

f for any p ∈
C[Z1, . . . , Zn]. Moreover, ζ ∈F∞

f if and only if

sup
p∈C[Z1,...,Zn],‖p‖f ≤1

∥
∥∥∥

∑

β∈F+
n

cβVβ (p)
∥
∥∥∥

f
< ∞.

In this case, there is a unique bounded operator acting on F2
f , which we denote by

ζ (V1, . . . , Vn), such that

ζ (V1, . . . , Vn)p =
∑

β∈F+
n

cβVβ (p) for any p ∈C[Z1, . . . , Zn].

We call the series
∑

β∈F+
n

cβVβ the Fourier representation of ζ (V1, . . . , Vn). The set of all
operators ϕ(V1, . . . , Vn) ∈ B(F2

f ) satisfying the above-mentioned properties is denoted by
F∞(Df ).
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We consider the full Fock space of Hn defined by

F2(Hn) := C1 ⊕
⊕

m≥1

H⊗m
n ,

where H⊗m
n is the Hilbert tensor product of m copies of Hn. We denote eα := ei1 ⊗· · ·⊗ eik

if α = gi1 · · · gik , where i1, . . . , ik ∈ {1, . . . , n}, and eg0 := 1. Consider Ω : F2(Hn) → F2
f to be

the unitary operator defined by Ω(eα) :=
√

bαZα , α ∈ F
+
n , where the coefficients bα are

given by relation (2.1). We remark that Ω–1ViΩ = Wi, i = 1, . . . , n, where (W1, . . . , Wn) is
the n-tuple of weighted shifts on F2(Hn), which was introduced in [24]. Using the results
from [24], we know that F∞(Df ) is the WOT-closure (resp. SOT-closure, w∗-closure) of
all polynomials in V1, . . . , Vn and the identity. The noncommutative domain algebra A(Df )
is the norm-closure of all polynomials in V1, . . . , Vn and the identity.

2.2 Noncommutative domain
We say that an n-tuple p = (p1, . . . , pn) of polynomials is invertible with respect to compo-
sition if there exists an n-tuple q = (q1, . . . , qn) of polynomials such that p ◦ q = q ◦ p = id.
In this case, we say that p has property (A). In what follows, we provide an example. If

p1 = a1Z1 + a2Z2 + a3Z3Z2,

p2 = b2Z2 + b3Z2
3 (a1b2c3 	= 0),

p3 = c3Z3,

then p = (p1, p2, p3) is invertible with respect to composition, i.e., there exists q = (q1, q2, q3)
such that p ◦ q = q ◦ p = id, where

q1 =
1
a1

Z1 –
a2

a1b2
Z2 –

a3

a1b2c3
Z3Z2 +

a2b3

a1b2c2
3

Z2
3 +

a3b3

a1b2c3
3

Z3
3,

q2 =
1
b2

Z2 –
b3

b2c2
3

Z2
3,

q3 =
1
c3

Z3.

This shows that p has property (A).
Let f :=

∑
α∈F+

n
aαZα be a positive regular free holomorphic function, and let p =

(p1, . . . , pn) be an n-tuple of noncommutative polynomials with property (A). We intro-
duce an inner product by setting

〈pα , pβ〉f ,p :=
1

bα

δαβ , α,β ∈ F
+
n .

Let H2
f (p) be the completion of the linear space

∨{pα}α∈F+
n with respect to this inner prod-

uct.
Consider an n-tuple of formal power series ϕ = (ϕ1, . . . ,ϕn) in indeterminates Z1, . . . , Zn

with the property that the Jacobian

det Jϕ(0) := det[λij]n
i,j=1 	= 0,
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where

ϕi(Z1, . . . , Zn) = a(i)
0 I +

n∑

p=1

a(i)
p Zp +

∑

|α|≥2

a(i)
α Zα ,λij = a(i)

j ,

and i, j = 1, . . . , n. Due to Theorem 1.2 from [25], the set {ϕα}α∈F+
n (where ϕ0 := I) is linearly

independent in S[Z1, . . . , Zn]. We introduce an inner product on the linear span of {ϕα}α∈F+
n

by setting

〈ϕα ,ϕβ〉f ,ϕ :=
1

bα

δαβ , α,β ∈ F
+
n ,

where the coefficients bα , α ∈ F
+
n , are given by relation (2.1). LetH2

f (ϕ) be the completion of
the linear space

∨{ϕα}α∈F+
n with respect to this inner product. Assume now that ϕ(0) = 0.

Theorem 1.3 from [25] shows that ϕ is not a right zero divisor with respect to composition,
i.e., there is no nonzero power series χ in S[Z1, . . . , Zn] such that χ ◦ ϕ = 0. Consequently,
the elements of H2

f (ϕ) can be seen as a formal power series in S[Z1, . . . , Zn] of the form
∑

α∈F+
n

cαϕα , where
∑

α∈F+
n

1
bα

|cα|2 < ∞.
To introduce the class of n-tuples of formal power series with property (S), we need

some preliminaries. Let χ =
∑∞

k=0
∑

|α|=k cαZα be a formal power series in indeterminates
Z1, . . . , Zn. We denote by Cχ (H) (resp. CSOT

χ (H)) the set of all Y := (Y1, . . . , Yn) ∈ B(H)n such
that the series χ (Y1, . . . , Yn) :=

∑∞
k=0

∑
|α|=k cαYα is norm (resp. SOT) convergent. These

sets are called sets of norm (resp. SOT) convergence for the power series χ . We also in-
troduce the set Crad

χ (H) of all Y := (Y1, . . . , Yn) ∈ B(H)n such that there exists δ ∈ (0, 1) with
the property that rY ∈ Cχ (H) for any r ∈ (δ, 1) and

χ̂ (Y1, . . . , Yn) := SOT- lim
r→1

∞∑

k=0

∑

|α|=k

cαr|α|Yα

exists.

Definition 2.1 (see [28]) Let ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series in
Z1, . . . , Zn such that ϕ(0) = 0. We say that ϕ has property (S) if the following conditions
hold:

(S1) The radius of convergence of ϕ, i.e., r(ϕ) := mini=1,...,n r(ϕi), is strictly positive and det
Jϕ(0) 	= 0.

(S2) The indeterminates Z1, . . . , Zn are in the Hilbert spaceH2
f (ϕ) and each multiplication

operator MZi : H2
f (ϕ) →H

2
f (ϕ) defined by

MZiζ := Ziζ , ζ ∈H
2
f (ϕ),

is a bounded multiplier of H2
f (ϕ).

(S3) The multiplication operators Mϕj : H2
f (ϕ) → H

2
f (ϕ), Mϕjχ = ϕjχ , satisfy the equa-

tions

Mϕj = ϕj(MZ1 , . . . , MZn ), j = 1, . . . , n,

where (MZ1 , . . . , MZn ) is either in the convergence set CSOT
ϕ (H2

f (ϕ)) or Crad
ϕ (H2

f (ϕ)).
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Let U : H2
f (ϕ) → F2

f be the unitary operator defined by U(ϕα) := Zα , α ∈ F
+
n . According

to the proof of Lemma 1.2 from [28], we have

Mϕi = U–1ViU , i = 1, . . . , n. (2.3)

Throughout this paper, unless otherwise specified, we assume that ϕ = (ϕ1, . . . ,ϕn) is either
an n-tuple of noncommutative polynomials with property (A) or an n-tuple of formal
power series with ϕ(0) = 0 and property (S). In this case, we say that ϕ has the model
property.

Definition 2.2 (see [25, 28]) Let ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with
model property, and let ψ = (ψ1, . . . ,ψn) be the n-tuple of power series which is the inverse
of ϕ = (ϕ1, . . . ,ϕn) with respect to composition. Assume that ψi has the representation

ψi =
∞∑

k=0

∑

α∈F+
n ,|α|=k

c(i)
α Zα for i = 1, . . . , n,

where the sequence {c(i)
α }α∈F+

n is uniquely determined by the condition ψ ◦ ϕ = id. We say
that an n-tuple of operators X = (X1, . . . , Xn) ∈ B(H)n satisfies the equation ψ(ϕ(X)) = X in
either one of the following two cases:

(a) X ∈ CSOT
ϕ (H) and either Xi =

∑∞
k=0

∑
α∈F+

n ,|α|=k c(i)
α [ϕ(X)]α , i = 1, . . . , n, where the

convergence of the series is in the strong operator topology, or ϕ(X) ∈ Crad
ψ (H) and

Xi = SOT- lim
r→1

∞∑

k=0

∑

α∈F+
n ,|α|=k

c(i)
α r|α|[ϕ(X)

]
α

, i = 1, . . . , n;

(b) X ∈ Crad
ϕ (H) and either Xi =

∑∞
k=0

∑
α∈F+

n ,|α|=k c(i)
α [ϕ̂(X)]α , i = 1, . . . , n, where the

convergence of the series is in the strong operator topology, or ϕ̂(X) ∈ Crad
ψ (H) and

Xi = SOT- lim
r→1

∞∑

k=0

∑

α∈F+
n ,|α|=k

c(i)
α r|α|[ϕ̂(X)

]
α

, i = 1, . . . , n.

Definition 2.3 (see [28]) Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic func-
tion, and let ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. The
noncommutative domain Df ,ϕ(H) is the set of all n-tuples of bounded linear operators
X = (X1, . . . , Xn) ∈ B(H)n such that ψ(ϕ(X)) = X and

∑

|α|≥1

aα

[
ϕ(X)

]
α

[
ϕ(X)

]∗
α

≤ IH,

where the convergence is in the weak operator topology. Define the strict noncommutative
domain

D
<
f ,ϕ(H) :=

{
X ∈ B(H)n : ψ

(
ϕ(X)

)
= X and

∥
∥∥
∥

∑

|α|≥1

aα

[
ϕ(X)

]
α

[
ϕ(X)

]∗
α

∥
∥∥
∥ < 1

}
,

where the convergence is in the weak operator topology.
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We define the noncommutative Hardy algebra H∞(Df ,ϕ) to be the WOT-closure of all
noncommutative polynomials in MZ1 , . . . , MZn and the identity. Similarly, we can also de-
fine the noncommutative Hardy algebra R∞(Df ,ϕ) to be the WOT-closure of all noncom-
mutative polynomials in RZ1 , . . . , RZn and the identity. Now we can define the strict non-
commutative variety

V<
f ,ϕ,I(H) :=

{
(X1, . . . , Xn) ∈D

<
f ,ϕ(H) : ω(X1, . . . , Xn) = 0 for any ω ∈ I

}
,

where I is a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ).

2.3 Noncommutative Poisson kernel
If T = (T1, . . . , Tn) ∈Df ,ϕ(H), we define the positive linear mapping

Φf ,ϕ,T : B(H) → B(H) by Φf ,ϕ,T (Y ) :=
∑

|α|≥1

aα

[
ϕ(T)

]
α

Y
[
ϕ(T)

]∗
α

,

where the convergence is in the weak operator topology. We say that T = (T1, . . . , Tn) is a
pure n-tuple of operators in Df ,ϕ(H) if

SOT- lim
m→∞Φm

f ,ϕ,T (I) = 0.

The set of all pure elements of Df ,ϕ(H) is denoted by D
pure
f ,ϕ (H). Notice that (MZ1 , . . . , MZn )

is in D
pure
f ,ϕ (H2

f (ϕ)). Moreover, we refer to the n-tuple (MZ1 , . . . , MZn ) as the universal model
associated with the abstract noncommutative domain Df ,ϕ . An n-tuple T ∈ Df ,ϕ(H) is
called completely non-coisometric (c.n.c.) if there is no vector h ∈H, h 	= 0, such that

〈
Φm

f ,ϕ,T (I)h, h
〉

= ‖h‖2 for any m = 1, 2, . . . .

The set of all c.n.c. elements of Df ,ϕ(H) is denoted by D
cnc
f ,ϕ (H). Note that

D
pure
f ,ϕ (H) ⊆D

cnc
f ,ϕ (H) ⊆Df ,ϕ(H).

Similarly, we have

Vpure
f ,ϕ,I(H) ⊆ Vcnc

f ,ϕ,I(H) ⊆ Vf ,ϕ,I(H).

Moreover, it is obvious that the n-tuple (B1, . . . , Bn) is in the noncommutative vari-
ety Vpure

f ,ϕ,I(Nf ,ϕ,I), where Bi := PNf ,ϕ,I MZi |Nf ,ϕ,I for i = 1, . . . , n. We refer to the n-tuple
(B1, . . . , Bn) as the universal model associated with the abstract noncommutative variety
Vf ,ϕ,I .

We define the noncommutative Poisson kernel associated with the n-tuple T :=
(T1, . . . , Tn) ∈Df ,ϕ(H) to be the operator Kf ,ϕ,T : H →H

2
f (ϕ) ⊗ �f ,ϕ,T (H) defined by

Kf ,ϕ,T h :=
∑

α∈F+
n

bαϕα ⊗ �f ,ϕ,T
[
ϕ(T)

]∗
α

h, h ∈H,

where �f ,ϕ,T := (I – Φf ,ϕ,T (I)) 1
2 and the coefficients bα , α ∈ F

+
n , are given by relation (2.1).



Hu et al. Journal of Inequalities and Applications        (2020) 2020:146 Page 10 of 32

2.4 Characteristic function
We consider the full Fock space of Hn defined by

F2(Hn) := C1 ⊕
⊕

m≥1

H⊗m
n ,

where H⊗m
n is the Hilbert tensor product of m copies of Hn. Define the left creation

operators Si, i = 1, . . . , n, acting on F2(Hn) by setting Siξ := ei ⊗ ξ , ξ ∈ F2(Hn). If A ∈
B(F2(Hn) ⊗ G, F2(Hn) ⊗K) and

(
S∗

i ⊗ IK
)
A(Sj ⊗ IG) = δijA, i, j = 1, . . . , n,

then A is called multi-Toeplitz with respect to S1, . . . , Sn. Moreover, if A ∈ B(F2(Hn) ⊗ G,
F2(Hn) ⊗K) and

A(Si ⊗ IG) = (Si ⊗ IK)A, i = 1, . . . , n,

then A is called multi-analytic with respect to S1, . . . , Sn (see [17, 19]). We remark that
several results concerning the full Fock space F2(Hn) have been extended to the Hilbert
space H

2
f (ϕ) (see [25, 26, 28]). If A ∈ B(H2

f (ϕ) ⊗ G,H2
f (ϕ) ⊗K), and

A(MZi ⊗ IG) = (MZi ⊗ IK)A, i = 1, . . . , n,

then A is called multi-analytic with respect to MZ1 , . . . , MZn (see Definition 3.1 of [28]).
Indeed, this definition is an analogy.

Let f =
∑

|α|≥1 aαXα be a positive regular free holomorphic function and define the set
Γ := {α ∈ F

+
n : aα 	= 0} and N := card(Γ ). If ϕ = (ϕ1, . . . ,ϕn) is an n-tuple of formal power

series with the model property and T := (T1, . . . , Tn) ∈ Df ,ϕ(H), we define the row operator

Cf ,ϕ,T :=
[√

aα̃

[
ϕ(T)

]
α̃

: α ∈ Γ
]
,

where the entries are arranged in the lexicographic order of Γ ⊂ F
+
n , and α̃ is the reverse

of α = gi1 · · · gik , i.e., α̃ = gik · · · gi1 . Note that Cf ,ϕ,T is an operator acting from H(N) (the
completion of the direct sum of N copies of H) to H.

Let (MZ1 , . . . , MZn ) be the universal model associated with the abstract noncommutative
domain Df ,ϕ . We introduce the characteristic function of an n-tuple T := (T1, . . . , Tn) ∈
Df ,ϕ(H) to be the multi-analytic operator with respect to MZ1 , . . . , MZn ,

Θf ,ϕ,T : H2
f (ϕ) ⊗DC∗

f ,ϕ,T
→H

2
f (ϕ) ⊗DCf ,ϕ,T

with formal Fourier representation

–I ⊗ Cf ,ϕ,T + (I ⊗ �Cf ,ϕ,T )
(

I –
∑

|α|≥1

aα̃Rϕα ⊗ [
ϕ(T)

]∗
α̃

)–1

× [
√

aα̃Rϕα ⊗ I : α ∈ Γ ](I ⊗ �C∗
f ,ϕ,T

),
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where Rϕ1 , . . . , Rϕn are the right multiplication operators by the formal power series
ϕ1, . . . ,ϕn, respectively, on the Hilbert space H

2
f (ϕ). The defect operators associated with

the row contraction Cf ,ϕ,T are

�Cf ,ϕ,T :=
(
I – Cf ,ϕ,T C∗

f ,ϕ,T
) 1

2 ∈ B(H),

�C∗
f ,ϕ,T

:=
(
I – C∗

f ,ϕ,T Cf ,ϕ,T
) 1

2 ∈ B
(
H(N)),

and the defect spaces are DCf ,ϕ,T := �Cf ,ϕ,TH and DC∗
f ,ϕ,T

:= �C∗
f ,ϕ,T

H(N).

3 Constrained characteristic functions
In this section, we present a functional model theorem for completely non-coisometric n-
tuples of operators in the noncommutative variety Vf ,ϕ,I(H) in terms of constrained char-
acteristic functions. Moreover, we prove that the constrained characteristic function is a
complete unitary invariant for this class of elements. Indeed, this result can be viewed as
the noncommutative analogue of the classical Sz.-Nagy–Foiaş functional model for com-
pletely nonunitary contractions.

Let T = (T1, . . . , Tn) be an n-tuple of operators in Vcnc
f ,ϕ,I(H). The constrained Poisson

kernel is the operator K (I)
f ,ϕ,T : H →Nf ,ϕ,I ⊗DCf ,ϕ,T defined by

K (I)
f ,ϕ,T := (PNf ,ϕ,I ⊗ IDCf ,ϕ,T

)Kf ,ϕ,T ,

where Kf ,ϕ,T is the noncommutative Poisson kernel associated with f , ϕ, and T .
First, we present some basic properties for the constrained Poisson kernel K (I)

f ,ϕ,T associ-
ated with f , ϕ, T , and I .

Theorem 3.1 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). If T =
(T1, . . . , Tn) is an n-tuple of operators in Vcnc

f ,ϕ,I(H), then the following statements hold:
(i) K (I)

f ,ϕ,T T∗
i = (B∗

i ⊗ IDCf ,ϕ,T
)K (I)

f ,ϕ,T , i = 1, . . . , n;

(ii) K (I)
f ,ϕ,T is an isometry if and only if T is pure,

where K (I)
f ,ϕ,T is the constrained Poisson kernel associated with f , ϕ, T , and I .

Proof (i) According to the proof of Theorem 2.1 from [28], we know that

Kf ,ϕ,T T∗
i =

(
M∗

Zi
⊗ IDCf ,ϕ,T

)
Kf ,ϕ,T , i = 1, . . . , n,

where Kf ,ϕ,T is the noncommutative Poisson kernel associated with f , ϕ, and T . Hence, we
have

K∗
f ,ϕ,T

(
p(MZ1 , . . . , MZn ) ⊗ IDCf ,ϕ,T

)
= p(T1, . . . , Tn)K∗

f ,ϕ,T (3.1)

for any polynomial p in MZ1 , . . . , MZn . Assume that

φ(V1, . . . , Vn) =
∞∑

k=0

∑

|α|=k

dαVα , dα ∈C,
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is an element in the noncommutative Hardy algebra F∞(Df ). Then we deduce that

φ(rV1, . . . , rVn) =
∞∑

k=0

∑

|α|=k

r|α|dαVα for any 0 < r < 1

is in the noncommutative domain algebra A(Df ). Moreover, since ϕ has model property,
we have

Mϕi = ϕi(MZ1 , . . . , MZn ), i = 1, . . . , n,

where (MZ1 , . . . , MZn ) is either in the set CSOT
ϕ (H2

f (ϕ)) or Crad
ϕ (H2

f (ϕ)). Using (2.3), we con-
clude that

Vi = Uϕi(MZ1 , . . . , MZn )U–1, i = 1, . . . , n.

Therefore, we obtain

φ
(
rϕ1(MZ), . . . , rϕn(MZ)

)
=

∞∑

k=0

∑

|α|=k

r|α|dα

[
ϕ(MZ)

]
α

,

where the series is convergent in the operator norm topology. Hence, due to (3.1), we infer
that

K∗
f ,ϕ,T

[
φ
(
rϕ1(MZ), . . . , rϕn(MZ)

) ⊗ IDCf ,ϕ,T

]
= φ

(
rϕ1(T), . . . , rϕn(T)

)
K∗

f ,ϕ,T

for any φ(V1, . . . , Vn) ∈ F∞(Df ) and 0 < r < 1. Since T = (T1, . . . , Tn) is in D
cnc
f ,ϕ (H) and MZ =

(MZ1 , . . . , MZn ) is in D
pure
f ,ϕ (H2

f (ϕ)), we deduce that ϕ(T) = (ϕ1(T), . . . ,ϕn(T)) is a completely
non-coisometric n-tuple of operators in the noncommutative domain Df (H) and ϕ(MZ) =
(ϕ1(MZ), . . . ,ϕn(MZ)) is a pure n-tuple of operators in Df (H2

f (ϕ)). Taking into account that

∥
∥φ

(
rϕ1(MZ), . . . , rϕn(MZ)

)∥∥ ≤ ∥
∥φ(V1, . . . , Vn)

∥
∥

and using F∞(Df )-functional calculus (see [24]), we infer that

K∗
f ,ϕ,T

[
φ
(
ϕ1(MZ), . . . ,ϕn(MZ)

) ⊗ IDCf ,ϕ,T

]
= φ

(
ϕ1(T), . . . ,ϕn(T)

)
K∗

f ,ϕ,T

for any φ(V1, . . . , Vn) ∈ F∞(Df ). Using Proposition 4.2 from [28], we know that if θ ∈
H∞(Df ,ϕ), there is χ =

∑
α∈F+

n
cαVα in F∞(Df ) such that

θ = SOT- lim
r→1

∞∑

k=0

∑

|α|=k

cαr|α|[ϕ(MZ)
]
α

= χ
(
ϕ(MZ)

)
.

Indeed, this implies that

H∞(Df ,ϕ) =
{
χ

(
ϕ(MZ)

)
: χ ∈ F∞(Df )

}
.
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Moreover, since T = (T1, . . . , Tn) is in Vcnc
f ,ϕ,I(H), we deduce that ϕ(T) = (ϕ1(T), . . . ,ϕn(T))

is also a completely non-coisometric n-tuple of operators in Df (H). Using F∞(Df )-
functional calculus, we obtain that

θ (T1, . . . , Tn) = SOT- lim
r→1

∞∑

k=0

∑

|α|=k

cαr|α|[ϕ(T)
]
α

= χ
(
ϕ1(T), . . . ,ϕn(T)

)
.

This shows that

K∗
f ,ϕ,T (ω ⊗ IDCf ,ϕ,T

) = ω(T)K∗
f ,ϕ,T (3.2)

for any ω ∈ H∞(Df ,ϕ). Consequently, we deduce that

〈(
ω∗ ⊗ IDCf ,ϕ,T

)
Kf ,ϕ,T h, 1 ⊗ d

〉
=

〈
Kf ,ϕ,Tω(T)∗h, 1 ⊗ d

〉

for any ω ∈ H∞(Df ,ϕ), h ∈H, and d ∈ DCf ,ϕ,T . Since I is a WOT-closed two-sided ideal of
H∞(Df ,ϕ), we have

Mf ,ϕ,I = I(1).

Note that T ∈ Vcnc
f ,ϕ,I(H). Then we obtain

〈
Kf ,ϕ,T h,ω(1) ⊗ d

〉
= 0

for any ω ∈ I , h ∈H, and d ∈DCf ,ϕ,T . Therefore, we conclude that

Kf ,ϕ,T (H) ⊆Nf ,ϕ,I ⊗DCf ,ϕ,T ,

which implies that

K (I)
f ,ϕ,T h = (PNf ,ϕ,I ⊗ IDCf ,ϕ,T

)Kf ,ϕ,T h = Kf ,ϕ,T h, h ∈H. (3.3)

On the other hand, since Nf ,ϕ,I is an invariant subspace under M∗
Z1

, . . . , M∗
Zn , we have

Bα = PNf ,ϕ,I MZα |Nf ,ϕ,I for any α ∈ F
+
n .

According to Proposition 4.2 of [28], we know that, for any ν ∈ H∞(Df ,ϕ), there exists
χ ∈ F∞(Df ) such that

ν(MZ1 , . . . , MZn ) = χ
(
ϕ1(MZ), . . . ,ϕn(MZ)

)

= SOT- lim
r→1

χ
(
rϕ1(MZ), . . . , rϕn(MZ)

)
.

Since (B1, . . . , Bn) is in the noncommutative variety Vpure
f ,ϕ,I(Nf ,ϕ,I), we obtain that

(ϕ1(B), . . . ,ϕn(B)) is a pure n-tuple of operators inDf (Nf ,ϕ,I). Consequently, using F∞(Df )-
functional calculus, we deduce that

ν(B1, . . . , Bn) = PNf ,ϕ,Iν(MZ1 , . . . , MZn )|Nf ,ϕ,I (3.4)
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for any ν ∈ H∞(Df ,ϕ). Applying (3.2), (3.3), and (3.4), we infer that

K (I)
f ,ϕ,Tν(T1, . . . , Tn)∗ = (PNf ,ϕ,I ⊗ IDCf ,ϕ,T

)
[
ν(MZ1 , . . . , MZn )∗ ⊗ IDCf ,ϕ,T

]

× (PNf ,ϕ,I ⊗ IDCf ,ϕ,T
)Kf ,ϕ,T

=
[
ν(B1, . . . , Bn)∗ ⊗ IDCf ,ϕ,T

]
K (I)

f ,ϕ,T

for any ν(B1, . . . , Bn) ∈ H∞(Vf ,ϕ,I). In particular, we have

K (I)
f ,ϕ,T T∗

i =
(
B∗

i ⊗ IDCf ,ϕ,T

)
K (I)

f ,ϕ,T , i = 1, . . . , n.

(ii) Due to (3.3), we obtain

〈(
K (I)

f ,ϕ,T
)∗K (I)

f ,ϕ,T h, h
〉

= ‖Kf ,ϕ,T h‖2

= ‖h‖2 – lim
m→∞

〈
Φm

f ,ϕ,T (I)h, h
〉
.

Hence, we deduce that

(
K (I)

f ,ϕ,T
)∗K (I)

f ,ϕ,T = I – Φ∞
f ,ϕ,T (I), (3.5)

where Φ∞
f ,ϕ,T (I) := SOT- limm→∞ Φm

f ,ϕ,T (I). Therefore, (ii) holds. This completes the
proof. �

We define the constrained characteristic function associated with an n-tuple T :=
(T1, . . . , Tn) ∈ Vcnc

f ,ϕ,I(H) to be the multi-analytic operator with respect to the constrained
weighted shifts B1, . . . , Bn,

Θ
(I)
f ,ϕ,T : Nf ,ϕ,I ⊗DC∗

f ,ϕ,T
→Nf ,ϕ,I ⊗DCf ,ϕ,T ,

with the formal Fourier representation

–INf ,ϕ,I ⊗ Cf ,ϕ,T + (INf ,ϕ,I ⊗ �Cf ,ϕ,T )
(

INf ,ϕ,I⊗H –
∑

|α|≥1

aα̃Dα ⊗ [
ϕ(T)

]∗
α̃

)–1

× [
√

aα̃Dα ⊗ IH : α ∈ Γ ](INf ,ϕ,I ⊗ �C∗
f ,ϕ,T

),

where Di = PNf ,ϕ,I Rϕi |Nf ,ϕ,I , i = 1, . . . , n, and Rϕ1 , . . . , Rϕn are the right multiplication oper-
ators by the power series ϕ1, . . . ,ϕn, respectively, on the Hilbert space H

2
f (ϕ).

We provide a factorization result for the constrained characteristic function, which will
play an important role in our investigation.

Theorem 3.2 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). Then

INf ,ϕ,I⊗DCf ,ϕ,T
– Θ

(I)
f ,ϕ,T

(
Θ

(I)
f ,ϕ,T

)∗ = K (I)
f ,ϕ,T

(
K (I)

f ,ϕ,T
)∗,
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where Θ
(I)
f ,ϕ,T is the constrained characteristic function and K (I)

f ,ϕ,T is the corresponding con-
strained Poisson kernel.

Proof Due to Theorem 6.1 of [28], we know that

I
H

2
f (ϕ)⊗DCf ,ϕ,T

– Θf ,ϕ,TΘ∗
f ,ϕ,T = Kf ,ϕ,T K∗

f ,ϕ,T .

According to the proof of Theorem 3.1, we have

Kf ,ϕ,T (H) ⊆Nf ,ϕ,I ⊗DCf ,ϕ,T ⊆H
2
f (ϕ) ⊗DCf ,ϕ,T .

Hence, we infer that

INf ,ϕ,I⊗DCf ,ϕ,T
– PNf ,ϕ,I⊗DCf ,ϕ,T

Θf ,ϕ,TΘ∗
f ,ϕ,T |Nf ,ϕ,I⊗DCf ,ϕ,T

= PNf ,ϕ,I⊗DCf ,ϕ,T
Kf ,ϕ,T K∗

f ,ϕ,T |Nf ,ϕ,I⊗DCf ,ϕ,T
. (3.6)

Since Nf ,ϕ,I is an invariant subspace under R∗
ϕ1 , . . . , R∗

ϕn , we obtain

Θ∗
f ,ϕ,T (Nf ,ϕ,I ⊗DCf ,ϕ,T ) ⊆Nf ,ϕ,I ⊗DC∗

f ,ϕ,T
(3.7)

and

PNf ,ϕ,I⊗DCf ,ϕ,T
Θf ,ϕ,T |Nf ,ϕ,I⊗DC∗

f ,ϕ,T
= Θ

(I)
f ,ϕ,T . (3.8)

Applying (3.6), (3.7), and (3.8), we deduce that

INf ,ϕ,I⊗DCf ,ϕ,T
– Θ

(I)
f ,ϕ,T

(
Θ

(I)
f ,ϕ,T

)∗ = K (I)
f ,ϕ,T

(
K (I)

f ,ϕ,T
)∗.

This completes the proof. �

If A ∈ B(H2
f (ϕ) ⊗ G,H2

f (ϕ) ⊗K) is a multi-analytic operator and A is a partial isometry,
then we call it inner multi-analytic.

In what follows, we present a functional model theorem for completely non-coisometric
n-tuples of operators in the noncommutative variety Vf ,ϕ,I(H) in terms of constrained
characteristic functions.

Theorem 3.3 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). If T :=
(T1, . . . , Tn) is in the noncommutative varietyVcnc

f ,ϕ,I(H), then the following statements hold:
(i) T is unitarily equivalent to the n-tuple T̃ := (T̃1, . . . , T̃n) ∈ Vcnc

f ,ϕ,I(H̃) on the Hilbert
space

H̃ :=
[
(Nf ,ϕ,I ⊗DCf ,ϕ,T ) ⊕ �

Θ
(I)
f ,ϕ,T

(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

)
]


 {
Θ

(I)
f ,ϕ,T x ⊕ �

Θ
(I)
f ,ϕ,T

x : x ∈Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

}
,
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where �
Θ

(I)
f ,ϕ,T

= (I – (Θ (I)
f ,ϕ,T )∗Θ (I)

f ,ϕ,T ) 1
2 and each operator T̃i, i = 1, . . . , n, is uniquely

defined by the relation

(PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃)T̃∗

i z

=
(
B∗

i ⊗ IDCf ,ϕ,T

)
(PNf ,ϕ,I⊗DCf ,ϕ,T

|H̃)z, z ∈ H̃,

where PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃ is an injective operator, PNf ,ϕ,I⊗DCf ,ϕ,T

is the orthogonal
projection from the Hilbert space

K̃ := (Nf ,ϕ,I ⊗DCf ,ϕ,T ) ⊕ �
Θ

(I)
f ,ϕ,T

(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

)

onto the subspace Nf ,ϕ,I ⊗DCf ,ϕ,T , and Bi = PNf ,ϕ,I MZi |Nf ,ϕ,I for any i = 1, . . . , n;
(ii) T is in the noncommutative variety Vpure

f ,ϕ,I(H) if and only if the constrained
characteristic function Θ

(I)
f ,ϕ,T is an inner multi-analytic operator. In this case, T is

unitarily equivalent to the n-tuple

(
PH̃(B1 ⊗ IDCf ,ϕ,T

)|H̃, . . . , PH̃(Bn ⊗ IDCf ,ϕ,T
)|H̃

)
,

where PH̃ is the orthogonal projection from Nf ,ϕ,I ⊗DCf ,ϕ,T onto the Hilbert space
H̃ := (Nf ,ϕ,I ⊗DCf ,ϕ,T ) 
 Θ

(I)
f ,ϕ,T (Nf ,ϕ,I ⊗DC∗

f ,ϕ,T
).

Proof (i) We define the operator Ψ : Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

→ K̃ by setting

Ψ x := Θ
(I)
f ,ϕ,T x ⊕ �

Θ
(I)
f ,ϕ,T

x, x ∈Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

.

It is obvious that Ψ is an isometry and

Ψ ∗(y ⊕ 0) =
(
Θ

(I)
f ,ϕ,T

)∗y, y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T . (3.9)

Hence, we infer that

‖y‖2 =
∥
∥PH̃(y ⊕ 0)

∥
∥2 +

∥
∥Ψ Ψ ∗(y ⊕ 0)

∥
∥2

=
∥
∥PH̃(y ⊕ 0)

∥
∥2 +

∥
∥(

Θ
(I)
f ,ϕ,T

)∗y
∥
∥2 (3.10)

for any y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T , where PH̃ denotes the orthogonal projection from K̃ onto H̃.
According to Theorem 3.2, we have

∥∥(
K (I)

f ,ϕ,T
)∗y

∥∥2 +
∥∥(

Θ
(I)
f ,ϕ,T

)∗y
∥∥2 = ‖y‖2, y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T . (3.11)

Therefore, using (3.10) and (3.11), we deduce that

∥
∥(

K (I)
f ,ϕ,T

)∗y
∥
∥ =

∥
∥PH̃(y ⊕ 0)

∥
∥, y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T . (3.12)

On the other hand, due to (3.3), we obtain

∥∥K (I)
f ,ϕ,T h

∥∥2 = ‖h‖2 – lim
m→∞

〈
Φm

f ,ϕ,T (I)h, h
〉
, h ∈H.
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Hence, if K (I)
f ,ϕ,T h = 0, then we have

‖h‖2 = lim
m→∞

〈
Φm

f ,ϕ,T (I)h, h
〉
.

Since T is in Vcnc
f ,ϕ,I(H), we infer that h = 0, which implies that K (I)

f ,ϕ,T is an injective operator
and range (K (I)

f ,ϕ,T )∗ is dense in H.
Let z ∈ H̃ and assume that z ⊥ PH̃(y⊕0) for any y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T . Taking into account

that

K̃ = {y ⊕ 0 : y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T } ∨ {
Θ

(I)
f ,ϕ,T x ⊕ �

Θ
(I)
f ,ϕ,T

x : x ∈Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

}
.

Consequently, we obtain z = 0. This shows that

H̃ =
{

PH̃(y ⊕ 0) : y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T

}–. (3.13)

Applying (3.12) and (3.13), we deduce that there exists a unique unitary operator W : H →
H̃ such that

W
(
K (I)

f ,ϕ,T y
)

= PH̃(y ⊕ 0), y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T .

Moreover, using (3.9) and Theorem 3.2 , we have

PNf ,ϕ,I⊗DCf ,ϕ,T
W

(
K (I)

f ,ϕ,T
)∗y = PNf ,ϕ,I⊗DCf ,ϕ,T

PH̃(y ⊕ 0)

= y – PNf ,ϕ,I⊗DCf ,ϕ,T
Ψ Ψ ∗(y ⊕ 0)

= y – Θ
(I)
f ,ϕ,T

(
Θ

(I)
f ,ϕ,T

)∗y

= K (I)
f ,ϕ,T

(
K (I)

f ,ϕ,T
)∗y

for any y ∈Nf ,ϕ,I ⊗DCf ,ϕ,T . Since the range (K (I)
f ,ϕ,T )∗ is dense in H, we infer that

PNf ,ϕ,I⊗DCf ,ϕ,T
W = K (I)

f ,ϕ,T . (3.14)

Let T̃i : H̃ → H̃ be the transform of Ti under the unitary operator W : H → H̃, i.e.,

T̃i = WTiW ∗, i = 1, . . . , n.

Since the constrained Poisson kernel K (I)
f ,ϕ,T is an injective operator, due to (3.14), we de-

duce that

PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃ = K (I)

f ,ϕ,T W ∗
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is an injective operator acting from H̃ toNf ,ϕ,I ⊗DCf ,ϕ,T . Consequently, according to (3.14)
and Theorem 3.1, we have

(PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃)T̃∗

i Wh = (PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃)WT∗

i h

= K (I)
f ,ϕ,T T∗

i h

=
(
B∗

i ⊗ IDCf ,ϕ,T

)
K (I)

f ,ϕ,T h

=
(
B∗

i ⊗ IDCf ,ϕ,T

)
(PNf ,ϕ,I⊗DCf ,ϕ,T

|H̃)Wh

for any h ∈H and i = 1, . . . , n. Hence, we obtain that

(PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃)T̃∗

i z =
(
B∗

i ⊗ IDCf ,ϕ,T

)
(PNf ,ϕ,I⊗DCf ,ϕ,T

|H̃)z (3.15)

for any z ∈ H̃ and i = 1, . . . , n. Notice that PNf ,ϕ,I⊗DCf ,ϕ,T
|H̃ is an injective operator. Then

(3.15) uniquely determines each operator T̃i, i = 1, . . . , n.
(ii) First, assume that T = (T1, . . . , Tn) ∈ Vpure

f ,ϕ,I(H). Due to Theorem 3.1, we know
that the constrained Poisson kernel K (I)

f ,ϕ,T : H → Nf ,ϕ,I ⊗ DCf ,ϕ,T is an isometry. Hence,
K (I)

f ,ϕ,T (K (I)
f ,ϕ,T )∗ is the orthogonal projection from Nf ,ϕ,I ⊗ DCf ,ϕ,T onto K (I)

f ,ϕ,TH. Accord-
ing to Theorem 3.2, we deduce that Θ

(I)
f ,ϕ,T (Θ (I)

f ,ϕ,T )∗ is also a projection, which implies that
Θ

(I)
f ,ϕ,T is a partial isometry. This shows that Θ

(I)
f ,ϕ,T is an inner multi-analytic operator.

Conversely, if Θ
(I)
f ,ϕ,T is an inner multi-analytic operator, then it is a partial isometry. Ap-

plying Theorem 3.2, we infer that K (I)
f ,ϕ,T is a partial isometry. Moreover, since T is in the

noncommutative variety Vcnc
f ,ϕ,I(H), due to (3.5), we deduce that K (I)

f ,ϕ,T is an injective op-
erator, which implies that K (I)

f ,ϕ,T is an isometry. Therefore, using Theorem 3.1, we deduce
that T is in Vpure

f ,ϕ,I(H).
Now, we prove the last part of the theorem. Notice that u ⊕ v ∈ K̃ is in H̃ if and only if

〈
u ⊕ v,Θ (I)

f ,ϕ,T x ⊕ �
Θ

(I)
Cf ,ϕ,T

x
〉

= 0 (3.16)

for any x ∈Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

. Note that condition (3.16) is equivalent to

(
Θ

(I)
f ,ϕ,T

)∗u + �
Θ

(I)
f ,ϕ,T

v = 0. (3.17)

Since the operator �
Θ

(I)
f ,ϕ,T

is the orthogonal projection from Nf ,ϕ,I ⊗ DC∗
f ,ϕ,T

onto

[range(Θ (I)
f ,ϕ,T )∗]⊥, we have

(
Θ

(I)
f ,ϕ,T

)∗u ⊥ �
Θ

(I)
f ,ϕ,T

v.

Hence, (3.17) holds if and only if (Θ (I)
f ,ϕ,T )∗u = 0 and v = 0. Therefore, we conclude that

K̃ = Nf ,ϕ,I ⊗DCf ,ϕ,T

and

H̃ = (Nf ,ϕ,I ⊗DCf ,ϕ,T ) 
 Θ
(I)
f ,ϕ,T (Nf ,ϕ,I ⊗DC∗

f ,ϕ,T
).
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According to (3.15), we infer that

T̃i = PH̃(Bi ⊗ IDCf ,ϕ,T
)|H̃, i = 1, . . . , n.

This completes the proof. �

Let Φ : Nf ,ϕ,I ⊗ H1 → Nf ,ϕ,I ⊗ H2 and Φ ′ : Nf ,ϕ,I ⊗ H′
1 → Nf ,ϕ,I ⊗ H′

2 be two multi-
analytic operators with respect to the constrained weighted shifts B1, . . . , Bn, i.e.,

Φ(Bi ⊗ IH1 ) = (Bi ⊗ IH2 )Φ and Φ ′(Bi ⊗ IH′
1
) = (Bi ⊗ IH′

2
)Φ ′

for any i = 1, . . . , n. We say that Φ and Φ ′ coincide if there exist two unitary operators
Uj ∈ B(Hj,H′

j), j = 1, 2, such that

Φ ′(INf ,ϕ,I ⊗ U1) = (INf ,ϕ,I ⊗ U2)Φ .

Applying Theorem 3.3, we can show that the constrained characteristic function Θ
(I)
f ,ϕ,T

is a complete unitary invariant for the n-tuples of operators in the noncommutative variety
Vcnc

f ,ϕ,I(H).

Theorem 3.4 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). If
T = (T1, . . . , Tn) ∈ Vcnc

f ,ϕ,I(H) and T ′ = (T ′
1, . . . , T ′

n) ∈ Vcnc
f ,ϕ,I(H′), then T and T ′ are unitarily

equivalent if and only if their constrained characteristic functions Θ
(I)
f ,ϕ,T and Θ

(I)
f ,ϕ,T ′ coin-

cide.

Proof First, we assume that Θ
(I)
f ,ϕ,T and Θ

(I)
f ,ϕ,T ′ coincide. Then there are two unitary oper-

ators U1 : DCf ,ϕ,T →DCf ,ϕ,T ′ and U2 : DC∗
f ,ϕ,T

→DC∗
f ,ϕ,T ′ such that

(INf ,ϕ,I ⊗ U1)Θ (I)
f ,ϕ,T = Θ

(I)
f ,ϕ,T ′ (INf ,ϕ,I ⊗ U2).

Consequently, we have

�
Θ

(I)
f ,ϕ,T

= (INf ,ϕ,I ⊗ U2)∗�
Θ

(I)
f ,ϕ,T ′

(INf ,ϕ,I ⊗ U2)

and

(INf ,ϕ,I ⊗ U2)
[
�

Θ
(I)
f ,ϕ,T

(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

)
]

=
[
�

Θ
(I)
f ,ϕ,T ′

(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T ′ )

]
.

Now we define the unitary operator W : K̃ → K̃′ by setting

W := (INf ,ϕ,I ⊗ U1) ⊕ (INf ,ϕ,I ⊗ U2),

where K̃ and K̃′ were defined in Theorem 3.3. Notice that the operator Ψ : Nf ,ϕ,I ⊗
DC∗

f ,ϕ,T
→ K̃, defined by

Ψ x := Θ
(I)
f ,ϕ,T x ⊕ �

Θ
(I)
f ,ϕ,T

x, x ∈Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

,
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and the corresponding Ψ ′ : Nf ,ϕ,I ⊗DC∗
f ,ϕ,T ′ → K̃′ satisfy the following relations:

WΨ (INf ,ϕ,I ⊗ U2)∗ = Ψ ′ (3.18)

and

(INf ,ϕ,I ⊗ U1)PK̃
Nf ,ϕ,I⊗DCf ,ϕ,T

W ∗ = PK̃′
Nf ,ϕ,I⊗DCf ,ϕ,T ′ , (3.19)

where PK̃
Nf ,ϕ,I⊗DCf ,ϕ,T

is the orthogonal projection from K̃ onto Nf ,ϕ,I ⊗DCf ,ϕ,T . Hence, we
have

WH̃ = W K̃
 WΨ (Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

)

= K̃′ 
 Ψ ′(INf ,ϕ,I ⊗ U2)(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T

)

= K̃′ 
 Ψ ′(Nf ,ϕ,I ⊗DC∗
f ,ϕ,T ′ )

= H̃′,

which implies that W |H̃ : H̃ → H̃′ is unitary. On the other hand, for any i = 1, . . . , n,

(
B∗

i ⊗ IDCf ,ϕ,T ′
)
(INf ,ϕ,I ⊗ U1) = (INf ,ϕ,I ⊗ U1)

(
B∗

i ⊗ IDCf ,ϕ,T

)
. (3.20)

Now, we assume that T̃ := (T̃1, . . . , T̃n) and T̃ ′ := (T̃ ′
1, . . . , T̃ ′

n) are the model operators pro-
vided by Theorem 3.3 for T and T ′, respectively. Therefore, applying (3.18), (3.19), and
(3.20), we deduce that

PK̃′
Nf ,ϕ,I⊗DCf ,ϕ,T ′ T̃ ′∗

i Wz =
(
B∗

i ⊗ IDCf ,ϕ,T ′
)
PK̃′
Nf ,ϕ,I⊗DCf ,ϕ,T ′ Wz

=
(
B∗

i ⊗ IDCf ,ϕ,T ′
)
(INf ,ϕ,I ⊗ U1)PK̃

Nf ,ϕ,I⊗DCf ,ϕ,T
z

= (INf ,ϕ,I ⊗ U1)
(
B∗

i ⊗ IDCf ,ϕ,T

)
PK̃
Nf ,ϕ,I⊗DCf ,ϕ,T

z

= (INf ,ϕ,I ⊗ U1)PK̃
Nf ,ϕ,I⊗DCf ,ϕ,T

T̃∗
i z

= PK̃′
Nf ,ϕ,I⊗DCf ,ϕ,T ′ W T̃∗

i z

for any z ∈ H̃ and i = 1, . . . , n. Using the fact that PK̃′
Nf ,ϕ,I⊗DCf ,ϕ,T ′ is an injective operator,

we infer that

(W |H̃)T̃∗
i = T̃ ′∗

i (W |H̃), i = 1, . . . , n.

Due to Theorem 3.3, it is obvious that T and T ′ are unitarily equivalent.
Conversely, let Ω : H →H′ be a unitary operator such that

Ti = Ω∗T ′
i Ω for any i = 1, . . . , n.
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Note that T ∈ CSOT
ϕ (H) or T ∈ Crad

ϕ (H) and similar relations hold for T ′. Then we obtain

Ω�Cf ,ϕ,T = �Cf ,ϕ,T ′ Ω and
(⊕n

i=1Ω
)
�C∗

f ,ϕ,T
= �C∗

f ,ϕ,T ′
(⊕n

i=1Ω
)
.

Now we define the unitary operator by setting

U3 := Ω|DCf ,ϕ,T
: DCf ,ϕ,T →DCf ,ϕ,T ′

and

U4 :=
(⊕n

i=1Ω
)|DC∗

f ,ϕ,T
: DC∗

f ,ϕ,T
→DC∗

f ,ϕ,T ′ .

A simple calculation shows that

(INf ,ϕ,I ⊗ U3)Θ (I)
f ,ϕ,T = Θ

(I)
f ,ϕ,T ′ (INf ,ϕ,I ⊗ U4).

This completes the proof. �

4 Multivariable interpolation and invariant subspaces
In this section, we prove a Sarason-type commutant lifting theorem. As an application, we
obtain the Nevanlinna–Pick-type interpolation result in our setting. Moreover, we provide
a Beurling-type characterization of the joint invariant subspaces under the constrained
weighted shifts B1, . . . , Bn.

For each i = 1, . . . , n, we define the right multiplication operator Ri : F2
f → F2

f by setting
Riζ = ζZi, ζ ∈F2

f . Using the results from [24], we know that R∞(Df ) is the WOT-closure
of all polynomials in R1, . . . , Rn and the identity. Moreover, we define the noncommutative
Hardy algebra R∞(Df ,ϕ) to be the WOT-closure of all noncommutative polynomials in
RZ1 , . . . , RZn and the identity.

The following result is a Sarason-type [32] commutant lifting theorem.

Theorem 4.1 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). For each
j = 1, 2, let Kj be a Hilbert space, and let Ej ⊆ Nf ,ϕ,I ⊗Kj be an invariant subspace under
B∗

i ⊗ IKj , i = 1, . . . , n. If X : E1 → E2 is a bounded operator such that

X
[
PE1 (Bi ⊗ IK1 )|E1

]
=

[
PE2 (Bi ⊗ IK2 )|E2

]
X, i = 1, . . . , n,

then there exists

Φ(C1, . . . , Cn) ∈ R∞(Vf ,ϕ,I) ⊗ B(K1,K2)

such that

Φ(C1, . . . , Cn)∗E2 ⊆ E1, Φ(C1, . . . , Cn)∗|E2 = X∗, and
∥
∥Φ(C1, . . . , Cn)

∥
∥ = ‖X‖.
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Proof First, note that the subspace Nf ,ϕ,I ⊗Kj is invariant under M∗
Zi

⊗ IKj , and

(
M∗

Zi
⊗ IKj

)|Nf ,ϕ,I⊗Kj = B∗
i ⊗ IKj , i = 1, . . . , n.

Since Ej ⊆ Nf ,ϕ,I ⊗ Kj is invariant under B∗
1 ⊗ IKj , . . . , B∗

n ⊗ IKj , it is also invariant under
M∗

Z1
⊗ IKj , . . . , M∗

Zn ⊗ IKj , which implies that

(
M∗

Zi
⊗ IKj

)|Ej =
(
B∗

i ⊗ IKj

)|Ej , i = 1, . . . , n.

Hence, we deduce that

X
[
PE1 (MZi ⊗ IK1 )|E1

]
=

[
PE2 (MZi ⊗ IK2 )|E2

]
X, i = 1, . . . , n.

According to Theorem 5.1 of [28], there exists a bounded operator Φ : H2
f (ϕ) ⊗ K1 →

H
2
f (ϕ) ⊗K2 with the property

Φ(MZi ⊗ IK1 ) = (MZi ⊗ IK2 )Φ , i = 1, . . . , n,

and such that Φ∗E2 ⊆ E1, Φ∗|E2 = X∗, and ‖Φ‖ = ‖X‖. Since Mϕi = ϕi(MZ1 , . . . , MZn ) for
any i = 1, . . . , n, we have

Φ(Mϕi ⊗ IK1 ) = (Mϕi ⊗ IK2 )Φ , i = 1, . . . , n.

Notice that

Mϕi = U–1ViU , i = 1, . . . , n.

Then we obtain

Φ
(
U–1 ⊗ IK1

)
(Vi ⊗ IK1 )(U ⊗ IK1 ) =

(
U–1 ⊗ IK2

)
(Vi ⊗ IK2 )(U ⊗ IK2 )Φ

for any i = 1, . . . , n. This shows that

[
(U ⊗ IK2 )Φ

(
U–1 ⊗ IK1

)]
(Vi ⊗ IK1 ) = (Vi ⊗ IK2 )

[
(U ⊗ IK2 )Φ

(
U–1 ⊗ IK1

)]

for any i = 1, . . . , n. Due to the discussion of Proposition 1.11 from [24], we infer that

[
(U ⊗ IK2 )Φ

(
U–1 ⊗ IK1

)] ∈ R∞(Df ) ⊗ B(K1,K2). (4.1)

Using Proposition 4.2 in [28], we know

R∞(Df ,ϕ) = U–1R∞(Df )U .

Consequently, we infer that

Φ ∈ R∞(Df ,ϕ) ⊗ B(K1,K2).
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Assume that Φ(RZ1 , . . . , RZn ) := Φ . This shows that we can find Φ(RZ1 , . . . , RZn ) ∈
R∞(Df ,ϕ) ⊗ B(K1,K2) such that Φ(RZ1 , . . . , RZn )∗E2 ⊆ E1,

Φ(RZ1 , . . . , RZn )∗|E2 = X∗ and
∥
∥Φ(RZ1 , . . . , RZn )

∥
∥ = ‖X‖. (4.2)

Moreover, we assume that

Φ(C1, . . . , Cn) := PNf ,ϕ,I⊗K2Φ(RZ1 , . . . , RZn )|Nf ,ϕ,I⊗K1 .

Then we have Φ(C1, . . . , Cn) ∈ R∞(Vf ,ϕ,I) ⊗ B(K1,K2). Notice that

Φ(RZ1 , . . . , RZn )∗(Nf ,ϕ,I ⊗K2) ⊆Nf ,ϕ,I ⊗K1

and Ej ⊆Nf ,ϕ,I ⊗Kj. Using (4.2), we obtain

Φ(C1, . . . , Cn)∗E2 ⊆ E1 and Φ(C1, . . . , Cn)∗|E2 = X∗.

Applying again (4.2), we infer that

‖X‖ ≤ ∥∥Φ(C1, . . . , Cn)
∥∥ ≤ ∥∥Φ(RZ1 , . . . , RZn )

∥∥ = ‖X‖,

which shows that

∥∥Φ(C1, . . . , Cn)
∥∥ = ‖X‖.

This completes the proof. �

Applying Theorem 4.1, we can obtain the following Nevanlinna–Pick-type interpolation
result in our setting.

Theorem 4.2 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). Let
λ1, . . . ,λk be k distinct points in V<

f ,ϕ,I(C), and let A1, . . . , Ak ∈ B(K). Then there exists
Φ(C1, . . . , Cn) ∈ R∞(Vf ,ϕ,I) ⊗ B(K) such that

∥∥Φ(C1, . . . , Cn)
∥∥ ≤ 1 and Φ(λj) = Aj, j = 1, . . . , k,

if and only if the operator matrix

[
Kf ,ϕ(λi,λj)

(
IK – AiA∗

j
)]

k×k (4.3)

is positive semidefinite, where

Kf ,ϕ(λi,λj) :=

√
1 –

∑
|α|≥1 aα|ϕα(λi)|2

√
1 –

∑
|α|≥1 aα|ϕα(λj)|2

1 –
∑

|α|≥1 aα[ϕ(λi)]α[ϕ(λj)]α
.
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Proof Let λj := (λj1 , . . . ,λjn ), j = 1, . . . , k, be k distinct points in V<
f ,ϕ,I(C), and let

Z(λj)
f ,ϕ :=

√
1 –

∑

|α|≥1

aα

∣∣ϕα(λj)
∣∣2

(∑

α∈F+
n

bα

[
ϕ(λj)

]
α
ϕα

)
, j = 1, . . . , k, (4.4)

where the coefficients bα , α ∈ F
+
n , are given by relation (2.1). Since ϕ has model property,

we have

Mϕi = ϕi(MZ1 , . . . , MZn ), i = 1, . . . , n,

where (MZ1 , . . . , MZn ) is either in the set CSOT
ϕ (H2

f (ϕ)) or Crad
ϕ (H2

f (ϕ)). Due to Proposition
4.2 of [28], for any ω ∈ I ⊆ H∞(Df ,ϕ), there exists χ =

∑
α∈F+

n
cαVα ∈ F∞(Df ) such that

ω = SOT- lim
r→1

∞∑

k=0

∑

|α|=k

cαr|α|Mϕα . (4.5)

Using (4.4) and (4.5), we infer that

〈
Z(λj)

f ,ϕ ,ω(1)
〉
f ,ϕ = 0 for any ω ∈ I and j = 1, . . . , k.

Since I is a WOT-closed two-sided ideal of H∞(Df ,ϕ), we obtain

Mf ,ϕ,I = I(1).

This shows that

Z(λj)
f ,ϕ ∈Nf ,ϕ,I , j = 1, . . . , k.

According to Theorem 4.4 of [28], we have

M∗
Zi

Z(λj)
f ,ϕ = λjiZ

(λj)
f ,ϕ , i = 1, . . . , n; j = 1, . . . , k.

Moreover, notice that

B∗
i |Nf ,ϕ,I = M∗

Zi
|Nf ,ϕ,I , i = 1, . . . , n.

Hence, we deduce that the subspace

M := span
{

Z(λj)
f ,ϕ : j = 1, . . . , k

}

is invariant under B∗
i for any i = 1, . . . , n, and M ⊆ Nf ,ϕ,I . Now, we define the operators

Xi ∈ B(M⊗K) by setting

Xi := PMBi|M ⊗ IK, i = 1, . . . , n.
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Note that Z(λ1)
f ,ϕ , . . . , Z(λk )

f ,ϕ are linearly independent. Then we can define an operator T ∈
B(M⊗K) by setting

T∗(Z(λj)
f ,ϕ ⊗ h

)
= Z(λj)

f ,ϕ ⊗ A∗
j h

for any h ∈K and j = 1, . . . , k. A simple calculation shows that

TXi = XiT , i = 1, . . . , n.

Taking into account that M⊗K is a co-invariant subspace under Bi ⊗ IK, i = 1, . . . , n. Due
to Theorem 4.1, we can find Φ(RZ1 , . . . , RZn ) ∈ R∞(Df ,ϕ) ⊗ B(K) such that

Φ(C1, . . . , Cn) := PNf ,ϕ,I⊗KΦ(RZ1 , . . . , RZn )|Nf ,ϕ,I⊗K ∈ R∞(Vf ,ϕ,I) ⊗ B(K)

has the properties

Φ(C1, . . . , Cn)∗(M⊗K) ⊆M⊗K, Φ(C1, . . . , Cn)∗|M⊗K = T∗,

and

∥
∥Φ(C1, . . . , Cn)

∥
∥ = ‖T‖.

In what follows, we prove

R∗
Zi

Z(λ)
f ,ϕ = λiZ(λ)

f ,ϕ for any λ ∈D
<
f ,ϕ(C) and i = 1, . . . , n,

where Z(λ)
f ,ϕ is given by relation (4.4). Indeed, a straightforward computation reveals that

R∗
ϕβ

ϕα =

{
bγ

bα
ϕγ , α = γ β̃ ,

0, otherwise.

Consequently, we obtain

R∗
ϕi

Z(λ)
f ,ϕ = R∗

ϕi

√
1 –

∑

|α|≥1

aα

∣∣ϕα(λ)
∣∣2

(∑

α∈F+
n

bα

[
ϕ(λ)

]
α
ϕα

)

=
√

1 –
∑

|α|≥1

aα

∣∣ϕα(λ)
∣∣2

(∑

γ∈F+
n

bγ

bγ gi

bγ gi

[
ϕ(λ)

]
γ gi

ϕγ

)

=
√

1 –
∑

|α|≥1

aα

∣∣ϕα(λ)
∣∣2

(∑

γ∈F+
n

bγ

[
ϕ(λ)

]
γ gi

ϕγ

)

= ϕi(λ)
[√

1 –
∑

|α|≥1

aα

∣∣ϕα(λ)
∣∣2

(∑

γ∈F+
n

bγ

[
ϕ(λ)

]
γ
ϕγ

)]

= ϕi(λ)Z(λ)
f ,ϕ
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for any i = 1, . . . , n. Moreover, due to the proof of Theorem 2.1 from [28], we have

RZi = ψi(Rϕ1 , . . . , Rϕn ) = SOT - lim
r→1

ψi(rRϕ1 , . . . , rRϕn )

for any i = 1, . . . , n. Hence, we conclude that

ψi(Rϕ1 , . . . , Rϕn )∗Z(λ)
f ,ϕ = ψi(ϕ(λ))Z(λ)

f ,ϕ

for any i = 1, . . . , n. Since λ ∈D
<
f ,ϕ(C), we obtain λi = ψi(ϕ(λ)) for any i = 1, . . . , n. Therefore,

we infer that

R∗
Zi

Z(λ)
f ,ϕ = ψi(Rϕ1 , . . . , Rϕn )∗Z(λ)

f ,ϕ = ψi
(
ϕ(λ)

)
Z(λ)

f ,ϕ = λiZ(λ)
f ,ϕ

for any i = 1, . . . , n. This proves our assertion. Since λ1, . . . ,λk are k distinct points in
V<

f ,ϕ,I(C) ⊆D
<
f ,ϕ(C), we have R∗

Zi
Z(λj)

f ,ϕ = λjiZ
(λj)
f ,ϕ , i = 1, . . . , n; j = 1, . . . , k. This shows that

ν(RZ1 , . . . , RZn )∗Z(λj)
f ,ϕ = ν(λj)Z

(λj)
f ,ϕ

for any ν(RZ1 , . . . , RZn ) ∈ R∞(Df ,ϕ). Hence, we deduce that

Φ(RZ1 , . . . , RZn )∗
(
Z(λj)

f ,ϕ ⊗ h
)

= Z(λj)
f ,ϕ ⊗ Φ(λj)∗h, j = 1, . . . , k. (4.6)

Using (4.6), we obtain

〈
Φ(C1, . . . , Cn)∗

(
Z(λj)

f ,ϕ ⊗ x
)
, Z(λj)

f ,ϕ ⊗ y
〉

=
〈
Φ(RZ1 , . . . , RZn )∗

(
Z(λj)

f ,ϕ ⊗ x
)
, Z(λj)

f ,ϕ ⊗ y
〉

=
〈
Z(λj)

f ,ϕ ⊗ Φ(λj)∗x, Z(λj)
f ,ϕ ⊗ y

〉

=
〈
Z(λj)

f ,ϕ , Z(λj)
f ,ϕ

〉
f ,ϕ

〈
Φ(λj)∗x, y

〉
(4.7)

for any x, y ∈K and j = 1, . . . , k. Moreover, notice that

〈
T∗(Z(λj)

f ,ϕ ⊗ x
)
, Z(λj)

f ,ϕ ⊗ y
〉

=
〈
Z(λj)

f ,ϕ , Z(λj)
f ,ϕ

〉
f ,ϕ

〈
A∗

j x, y
〉

(4.8)

for any x, y ∈ K and j = 1, . . . , k. Since ϕ(λ1), . . . ,ϕ(λk) are in the strict noncommutative
domain Df ,<(C), we infer that

〈
Z(λi)

f ,ϕ , Z(λj)
f ,ϕ

〉
f ,ϕ =

√
1 –

∑
|α|≥1 aα|ϕα(λj)|2

√
1 –

∑
|α|≥1 aα|ϕα(λi)|2

1 –
∑

|α|≥1 aα[ϕ(λj)]α[ϕ(λi)]α
	= 0 (4.9)

for any i, j = 1, . . . , k. Hence, applying (4.7), (4.8), and (4.9), we conclude that Φ(λj) = Aj,
j = 1, . . . , k, if and only if Φ(C1, . . . , Cn)∗|M⊗K = T∗.

Since ‖Φ(C1, . . . , Cn)‖ = ‖T‖, it is clear that

∥∥Φ(C1, . . . , Cn)
∥∥ ≤ 1 if and only if TT∗ ≤ IM⊗K.
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On the other hand, for any h1, . . . , hk ∈K, we have

〈 k∑

j=1

Z(λj)
f ,ϕ ⊗ hj,

k∑

j=1

Z(λj)
f ,ϕ ⊗ hj

〉

–

〈

T∗
( k∑

j=1

Z(λj)
f ,ϕ ⊗ hj

)

, T∗
( k∑

j=1

Z(λj)
f ,ϕ ⊗ hj

)〉

=
k∑

i,j=1

〈
Z(λi)

f ,ϕ , Z(λj)
f ,ϕ

〉
f ,ϕ

〈(
IK – AjA∗

i
)
hi, hj

〉

=
k∑

i,j=1

Kf ,ϕ(λj,λi)
〈(

IK – AjA∗
i
)
hi, hj

〉
.

Consequently, we deduce that ‖Φ(C1, . . . , Cn)‖ ≤ 1 if and only if matrix (4.3) is positive
semidefinite. This completes the proof. �

The following result is a noncommutative multivariable version of a result of Rosenblum
and Rovnyak [31].

Theorem 4.3 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). If X ∈
B(Nf ,ϕ,I ⊗K) is a self-adjoint operator, then the following statements are equivalent:

(i) Φf ,ϕ,B⊗IK (X) ≤ X , where B ⊗ IK := (B1 ⊗ IK, . . . , Bn ⊗ IK);
(ii) there are a Hilbert space G and a multi-analytic operator

Φ : Nf ,ϕ,I ⊗ G →Nf ,ϕ,I ⊗K with respect to the constrained weighted shifts
B1, . . . , Bn such that X = ΦΦ∗.

Proof First, we prove that (i) ⇒ (ii). Since (B1, . . . , Bn) is a pure n-tuple of operators in the
noncommutative variety Vf ,ϕ,I(Nf ,ϕ,I) and

–‖X‖Φm
f ,ϕ,B⊗IK (I) ≤ Φm

f ,ϕ,B⊗IK (X) ≤ ‖X‖Φm
f ,ϕ,B⊗IK (I),

we deduce that

SOT- lim
m→∞Φm

f ,ϕ,B⊗IK (X) = 0.

Notice that

Φm
f ,ϕ,B⊗IK (X) ≤ Φm–1

f ,ϕ,B⊗IK (X) ≤ · · · ≤ X, m ∈N.

Then we obtain X ≥ 0. Let M := range X 1
2 and define

Qi
(
X

1
2 ξ

)
:= X

1
2
(
ϕi(B)∗ ⊗ IK

)
ξ , ξ ∈Nf ,ϕ,I ⊗K, (4.10)
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for any i = 1, . . . , n. Note that

∑

|α|≥1

aα

∥
∥Qα̃

(
X

1
2 ξ

)∥∥2 ≤
∑

|α|≥1

∥
∥√

aαX
1
2
([

ϕ(B)
]∗
α

⊗ IK
)
ξ
∥
∥2

=
〈
Φf ,ϕ,B⊗IK (X)ξ , ξ

〉

≤ ∥
∥X

1
2 ξ

∥
∥2

for any ξ ∈Nf ,ϕ,I ⊗K. Hence, we obtain that

agi

∥∥QiX
1
2 ξ

∥∥2 ≤ ∥∥X
1
2 ξ

∥∥2, ξ ∈Nf ,ϕ,I ⊗K,

for any i = 1, . . . , n. Since f is a positive regular free holomorphic function, each operator
Qi, i = 1, . . . , n, can be uniquely extended to a bounded operator (also denoted by Qi) on
M. Denoting Ai := Q∗

i for any i = 1, . . . , n, we have

∑

|α|≥1

aαAαA∗
α ≤ IM,

where the convergence is in the weak operator topology. Setting φA(X) :=
∑

|α|≥1 aαAαXA∗
α

(the convergence is in the weak operator topology) and using (4.10), we infer that

〈
φm

A (I)X
1
2 ξ , X

1
2 ξ

〉
=

〈
Φm

f ,ϕ,B⊗IK (X)ξ , ξ
〉

≤ ‖X‖〈Φm
f ,ϕ,B⊗IK (I)ξ , ξ

〉

for any ξ ∈Nf ,ϕ,I ⊗K, which implies that

SOT- lim
m→∞φm

A (I) = 0.

This shows that A := (A1, . . . , An) is a pure n-tuple of operators in Df (M). According to
Proposition 4.2 of [28], we know that I is a WOT-closed two-sided ideal of H∞(Df ,ϕ) if
and only if there is a WOT-closed two-sided ideal J of F∞(Df ) such that

I =
{
χ

(
ϕ(MZ)

)
: χ ∈ J

}
.

Taking into account that

X
1
2 Ai =

(
ϕi(B) ⊗ IK

)
X

1
2 , i = 1, . . . , n. (4.11)

Then, for any χ ∈ J , we obtain

X
1
2 χ (rA1, . . . , rAn) =

(
χ

(
rϕ1(B), . . . , rϕn(B)

) ⊗ IK
)
X

1
2

for any r ∈ (0, 1). Moreover, since (A1, . . . , An) is a pure n-tuple of operators in the non-
commutative domain Df (M) and (ϕ1(B), . . . ,ϕn(B)) is also a pure n-tuple of operators in
Df (Nf ,ϕ,I), using F∞(Df )-functional calculus (see [24]), we have

X
1
2 χ (A1, . . . , An) =

(
χ

(
ϕ1(B), . . . ,ϕn(B)

) ⊗ IK
)
X

1
2 = 0
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for any χ ∈ J . Since X 1
2 is an injective operator on M, we infer that

χ (A1, . . . , An) = 0 for any χ ∈ J .

Consequently, we deduce that (A1, . . . , An) is a pure n-tuple of operators in the noncom-
mutative variety Vf ,J (M), where

Vf ,J (M) :=
{

(T1, . . . , Tn) ∈Df (M) : χ (T1, . . . , Tn) = 0 for any χ ∈ J
}

.

Applying the appropriate result from [24], we know that the noncommutative Poisson
kernel Kf ,A : M→H

2
f (ϕ) ⊗ G (G is an appropriate Hilbert space) defined by

Kf ,Ah :=
∑

α∈F+
n

bαϕα ⊗ �f ,AA∗
αh, h ∈M,

where �f ,A := (I –
∑

|α|≥1 aαAαA∗
α) 1

2 is an isometry with the properties that

Kf ,A(M) ⊆ Nf ,ϕ,I ⊗ G and K∗
f ,A(Mϕi ⊗ IG) = AiK∗

f ,A

for any i = 1, . . . , n. Now we define

Φ := X
1
2 K∗

f ,A,I : Nf ,ϕ,I ⊗ G →Nf ,ϕ,I ⊗K,

where the constrained Poisson kernel Kf ,A,I : M→Nf ,ϕ,I ⊗ G is defined by

Kf ,A,I := (PNf ,ϕ,I ⊗ IG)Kf ,A.

Since ϕ has the model property, we have

Mϕi = ϕi(MZ1 , . . . , MZn ), i = 1, . . . , n,

where (MZ1 , . . . , MZn ) is either in the set CSOT
ϕ (H2

f (ϕ)) or Crad
ϕ (H2

f (ϕ)). Hence, we obtain

K∗
f ,A,I

(
ϕi(B) ⊗ IG

)
= AiK∗

f ,A,I , i = 1, . . . , n. (4.12)

Therefore, using (4.11) and (4.12), we infer that

Φ
(
ϕi(B) ⊗ IG

)
= X

1
2 K∗

f ,A,I
(
ϕi(B) ⊗ IG

)
= X

1
2 AiK∗

f ,A,I

=
(
ϕi(B) ⊗ IK

)
X

1
2 K∗

f ,A,I =
(
ϕi(B) ⊗ IK

)
Φ

for any i = 1, . . . , n. On the other hand, notice that

Bi = PNf ,ϕ,I MZi |Nf ,ϕ,I

= PNf ,ϕ,Iψi
(
ϕ1(MZ), . . . ,ϕn(MZ)

)|Nf ,ϕ,I

= ψi
(
ϕ1(B), . . . ,ϕn(B)

)
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for any i = 1, . . . , n. Then we conclude that each operator Bi, i = 1, . . . , n, is in the SOT-
closure of all polynomials in ϕ1(B), . . . ,ϕn(B) and the identity. Consequently, we obtain
that

Φ(Bi ⊗ IG) = (Bi ⊗ IK)Φ , i = 1, . . . , n.

This shows that Φ is a multi-analytic operator with respect to the constrained weighted
shifts B1, . . . , Bn. Moreover, since the constrained Poisson kernel Kf ,A,I is an isometry, we
deduce that

ΦΦ∗ = X
1
2 K∗

f ,A,IKf ,A,IX
1
2 = X.

Now, we prove that (ii) ⇒ (i). Note that (B1, . . . , Bn) ∈ Vf ,ϕ,I(Nf ,ϕ,I). Then we have

Φf ,ϕ,B⊗IK (X) =
∑

|α|≥1

aα

([
ϕ(B)

]
α

⊗ IK
)
X

([
ϕ(B)

]
α

⊗ IK
)∗

=
∑

|α|≥1

aα

([
ϕ(B)

]
α

⊗ IK
)
ΦΦ∗([ϕ(B)

]
α

⊗ IK
)∗

= Φ

(∑

|α|≥1

aα

([
ϕ(B)

]
α

⊗ IG
)([

ϕ(B)
]
α

⊗ IG
)∗

)
Φ∗

≤ ΦΦ∗ = X,

where the convergence is in the weak operator topology. This completes the proof. �

As an application, we obtain a Beurling-type characterization of the invariant subspaces
under the constrained weighted shifts B1, . . . , Bn.

Theorem 4.4 Let f :=
∑

α∈F+
n

aαZα be a positive regular free holomorphic function, and let
ϕ = (ϕ1, . . . ,ϕn) be an n-tuple of formal power series with model property. Let I 	= H∞(Df ,ϕ)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H∞(Df ,ϕ). A sub-
space M ⊆ Nf ,ϕ,I ⊗ K is invariant under Bi ⊗ IK, i = 1, . . . , n, if and only if there are a
Hilbert space G and an inner multi-analytic operator

Φ : Nf ,ϕ,I ⊗ G →Nf ,ϕ,I ⊗K

with respect to the constrained weighted shifts B1, . . . , Bn such that

M = Φ[Nf ,ϕ,I ⊗ G].

Proof First, we assume thatM⊆Nf ,ϕ,I ⊗K is invariant under B1 ⊗ IK, . . . , Bn ⊗ IK. Notice
that

PM(Bi ⊗ IK)PM = (Bi ⊗ IK)PM, i = 1, . . . , n,
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and (B1, . . . , Bn) ∈ Vf ,ϕ,I(Nf ,ϕ,I). Then we have

Φf ,ϕ,B⊗IK (PM) = PM

(∑

|α|≥1

aα

([
ϕ(B)

]
α

⊗ IK
)
PM

([
ϕ(B)

]∗
α

⊗ IK
))

PM

≤ PM

(∑

|α|≥1

aα

([
ϕ(B)

]
α

⊗ IK
)([

ϕ(B)
]∗
α

⊗ IK
))

PM

= PM

(∑

|α|≥1

aα

[
ϕ(B)

]
α

[
ϕ(B)

]∗
α

⊗ IK
)

PM

≤ PM.

According to Theorem 4.3, there are a Hilbert space G and a multi-analytic operator

Φ : Nf ,ϕ,I ⊗ G →Nf ,ϕ,I ⊗K

with respect to the constrained weighted shifts B1, . . . , Bn such that PM = ΦΦ∗. Moreover,
since PM is an orthogonal projection, we deduce that Φ is a partial isometry and M =
Φ[Nf ,ϕ,I ⊗ G]. The converse is obvious. This completes the proof. �

Acknowledgements
The authors wish to thank the anonymous referees and the editor for their useful comments.

Funding
This work is supported by the National Natural Science Foundation of China (No. 11771340).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally. All authors read and approved the final manuscript.

Author details
1School of Mathematics and Statistics, Hubei Normal University, Huangshi, China. 2School of Mathematics and Statistics,
Wuhan University, Wuhan, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 October 2019 Accepted: 14 May 2020

References
1. Ball, J., Vinnikov, V.: Lax–Phillips Scattering and Conservative Linear Systems: A Cuntz-Algebra Multidimensional

Setting. Mem. Amer. Math. Soc., vol. 837 (2005)
2. Bunce, J.: Models for n-tuples of noncommuting operators. J. Funct. Anal. 57, 21–30 (1984)
3. Davidson, K., Pitts, D.: Nevanlinna–Pick interpolation for noncommutative analytic Toeplitz algebras. Integral Equ.

Oper. Theory 31, 321–337 (1998)
4. Davidson, K., Pitts, D.: The algebraic structure of non-commutative analytic Toeplitz algebras. Math. Ann. 311,

275–303 (1998)
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