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1 Introduction
In the last fifty years, the study of the closed operator unit ball

[BO)]; =T < B« | TT°] * <1)

has generated the celebrated Sz.-Nagy—Foias theory of contractions on Hilbert spaces.
This research has evolved into a well-developed theory, which plays an important role
in modern functional analysis. In 1963, Sz.-Nagy and Foias obtained an effective H*°-
functional calculus for completely nonunitary contractions on Hilbert spaces based on
the existence of a unitary dilation of a contraction T (see [33]). An important application
of this functional calculus to the theory of contraction semigroups has also been given in
Foias [5]. Moreover, the characteristic function of a contraction T appears as the operator-
valued analytic function corresponding to a certain orthogonal projection in the space of
the minimal unitary dilation of T'. This yields a functional model for 7, which is a useful
tool for analyzing the structure of contractions.
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In the multivariable case, the study of the closed operator unit z-ball
- 1
[BH)"], = {(T1,..., T,) € BH)" : | Th T5 +--- + T, T || 2 <1}

has generated a noncommutative analogue of Sz.-Nagy—Foias theory (see [2—4, 6—8], and
more recently [1, 11, 34]). In particular, Popescu developed a theory of holomorphic func-
tions in several noncommuting variables and provided a framework for the study of arbi-
trary n-tuples of operators. A free analytic functional calculus was introduced and studied
in connection with Hausdorff derivations, noncommutative Cauchy and Poisson trans-
forms, and von Neumann inequalities (see [15, 16, 18, 20-23, 26, 29, 30]). Moreover, we
remark the work of Helton, McCullough, and Vinnikov on symmetric noncommutative
polynomials (see [9, 10]). We should also remark that, in recent years, many results con-
cerning the theory of row contractions were extended by Muhly and Solel ([12-14]) to
representations of tensor algebras over C*-correspondences and Hardy algebras.

In [28], Popescu developed an operator model theory for pure n-tuples of operators in
noncommutative domains Dy, (H) C B(H)" generated by positive regular free holomor-
phic functions f and certain classes of n-tuples ¢ = (¢1,...,¢,) of formal power series
in noncommutative indeterminates Z,...,Z,. An important role in his study was played
by noncommutative Poisson transforms. Using these transforms, he proved that each ab-
stract noncommutative domain D, has a universal model (Mz,, ..., Mz,). Unlike the case
of the ball [B(#)"]7, the operators Mz, ..., My, are not isometries and do not have orthog-
onal ranges in general, which leads to considerable technical difficulties in developing an
operator model theory. Moreover, notice that the study of Dy, (#) is closely related to
the study of the operators Mz,,...,Mz,, their joint invariant subspaces, and the represen-
tations of the algebras they generate: the noncommutative domain algebra A(Dy,,), the
noncommutative Hardy algebra H*(Dy,,), and the C*-algebra C*(M,, ..., Mz,). Indeed,
this noncommutative domain Dy, () has been studied in several particular cases. Ac-
cording to [22, 24] and [33], if f = Z and ¢ = Z, then the corresponding domain Dy, (H)
coincides with the closed operator unit ball [B(#)];, the study of which has generated
Sz.-Nagy-Foias theory of contractions. If f = Z; + --- + Z, and ¢ = (Z,...,Z,), then the
corresponding domain Dy, (H) coincides with the closed operator unit #-ball [B(H)"]7,
the study of which has generated a free analogue of Sz.-Nagy—Foias theory. In particular,
if ¢ = (Z1,...,Z,), then the corresponding domain Dy, (#) coincides with the noncom-
mutative Reinhardt domain Dy (), which was first studied by Popescu [24].

In this paper, we continue the research line of Popescu to develop an operator model
theory for completely non-coisometric #-tuples of operators in noncommutative varieties
Vs, z(H). To present our results, we need some notation. Let S[Z, ..., Z,] be the algebra
of all formal power series in noncommutative indeterminates Z, ..., 2, and complex co-
efficients. We denote by F}, the unital free semigroup on # generators gi,...,g, and the
identity go. The length of « € I}, is defined by |a| := 0 if o = go and |«| := kif o = g;; - - - gy,
where iy,...,ix € {1,...,n}. We set Z, := Z;; --- Z;, and Z,, := 1. If f € S[Z,...,Z,] has the

representation f := ) ert GaZo and the coefficients a, € C satisfy the conditions

1
%
r(f)t = limsup(z |ua|2> <00,

k—00 la|=k
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ay > 0forany o € F}, a, =0,and a,, >0,i=1,...,n, we say that f is a positive regular free
holomorphic function. The number r(f) is called the radius of convergence of f.

Denote by M; the set of all n-tuples ¢ = (¢1,...,9,) of formal power series ¢; €
S[Zy,...,Z,] with the model property (see Sect. 2). H is a Hilbert space and B(#) is
the algebra of all bounded linear operators on H. If X = (X3,...,X,,) € B(H)", we denote
Xy = Xy - X,

domain Dy, (H) associated with f, ¢ € M and a Hilbert space H and defined by

if o =g g, €F}, and X, := I3;. We introduce the noncommutative

Dy (H) := {X €BH)" ¥ (p(0) =Xand Y au[eX)], [¢X)]] < IH};

=1

where ¥ := (Y1,...,%,) is the inverse of ¢ with respect to composition of formal power
series, and the evaluations are well defined (see Sect. 2). We refer to Dy, := {Dy,,(H) :
"H is a Hilbert space} as the abstract noncommutative domain, and to Dy,,(H) as its rep-
resentation on the Hilbert space H. We associate with each Dy, a Hilbert space H}((p) of
formal power series in S[Z3,...,Z,] with the property that the indeterminates Z,...,Z,
are in the Hilbert space H}((p) and each left multiplication operator My, : ]HIJ% (@) = H}%(go)
defined by

Mz ¢ =2, ¢ eHg),

is a bounded multiplier of H}(q)). Similarly, each right multiplication operator R, :
H}(go) — H}(go) defined by

RZ;’{ = §Zi’ QIS H_?((p)x

is also a bounded multiplier of H}((p).

Let 7 # H*(Dy,,) be a WOT-closed two-sided ideal of the noncommutative Hardy al-
gebra H*°(Dy,,), where H*°(IDy,) is the WOT-closure of all noncommutative polynomials
inMgz,,...,Mz, and the identity. Now we define the noncommutative variety

Vi z(H) := {(Xl,...,Xn) €Dy,(H): w(Xy,...,X,) =0forany w € I}.

Denote by H*(Vy,,7) the WOT-closed algebra generated by the constrained weighted

shifts B; := PNM'IM A Nypz fori=1,...,n and the identity, where

N1 = H}((p) Moz and My, 7= IH}((p).

Similarly, denote by R*°(Vy,,,z) the WOT-closed algebra generated by the constrained
weighted shifts C; := P/\ff_%IRZ,- | Nz fori=1,...,n and the identity.

In Sect. 2, we collect some notation and preliminaries which are needed in the sequel. In
Sect. 3, we obtain a factorization result for the constrained characteristic function, namely

)

@) (oD V¥ _ 3D (T) \*
I'/\[fv‘l’vI®DCf,¢,T - Ofv%T(Of,‘ﬂ,T) - va%T(KfAﬂ:T) ’

where @;QT is the constrained characteristic function and KJSQT is the corresponding con-
strained Poisson kernel. Moreover, we present a functional model theorem for completely
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non-coisometric n-tuples of operators in the noncommutative variety Vy,, 7(#) in terms
of constrained characteristic functions. Applying this result, we prove that the constrained
characteristic function is a complete unitary invariant for this class of elements. Indeed,
this result can be viewed as the noncommutative analogue of the classical Sz.-Nagy—Foias
functional model for completely nonunitary contractions.

In Sect. 4, we prove a Sarason-type commutant lifting theorem. As an application,
we obtain the Nevanlinna—Pick-type interpolation result in our setting. We show that
if Xq,...,A¢ are k distinct points in the strict noncommutative variety fo w,I(C) and
Ay,...,Ax € B(K), then there exists @(Cy, ..., C,) € R°(Vy,,,7) @ B(K) such that

|[®(Cy,....C)| <1 and @) =4; j=1,...k
if and only if the operator matrix
[foﬁ()“i”\/)(llC _AiA;'k)]kxk

is positive semidefinite, where

1 Dot alga)P 1= Yooy aalga ()P

K )\i’)" = o)
Fup(his 4)) 1= z1 dale)lalo())]a

Moreover, we provide a Beurling-type characterization of the joint invariant subspaces
under the constrained weighted shifts By, .. ., B,. More precisely, a subspace M C Nj, 7 ®
KC is invariant under B; ® Ixc, i = 1,...,n, if and only if there are a Hilbert space G and an

inner multi-analytic operator
P:Npyz®G > Nz ®K

with respect to the constrained weighted shifts B, ..., B, such that
M=®[N;,1 RG]

2 Preliminaries
In this section we collect some notation and preliminaries which are needed in the sequel.
For more information, we refer to [24, 27] and [28].

2.1 Weighted Fock space
Let f := ZQEH aqgZq, aq € C, be a positive regular free holomorphic function. Define the
noncommutative domain

Dy(H) = {(Xl,...,Xn) €BH)": Y a,Xo X} < IH},

lo|=1

where the convergence of the series is in the weak operator topology. Define the strict

<1},

noncommutative domain

Dr(H):= {(Xl,...,Xn) e B(H)":

D aaXuX;

la|=1
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where the convergence is in the weak operator topology. Now, we define

Jet|

by =1 and b, = Z Z Ay, -ay ife] = 1. (2.1)
j=1  n-yE
112 Lnlyl2 1

We introduce an inner product on the algebra of noncommutative polynomials
Cl[Z1,...,Z,] by setting

1
(Za,Zﬁ>f:: b—(Saﬁ, Ol,,BEIF:;.
Let .7-}2 be the completion of C[Z,...,Z,] in this inner product. Notice that the elements
of]-}2 are formal power series ¢ € S[Z,...,Z,] of the form ¢ = Z%F; ¢oZy, Where

1
eI = ) leal*s— < o0

ael;;

Indeed, }}2 is a weighted Fock space on # generators. For each i = 1,...,n, we define the
left multiplication operator V; : ]-"f2 — .7-}2 by setting V;¢ := Z;¢. Notice that (V3,...,V},) is
in the noncommutative domain Df(]-'fz), and

Iy - > aaVa Vi =P, (2.2)

Joe|>1

where Pc is the orthogonal projection from ]-}2 onto C.
Let 7° be the set ofall¢ € .7-}2 with the property that

Il = sup{li¢plis : p € ClZy,...., Zu), liplly < 1} < 00

Notice that ]-'f°° is a Banach algebra with respect to the norm || - || ». Let ¢ = Zﬂem cgZg
be a formal power series with the property that > per 1Cp 2 % < 00, where the coefficients
bg, B € F,, are given by relation (2.1). One can see that } 4 5 Vp(p) € ]-}2 for any p €
ClZy,...,2Z,). Moreover, ¢ € ]-}°° if and only if

sup
peClZy,...Zn) IpllF <1

Z Cﬁvﬂ(P)‘
BeF},

< 0.
f

In this case, there is a unique bounded operator acting on }-fz, which we denote by
¢(Vh,..., V), such that

c(Vy,..., Vy)p = Z cgVp(p) foranypeClZy,...,Z,].

BeF;

We call the series ) per: ¢p Vp the Fourier representation of £(V1,...,V,). The set of all
operators ¢(V1,...,V,) € B(.7-'f2) satisfying the above-mentioned properties is denoted by
F>(Dy).
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We consider the full Fock space of H, defined by

FX(H,):=Cl® PHS",

m>1

where H®™ is the Hilbert tensor product of m copies of H,. We denote e, :=¢;, @ --- ® ¢;,
ifa =g ---gy,whereiy,...,ix €{1,...,n}, and ¢, := 1. Consider £2 : F2(H,) — }}2 to be
the unitary operator defined by 2(e,) := v/boZy, @ € F};, where the coefficients b, are
given by relation (2.1). We remark that 271V;2 = W, i = 1,...,n, where (Wy,..., W,) is
the n-tuple of weighted shifts on F?(H,,), which was introduced in [24]. Using the results
from [24], we know that F*°(Dy) is the WOT-closure (resp. SOT-closure, w*-closure) of
all polynomialsin V1, ..., V, and the identity. The noncommutative domain algebra A(Dy)
is the norm-closure of all polynomials in V3,..., V, and the identity.

2.2 Noncommutative domain

We say that an n-tuple p = (py, ..., p,) of polynomials is invertible with respect to compo-
sition if there exists an n-tuple g = (41, . ..,q,) of polynomials such that pog=qgop =id.
In this case, we say that p has property (A). In what follows, we provide an example. If

P1=a1Zy + ayZy + azZ3Z,,
P2 =b2Zy + b3 75 (arbycs #0),
p3 =c3Z3,

then p = (p1, p2, p3) is invertible with respect to composition, i.e., there exists g = (g1, 42, 93)
such that p o g = g o p = id, where

1 ay as 612[93 2 ﬂ3b3 3
=—Z - Zy — Z3Z, + Z; + Z3,
N ay ! albz > 611b2C3 32 ﬂlbgcg 3 tllbzcg 3
1 bs
7, =72
© b2 > l’)zCé 3
1
qs = —Zs.
C3

This shows that p has property (A).

Let f := Zaem ayZ, be a positive regular free holomorphic function, and let p =
(p1,.--,pn) be an n-tuple of noncommutative polynomials with property (A). We intro-
duce an inner product by setting

1 +
(pa:pﬂ>f,p = b—aaﬂ, o, B EFW

Let H} (») be the completion of the linear space \/{py }qcr; With respect to this inner prod-
uct.

Consider an n-tuple of formal power series ¢ = (¢1,...,¢,) in indeterminates Z,...,Z,
with the property that the Jacobian

det],(0) := det[k,j]:szl £0,
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where

n
0i(Zy,...,Z,) = zzg)l + Zag)Zp + Z zzg)Za,)\lj = a;i),
r=1 | >2

and i,j = 1,...,n. Due to Theorem 1.2 from [25], the set {¢s}qer; (Where @g :=I) is linearly
independent in §[Z;,...,Z,]. We introduce an inner product on the linear span of {@q }ycF
by setting

1
(ar0B) o = b—(saﬂ, o, B eF;,
o

where the coefficients b, o € F}, are given by relation (2.1). Let H}(ga) be the completion of
the linear space \/{¢q}yer; With respect to this inner product. Assume now that ¢(0) = 0.
Theorem 1.3 from [25] shows that ¢ is not a right zero divisor with respect to composition,
i.e., there is no nonzero power series x in S[Z,...,Z,] such that x o ¢ = 0. Consequently,
the elements of H}((p) can be seen as a formal power series in S[Z;,...,Z,] of the form
Y er; CaPar Where Y-, e 7 |ca|* < 00.

To introduce the class of n-tuples of formal power series with property (S), we need
some preliminaries. Let x = Y 7% 3", _x caZa be a formal power series in indeterminates
Zy,...,Z,. We denote by C, (H) (resp. C)S(OT(H)) thesetofall Y :=(Y3,...,Y,) € B(H)" such
that the series x (Y1,...,Y,) == > 1o Zw\:k cq Yy is norm (resp. SOT) convergent. These
sets are called sets of norm (resp. SOT) convergence for the power series x. We also in-
troduce the set C;ad(’H) ofall Y :=(Y3,...,Y,) € B(H)" such that there exists § € (0, 1) with
the property that rY € C, () for any r € (§,1) and

o0
7(Y1,...,Y,) :=SOT- lim kXO: li‘:kcur‘“' Y,
20 ol

exists.

Definition 2.1 (see [28]) Let ¢ = (¢1,...,9,) be an n-tuple of formal power series in
Zy,...,Zy, such that ¢(0) = 0. We say that ¢ has property (S) if the following conditions
hold:
J,(0) #0.
(S2) Theindeterminates Zy,...,Z, are in the Hilbert space H}((p) and each multiplication
operator Mz, : Hj%(ga) — H;(go) defined by

Mzt =2, ¢ GHJ%(QO),
is a bounded multiplier of H}((p).
(S3) The multiplication operators M,, : H2(¢) — H2(p), M, x = ¢;x, satisfy the equa-
% P g -y ' j J Y q
tions

M(pjz(pj(MZp“-vMZn)y j= 1,...,1’1,

where (Mz,,...,Mz,) is either in the convergence set CSOT(H}((/J)) or C(;ad(H}(w)).
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Let U : H}(go) — .7-}2 be the unitary operator defined by U(¢,) := Z,, « € F},. According
to the proof of Lemma 1.2 from [28], we have

M, =U"VU, i=1,..,n (23)

Throughout this paper, unless otherwise specified, we assume that ¢ = (¢y,...,¢,) is either
an n-tuple of noncommutative polynomials with property (A) or an n-tuple of formal

power series with ¢(0) = 0 and property (S). In this case, we say that ¢ has the model
property.

Definition 2.2 (see [25, 28]) Let ¢ = (¢1,...,¢,) be an n-tuple of formal power series with
model property, and let ¥ = (Y1,..., ¥,) be the n-tuple of power series which is the inverse
of ¢ = (¢1,...,9,) with respect to composition. Assume that 1; has the representation

oo
1#;'=Z Z cf)f)Zu fori=1,...,n,

k=0 aelF},|a|=k

where the sequence {cg)}aeﬂr; is uniquely determined by the condition ¥ o ¢ = id. We say
that an n-tuple of operators X = (X1,...,X},) € B(H)" satisfies the equation ¥ (¢(X)) = X in
either one of the following two cases:
(d) X e CSOT(’H) and either X; = Y 7o Zae]F;,m:k cg) [(X)]a, i=1,...,n, where the
convergence of the series is in the strong operator topology, or ¢(X) € Cf[,ad(’H) and

o0
X;=SOT-lim Y > r[px)],, i=1....1

r—1
k=0 aelF}, o=k

(b) X e C(;ad(’H) and either X; = 3720 3" s 1ok cD[P(X)]y, i =1,...,n, where the
convergence of the series is in the strong operator topology, or ¢(X) € Cf;d('H) and

o0
X;=SOT-limY_ > Wr[pw)],, i=1...n
"0 wer =k

Definition 2.3 (see [28]) Letf := ), p: doZs beapositive regular free holomorphic func-
tion, and let ¢ = (¢1, ..., ¢,) be an n-tuple of formal power series with model property. The
noncommutative domain Dy, (H) is the set of all #-tuples of bounded linear operators
X =(Xy,...,X,) € B(H)" such that ¥ (¢(X)) = X and

> aa[p0)], [eX)]] < I,

Joe|>1

where the convergence is in the weak operator topology. Define the strict noncommutative

<1},

domain

Y ale0],[e0];

Joe|>1

D5, (H) := {X €B(H)": w(ga(X)) =X and

where the convergence is in the weak operator topology.
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We define the noncommutative Hardy algebra H*°(IDy,,) to be the WOT-closure of all
noncommutative polynomials in Mz, ,..., Mz, and the identity. Similarly, we can also de-
fine the noncommutative Hardy algebra R*(IDy,,) to be the WOT-closure of all noncom-
mutative polynomials in Rz, ..., Rz, and the identity. Now we can define the strict non-
commutative variety

Vi r(H) = {(X1,... X)) € D}, (H): o(Xy,...,X,) = 0 forany € 7},
where 7 isa WOT-closed two-sided ideal of the noncommutative Hardy algebra H*°(Dy,,).

2.3 Noncommutative Poisson kernel
If T =(Ty,...,T,) € Dfy(H), we define the positive linear mapping

Bp v B(H) > B(H) by @ r(Y):i= Y au[p(T)] Y[e(T)].,

=1

where the convergence is in the weak operator topology. We say that T' = (T3,...,T,) is a
pure n-tuple of operators in Dy, (H) if

SOT- lim @/", ;(I) =0.

m— 00

The set of all pure elements of Dy, () is denoted by D}’rﬂre(ﬂ). Notice that (Mz,,...,Mz,)
isin D}’f;e(Hfz(w)). Moreover, we refer to the n-tuple (Mz,,...,My,) as the universal model
associated with the abstract noncommutative domain Dy,,. An n-tuple T € Dy, (H) is
called completely non-coisometric (c.n.c.) if there is no vector s € H, h # 0, such that

((Df’f’(p’T(l)h,h) = |h||> foranym=1,2,....
The set of all c.n.c. elements of Dy, (#) is denoted by D;”;C('H). Note that
DY (1) € DES(H) S Dy (H).
Similarly, we have
Vior (M) S Vigr (M) S Vypz(H).
Moreover, it is obvious that the n-tuple (By,...,B,) is in the noncommutative vari-
ety Vﬁ:f;(/\&,q;,z), where B; := Py, Mz|n;, , for i =1,...,n. We refer to the n-tuple

(Bi,...,By) as the universal model associated with the abstract noncommutative variety

Vi
We define the noncommutative Poisson kernel associated with the n-tuple T :=
(T1,..., Ty) € Df,(H) to be the operator Ky 7 : H — ]H[}((p) ® Ay, 7(H) defined by

I<fv¢vTh = Z bﬂt(pa ® Af,(p,T[(p(T)]Zh: h € H1

aclF;,

where Ar 7= (I - Q)f,w,T(I))% and the coefficients b,, a € I}, are given by relation (2.1).
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2.4 Characteristic function
We consider the full Fock space of H, defined by

F*(H,):=Cl® HHE",

m>1

where H®" is the Hilbert tensor product of m copies of H,. Define the left creation
operators S;, i = 1,...,n, acting on F2(H,) by setting S;& :=¢; ® &, £ € F2(H"). If A €
B(F*(H,) ® G, F*(H,) ® K) and

(SF®IK)AWS ®1g) = 8;A,  ij=1,...,m,

then A is called multi-Toeplitz with respect to Si,...,S,.. Moreover, if A € B(F*(H,) ® G,
F2(H,) ® K) and

A(SI®IQ)Z(SL®IIC)A’ iZl)"')nl

then A is called multi-analytic with respect to Si,...,S, (see [17, 19]). We remark that
several results concerning the full Fock space F2(H,,) have been extended to the Hilbert
space H]%((o) (see [25, 26, 28]). If A € B(H}((p) ®G, H}((p) ® K), and

AMz, ®Ig) = (Mz, @ I)A, i=1,...,n,

then A is called multi-analytic with respect to Mz,,..., M, (see Definition 3.1 of [28]).
Indeed, this definition is an analogy.

Let f =} ,>14«Xo be a positive regular free holomorphic function and define the set
I':={a €F} :a, #0} and N := card(I"). If ¢ = (¢1,...,¢,) is an n-tuple of formal power
series with the model property and T := (T, ..., T,,) € Dy, (H), we define the row operator

Cror = [\/%[(p(T)]&, caerl],

where the entries are arranged in the lexicographic order of I" C IF}, and « is the reverse
ofa =g, g, ie, & =g, g, Note that Cr, r is an operator acting from H®™ (the
completion of the direct sum of N copies of ) to H.

Let (Mz,,...,Mz,) be the universal model associated with the abstract noncommutative
domain Dy,,. We introduce the characteristic function of an n-tuple T := (T},...,T,) €
Dy, (H) to be the multi-analytic operator with respect to Mz,,...,Mz,,

Orpr : Hi (@) ® D¢, . — HZ(¢) ® De;,

with formal Fourier representation

-1
-1QCr,r+U® Acf,w,T)<1 - Z agRy, ® [‘/’(T)E)

Joe|>1

X [agRy, @ 1: 0 e T ® AC;M),
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where R,,,...,R,, are the right multiplication operators by the formal power series
©1,...,¢u, respectively, on the Hilbert space H}((p). The defect operators associated with
the row contraction Cr,o,r are

1
Acy,ri=([=CryprCh,r)? € BH),

1
Ace =(I1-Ci,1Cror)? € B(HW),

fo.T
= Ae. H . = Aex  HN
and the defect spaces are Dcf,w,T = ACf,g;,TH and DCN,T : ACf,<p,TH .

3 Constrained characteristic functions
In this section, we present a functional model theorem for completely non-coisometric n-
tuples of operators in the noncommutative variety Vy,, 7(H) in terms of constrained char-
acteristic functions. Moreover, we prove that the constrained characteristic function is a
complete unitary invariant for this class of elements. Indeed, this result can be viewed as
the noncommutative analogue of the classical Sz.-Nagy—Foias functional model for com-
pletely nonunitary contractions.

Let T = (T4,...,T,) be an n-tuple of operators in ;";fI(H). The constrained Poisson

kernel is the operator K}fp)j 1" — Njy1z ® D, defined by

@ ._
Ko =Puj,z ®In | WKppr,

where K, 7 is the noncommutative Poisson kernel associated with f, ¢, and T

First, we present some basic properties for the constrained Poisson kernel I(f(ﬁT associ-
ated with f, ¢, T, and Z.

Theorem 3.1 Letf:=), et daZo be a positive regular free holomorphic function, and let
¢ =(Q1,...,9,) be an n-tuple of formal power series with model property. Let T # H*(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,,). If T =

cnc

(Ty,...,T,) is an n-tuple of operators in Vf,w,I(H), then the following statements hold:
) Kfpr Ty = B ®Ing, IKfgpi=1,....m
(ii) Kjgp),T is an isometry if and only if T is pure,

where K}fp), r is the constrained Poisson kernel associated with f, ¢, T, and 1.

Proof (i) According to the proof of Theorem 2.1 from [28], we know that
Kp T} = (My, ® IDCfM)Kf,(,,,T, i=1,...,m,

where Ky, 1 is the noncommutative Poisson kernel associated with f, ¢, and T Hence, we
have

K1 (pMzy,..  Mz,) ®Ine, ) = p(T,., TKS (3.1)

for any polynomial p in Mz,,...,Mz,. Assume that

o0

¢Vis Vi)=Y Y doVa, da€C,

k=0 |a|=k
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is an element in the noncommutative Hardy algebra F°>°(Dy). Then we deduce that

oo
o(rva,...,rvy,) = Z Z rd,V, foranyO<r<1
k=0 |a|=k

is in the noncommutative domain algebra .A(Dy). Moreover, since ¢ has model property,

we have
Mwiz(pi(MZl"“’MZn)’ i=1,.,.,l’l,

where (Mz,,...,Mz,) is either in the set CgOT(H}Qp)) or C;"‘d(HJ%(w)). Using (2.3), we con-
clude that

Vi=Ugi(Mz,,...,Mz)U™, i=1,...,n

Therefore, we obtain

¢ (ro1 (M), ..., rou(Mz)) ZZ rldy [o(M2)],

k=0 |a|=k

where the series is convergent in the operator norm topology. Hence, due to (3.1), we infer
that

1<f*,¢,7[¢(r</71(Mz) S ron(Mz)) ® IDCf T] ¢(r<p1(T),...,rwn(T))I(;%T
forany ¢(V1,...,V,) € F°(Dy)and 0 < r < 1. Since T = (T1,...,T,) isin ID)““C(H) and My =
Mz,,...,Mz,) isin ]D)lere (Hz(w)) we deduce that ¢(T) = (¢1(7),..., (p,,(T)) is a completely

non-coisometric z- tuple of operators in the noncommutative domain D¢(H) and ¢(M) =

(p1(Mz),...,0u(My)) is a pure n-tuple of operators in Df(H}(go)). Taking into account that
|6 (rerMz),....reuM2)) | < ¢V, Vi |

and using F*°(Dy)-functional calculus (see [24]), we infer that
Kf,r[0(01(Mz),..., 0u(Mz)) ® Ing, T] ¢(o1(T),..., 0u(D)KF, 1

for any ¢(V1,...,V,) € F*(Dy). Using Proposition 4.2 from [28], we know that if 6 €
H>(Dy,), thereis x =), er: Ca Vo in F>°(Dr) such that

0=SOT-lim Y car®[¢(M2)], = x(¢(M2))-

k=0 |a|=k

Indeed, this implies that

H®(Dy,,) = {x (p(M2)) : x € F*(Dy)}.



Hu et al. Journal of Inequalities and Applications (2020) 2020:146 Page 13 of 32

Moreover, since T = (T1,...,T,) is in ijj;fz(?—l), we deduce that ¢(T) = (p1(T),...,0.(T))
is also a completely non-coisometric n-tuple of operators in Dr(H). Using F*(Dy)-
functional calculus, we obtain that

O(Ty,..., T,) =SOT-lim y " car™[p(T)], = x (¢2(T), ., 0u(T)).
k=0 |a|=k

This shows that

Kf,r(0® ]Dcf,w,T) =o(T)K7, 1 (3.2)
for any w € H*(IDy,,). Consequently, we deduce that

(@ © 1, K11 ©1) = (K1 0T B 1 9]

for any w € H*(Dy,,), h € H,and d € DCM_T. Since 7 is a WOT-closed two-sided ideal of
H>(Dy,,), we have

Mypz = ().
Note that T € Vfcf(;fI(H). Then we obtain
(Kpprh, (1) @ d) =0
foranyw € 7, h € H,and d € Dc;, .. Therefore, we conclude that

I(f’%T(H) g J\/},go,z ® DCf,(p,T’

which implies that
Kfgrh=(Px;,; ®Ing, VKpgrh =Krorh, heH. (3.3)
On the other hand, since j\ff,(,vz is an invariant subspace under M}l e ,M}n, we have

By =Pn; 2 Mz, |N; 1 for any o € ;.

According to Proposition 4.2 of [28], we know that, for any v € H*(IDy,,), there exists
x € F*(Dy) such that

V(Mzy, ..., Mz,) = x (91(Mz), .., 9a(M7))

=SOT- }1_{1} X(r(pl(MZ), ...,rgo,,(MZ)).
Since (By,...,B,) is in the noncommutative variety Vﬁ:feI(J\/},wI), we obtain that

(¢1(B); ..., ¢u(B)) is a pure n-tuple of operators in Dy (N, 7). Consequently, using F>(Dy)-
functional calculus, we deduce that

V(B By) = Puy, s VM., Mz, Ny 2 (3.4)
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for any v € H*(IDy,,,). Applying (3.2), (3.3), and (3.4), we infer that

Kf(i),TV(Tl"“’ T,)" = (Paj,, 2 ®]Dcf’w‘T)[\)(le,...,Mzn)* ®IDCMT]
X (Pnj, 7 ® IDCf,W’T)Kf«p,T
=By B ®Ing,  Kfyr
for any v(By,...,B,) € H*(V;,,7). In particular, we have
0 8101, W o
(ii) Due to (3.3), we obtain

((Kf5r) Ky by ) = 1Ky g, |

2 : m
= k|- mlgnm(q>fw(1)h,h).
Hence, we deduce that

(D) \* D)
(Kf 1) Kp g =125 (D), (3.5)
where <1§/‘?;YT(I) := SOT-1lim,,_, oo QBfVT‘W'T(I). Therefore, (ii) holds. This completes the
proof. O

We define the constrained characteristic function associated with an n-tuple T :=
(Ty,...,Ty) € V]?ZfI(H) to be the multi-analytic operator with respect to the constrained
weighted shifts By, ..., B,

@ .
@f,(p,T . A/},(p,I ® DC;"%T - -/Vj.’,(p,l' ® IDCf,w‘T;

with the formal Fourier representation

-1
%
_INf»v’I ® Cf’“”T + (INf,ny ® Acfyw,T)(INf»ny@H - Z azDy ® [‘p(T)]a)

Jor|>=1

x [VagDy ® Iy 1ot € I')(In;, - ® AC;"/”T)’

where D; = Py, Ry, |N; 75 0= 1,...,m,and Ry, ..., Ry, are the right multiplication oper-
ators by the power series ¢1,...,¢,, respectively, on the Hilbert space Hﬁ((p).
We provide a factorization result for the constrained characteristic function, which will

play an important role in our investigation.

Theorem 3.2 Letf:=) cFt GaZo be a positive regular free holomorphic function, and let
¢ =(@1,...,94) be an n-tuple of formal power series with model property. Let T # H*(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,). Then
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where @;fp)j is the constrained characteristic function and K}QT is the corresponding con-
strained Poisson kernel.

Proof Due to Theorem 6.1 of [28], we know that

IH}(¢)®DCf,Ap,T - @flfplT@_};k,(ﬂ,T = I<qu0vTI<f*,(p,T'
According to the proof of Theorem 3.1, we have
I(f,(p,T(H) c A[f,(p,l— 2 DCf,(p,T c ng(gp) 02y DCf‘%T-

Hence, we infer that

) ¥
I-/vf,q),I@DCf‘%T -P Nrp18DCp 1 O :‘ﬂ:TOf,go,Tl-A/f,(p,I@DCf‘%T

= PAG’,(/J»I@DC/%TI(f,w,T1<f*,w,T |/\/f'wl®DCf,¢_T . (3.6)
Since N,z is an invariant subspace under R}, , ..., R} , we obtain
@.;’W:T('/VJ}'(P:I ® DCf‘«,‘T) - N},(p,l' ® DC;,%T (3.7)
and
(Z)
PNrzePGy, 0 Ot Ny 280 = Ofr (3.8)

Applying (3.6), (3.7), and (3.8), we deduce that
(D) () \* @ (T) \*
IA/fv‘PrI®DCf,¢,T - @f"ﬂvT(@f»W»T) = I{varT(I(f)WvT) :
This completes the proof. d

IfAe B(H}((p) ®4, Hf(go) ® K) is a multi-analytic operator and A is a partial isometry,
then we call it inner multi-analytic.

In what follows, we present a functional model theorem for completely non-coisometric
n-tuples of operators in the noncommutative variety Vy,, 7(#) in terms of constrained
characteristic functions.

Theorem 3.3 Letf:=) cF+ GaZy be a positive regular free holomorphic function, and let
¢ = (@1,...,94) be an n-tuple of formal power series with model property. Let T # H**(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,). If T :=
(Ty,..., T,)is in the noncommutative variety Vﬁ;fz(’}-[), then the followi;igsmtements hold:
(i) T is unitarily equivalent to the n-tuple T := (T1,...,T,) € Vﬁrxz(’H) on the Hilbert
space

H:= [(M«pl ®D¢,r) @ AQ}QT(N}’%I ® Dcf*,wyT)]

(@ , .
o {Of,qa,Tx &) A@f(i),Tx X €Nz ® Dcf,q:,T },
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where Ay = - (@f(i)T)*@ﬁ])T)% and each operator Ti, i=1,...,n,is uniquely
T w w
defined by the relation

(P Ny 2®Dc; 7)1z

~

= (Bf ®Ipc, M)(PN/_%I@DCMT li)z, zeH,

where PN/¢I®DCf , 171 is an injective operator, Pf\ffﬂ@Dcf ;I8 the orthogonal
2 0 R P
projection from the Hilbert space

K:= (Npz ®Dey,r) ® A oD, Nz ® Dcf*w)

onto the subspace Ny, 7 ® D, ;» and B; = PN, Mz |N; 1 foranyi=1,...,n;
ii) T is in the noncommutative varie if and only if the constraine
(i) T isinth tati j tyvf‘f:f;(H) if and only if th trained
characteristic function @;fp)‘T is an inner multi-analytic operator. In this case, T is

unitarily equivalent to the n-tuple
(P’,Q(Bl 02 IDCf,(p,T)|ﬁ’ cee ,Pﬁ(B,, ® IDCf,%T)H-NL)»

where Pg; is the orthogonal projection from Ny, 1 ® Dc;,, , onto the Hilbert space
H = WNipz ® Dey,, 1) © Of Nz ® Dez, ).

Proof (i) We define the operator ¥ : N, 7 ® D% ;= K by setting
D
Yx:=07, x® A@f(fa),Tx, x €Nz ® Dcf*,v;,T'
It is obvious that ¥ is an isometry and
Uy ®0)=(0)y yeN,z®Dc, (3.9)
Hence, we infer that

Iyl? = |Pro@0)|* + ¢y @0

= |Pay @)+ |(0/2) ] (3.10)

foranyy e Ny, 1z ® Dc;,, r» where Pj; denotes the orthogonal projection from K onto H.
According to Theorem 3.2, we have

[(Kfon) 51"+ 10" = 91, yeNppz ® Dy (3.11)
Therefore, using (3.10) and (3.11), we deduce that

| (i)l = [PrO @O, 7€ Nz ® D, - (3.12)
On the other hand, due to (3.3), we obtain

[ = 1l = tim (@75, (D B), e H.
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Hence, if Kﬁ,) rh =0, then we have
2 9.
| 72]| —W}l_)moo@;f‘ﬂ(l)h,h).

Since T is in Vﬁ';fI(H), we infer that # = 0, which implies that I(f(f)’T is an injective operator

and range KJ%),T)* is dense in H.

Letz € H and assume that z | Pj;(y®0) foranyy € Ny, 7 ® Dc;,, - Taking into account
that

i . D) .
K={y®0:ye ./V},(p,z ® DCf,w,T} \% {()f,(p,Tx &) A@}fp),Tx ‘X € ./V},(p,z ® DCf*,(p,T }

Consequently, we obtain z = 0. This shows that

H={Piy®0):ye Nz ®Dq,, .} . (3.13)

Applying (3.12) and (3.13), we deduce that there exists a unique unitary operator W : H —
H such that

W (KD 19) =Pr(y®0), yeNp,z®Dc,, ;-

Moreover, using (3.9) and Theorem 3.2 , we have

(D) y* ~
P/\//,%I@Dcﬁwj W(I<f,(p,T) y= P/\/}',(p,I®DCf,w'TPfH(y ®0)

=y- P-/V:f,(p,I®DCf'¢,T Y (y@0)
@ (T) \*
=)= @f,w,T(@f,zp,T) J

- Kf( fﬂ).T (Kf(i) )y
foranyy € Ny 7z ® Dc;,, ;- Since the range (K;fp)j)* is dense in H, we infer that
P, 0, W = Kigr- (3.14)
Let T, : H — H be the transform of T; under the unitary operator W : H — ﬁ, ie.,
T,=WLW*, i=1,...n

Since the constrained Poisson kernel Kﬁp),T is an injective operator, due to (3.14), we de-
duce that

~ _ 1D
PA/}",¢,I®DCf,¢,T |H = I<f»<,0,TW*
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is an injective operator acting from Hto Nioz® Dc;, - Consequently, according to (3.14)
and Theorem 3.1, we have

(PA[]('W’I(@DCLV),T |ﬁ)Tt* Wh = (PA/JC:V"Z(@DCf,(p,T |ﬁ) WTt*h

(Z)
= I<f,(,0,T Tt*h

_ (p* (Z)
- (Bt ® IDCf,(p,T )I(f,w,Th
= (B;k ® IDCM,,T ) (P-N}’,go,I®’DCf’w,T l7)Wh

forany s e Handi=1,...,n. Hence, we obtain that
(PA(f’V"I@DCf,w,T |7:Z)Tvl*z = (B;F 02y IDCf,(p,T)(PA(fv¢vI®DCf,¢,T |ﬁ)z (3'15)

for any z € H and i = 1,...,n. Notice that P-N}’<pI®DCf r |4 is an injective operator. Then
s P>

(3.15) uniquely determines each operator 7;,i=1,...,n.

(ii) First, assume that T = (T4,...,T,) € Vﬁ:f;(?—l). Due to Theorem 3.1, we know
that the constrained Poisson kernel K}QT M= Nz ® Dc;,, , is an isometry. Hence,
K;fo)'T(I(;fp),T)* is the orthogonal projection from Ny, 7 ® Dc;,, ; onto K;fp),TH. Accord-
ing to Theorem 3.2, we deduce that @ﬁp)’T(@;ﬂT)* is also a projection, which implies that
@f(fo),T is a partial isometry. This shows that @]%),T is an inner multi-analytic operator.

Conversely, if @f(ﬁT is an inner multi-analytic operator, then it is a partial isometry. Ap-
plying Theorem 3.2, we infer that I(f(fo)'T is a partial isometry. Moreover, since T is in the
noncommutative variety V;’;C’I(H), due to (3.5), we deduce that K;fﬂ),T is an injective op-
erator, which implies that Kﬁ}  is an isometry. Therefore, using Theorem 3.1, we deduce
that T is in Vﬁ:f;(?—[). B B

Now, we prove the last part of the theorem. Notice that # @ v € K is in H if and only if

(wov,6/) x®A o x)=0 (3.16)

fuo.T

forany x € Nj 7 ® Dcf*w ;- Note that condition (3.16) is equivalent to

(O ) u+ A m v=0. (3.17)

(
[T

Since the operator A (");I)T is the orthogonal projection from Nj,7 ® DC%T onto
P P

[range(@f(fp)’T)*]L, we have

@ \*
(C) ul A @ v
( f,tp,T) @f,w,T

Hence, (3.17) holds if and only if (@}fo),T)*u =0 and v = 0. Therefore, we conclude that
K= Nroz®Dc,r
and

17 D
H=WNrp1®Dc, 1) ©Opy rWNrp1®Dey ).



Hu et al. Journal of Inequalities and Applications (2020) 2020:146 Page 19 of 32

According to (3.15), we infer that
T,=Py(Bi®Ing, Miin i=L..um.
This completes the proof. g

Let @ : Njy1 @ Hi — Njpz ® Hy and @' : Nyp 7 @ H) — Ny 7 @ M), be two multi-
analytic operators with respect to the constrained weighted shifts B, ..., By, i.e.,

D(B;®I3,)=(B; @Iy, and &'(B; ® Iy,) = (B; ®1H/2)q>’

for any i = 1,...,n. We say that @ and @’ coincide if there exist two unitary operators
U; € B(H;, H;),j =1,2, such that

D (Iny, 7 ® Uh) = (In, ; ® L) ®.

Applying Theorem 3.3, we can show that the constrained characteristic function @f(fp),T
is a complete unitary invariant for the n-tuples of operators in the noncommutative variety
ViezH).

Theorem 3.4 Letf:=) cFt GaZo be a positive regular free holomorphic function, and let
¢ = (@1,...,94) be an n-tuple of formal power series with model property. Let T # H*(IDy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,). If
T=(Ty,...,T,) € VfC,";C'I(H) and T’ =(Ty,...,T,) € Vﬁ'(;fz(’}-[/), then T and T' are unitarily
equivalent if and only if their constrained characteristic functions @;QT and @_)Efp),T’ coin-

cide.

Proof First, we assume that G)f(fp)’T and @;QT, coincide. Then there are two unitary oper-
ators U : DCM’T — DCf,(p,T’ and U :DC;’W,T — DC}F,%T/ such that

(U2 ® UGS = OF Uy, 7 @ L),

Consequently, we have

A(,ﬁT =(Unj,z ®UL)* Ay (U, ® Up)

[T

and

(Unj, 7 ® uz)[A@f(ﬁT(/\ff,w,z ® D, )] = [A@}ﬁw Nz ® DC}«M,)].
Now we define the unitary operator W : K — K’ by setting

W= (Inj, 7 @ Uh) © (I, ® L),

where K and K’ were defined in Theorem 3.3. Notice that the operator ¥ : Ny, 7 ®
Dcf*w , — K, defined by

JEPNGS) )
Wx:=0F, x® A@f(i)jx, x €N ® Dy, o
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and the corresponding ¥’ : Ny, 7 ® Dcf* s K’ satisfy the following relations:
P

W Iy, ® )" =¥ (3.18)
and
}E * _ %
N,z ® UD)P Nrwz8Dc 7 W*=p N 28D, 107 (3.19)

where Pfff wTODC,, 1 is the orthogonal projection from K onto Nz ® Dc;,, ;- Hence, we

have

WH=WKoW¥WN\;,r® Dc;, )

=K' 0w n,; ® U)Njyz ® Dg;, )

T

1l
!

S ' (N},w,f ® DC}‘,%T,)

/
’

I
)

which implies that W4 : H— H is unitary. On the other hand, foranyi=1,...,n,
(B ® IDCMT, )(INf_M ®U) = (n;, 7 ® u)(Bf ® IDCM,T). (3.20)

Now, we assume that 7 := (T1,..., T,) and T' := (7“{, s i’,) are the model operators pro-
vided by Theorem 3.3 for T and 7", respectively. Therefore, applying (3.18), (3.19), and
(3.20), we deduce that

Vo Tk _ (p* K/
P Nipz®Dc;, 11 T/*Wz = (Bf ® Inc . )P Niwz8Dc, 1 Wz

) K
= (B;F ® IDCf,va/ )(IA(fv%I ® Ut )PJ\/f’W'I@)DCfM:TZ

_ R
= (In,z ® ) (B; ® IDCfM)PNMIQw%Tz

— K Tk
= (I'N}:(Pl ® UI)PM'%I®DC[,¢,T Ti z

=P
Nrpz®Dcp , 1

WTiz

12

for any z € Handi=1,...,n Using the fact that Pff} 28Dc is an injective operator,
P 0,1

we infer that
WIDT; =T Wlg), i=1...n.

Due to Theorem 3.3, it is obvious that 7 and 7’ are unitarily equivalent.

Conversely, let £2 : H{ — H’ be a unitary operator such that

T;=Q*T/2 foranyi=1,...,n.

Page 20 of 32
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Note that T € C;OT(’H) orT e C;ad(H) and similar relations hold for 7’. Then we obtain
240¢,, = A, 2 and (@7:19)AC;M =Ac (®r,82).
Now we define the unitary operator by setting

Ug = Q|DCf,W,T :DCf,¢,T —> Dcf,w,T/
and

L[4 = (@;119) r Ipc* — Dc*

D .
| G fop.T oo, T

A simple calculation shows that
(@) (@)
Unjyz ® Us)Op 1= Op 1 (Unjz @ Ua).
This completes the proof. d

4 Multivariable interpolation and invariant subspaces

In this section, we prove a Sarason-type commutant lifting theorem. As an application, we
obtain the Nevanlinna—Pick-type interpolation result in our setting. Moreover, we provide
a Beurling-type characterization of the joint invariant subspaces under the constrained
weighted shifts By,...,B,.

Foreachi=1,...,n, we define the right multiplication operator R; : .7-}2 — ]-"f2 by setting
Rt=(Z;,C € ]-}2 Using the results from [24], we know that R*(Dy) is the WOT-closure
of all polynomialsin Ry, ..., R, and the identity. Moreover, we define the noncommutative
Hardy algebra R*(IDy,,) to be the WOT-closure of all noncommutative polynomials in
Rz,,...,Rz, and the identity.

The following result is a Sarason-type [32] commutant lifting theorem.
Theorem 4.1 Letf =}, p: auZy be a positive regular free holomorphic function, and let
@ =(@1,...,94) be an n-tuple of formal power series with model property. Let T # H*(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,,). For each

j=1,2, let K; be a Hilbert space, and let & C Ny, 1z ® K; be an invariant subspace under
Bi®Ix;,i=1,...,n. IfX:& — &, is a bounded operator such that

X[Pe,(B; ® Ix))le,| = [Pe,(Bi ® Iic,)|e, [ X, i=1,...,m,
then there exists

@(Cy,...,Cy) € R (Vry,1) ® B(K1, Ky)
such that

&(Cy,...,Cr) E C &, @ (Cy,...,Co) e, =X*, and | D(Cy,...,Cpn)| = IX].
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Proof First, note that the subspace ./\6(,%1 ® K is invariant under MZ, Q1 Kj» and
(M3, ®Ix)) Iy, rex; =B ® I, i=1,...,m.

Since & C Ny, 7 ® K is invariant under B} ® Ix;, ..., B, ® Ik, it is also invariant under
M3 ®Ik),...,M; ® Ik, which implies that

(M;i®I’Cf)|S/=(BT®IICI')|$}'; i=1,...,}’l.
Hence, we deduce that
X[Pe,(My, ® I, | = [Pey Mz, ® Tic)le, | X, i=1,...,m.

According to Theorem 5.1 of [28], there exists a bounded operator @ : Hfz(q)) QK1 —
HZ(¢) ® K, with the property

(D(MZL.®I;CI)=(MZL.®1;C2)(D, i=1,...,n

and such that @*&, C &, @*|g, = X*, and || @ || = | X||. Since M, = ¢;(Mz,,...,Mz,) for
anyi=1,...,n, we have

DM, ®Ix,) =M, @ I,)®, i=1,..,n
Notice that
My, =U'vil, i=1,...,n.
Then we obtain
(U I, (Vi® I U Ix,) = (U @ I, ) (Vi ® I, (U @ I, )P
for any i = 1,...,n. This shows that
[(UIx,)@ (U™ ®1Iic,) | (Vi ® Iicy) = (Vi ® I, ) [(U @ Iic,) P (U @ I, ) |
for any i = 1,...,n. Due to the discussion of Proposition 1.11 from [24], we infer that
[(U®1,<2)q>(u—1 ®Ik,)] € R*(Dy) ® B(K1, Ky). (4.1)
Using Proposition 4.2 in [28], we know
R®(Dy) = U'R®(Dy)U.
Consequently, we infer that

@ € R®(Dy,,) @ B(K1,K»).
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Assume that @(Rz,,...,Rz,) := ®@. This shows that we can find ®(Rz,...,Rz,) €
R®(Dy,) ® B(K1,Cy) such that @(Rz,,...,Rz,)* E S &,

®(Rz,,...,Rz,) e, =X* and |®(Rz,...,Rz,)

= || X1 (4.2)
Moreover, we assume that
P(Cs..., Cu) =Py 70Ky PRz 5 R7,) NG, sk -
Then we have @(Cy,...,C,) € R° (V1) ® B(K1, Ks). Notice that
DRz, Rz7,) N o1 ® K3) SNz @ K4
and & € Ny, 7 ® K. Using (4.2), we obtain
D(Cy,...,C)*E CE and P(Cy,...,Ch)% e, = X"
Applying again (4.2), we infer that
IXII < [@(Cu.... C) | < [ @Rz, Rz, | = X1,
which shows that
|®(Cr.... G = 1X1.
This completes the proof. 0

Applying Theorem 4.1, we can obtain the following Nevanlinna—Pick-type interpolation
result in our setting.

Theorem 4.2 Letf:=) cFt GaZo be a positive regular free holomorphic function, and let
¢ =(Q1,...,9,) be an n-tuple of formal power series with model property. Let T # H*(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,). Let
Aly..., Ak be k distinct points in fo%I((C), and let Aq,...,Ax € B(K). Then there exists
@(Cy,...,Cn) € R°(Vy,p 1) ® B(K) such that

|®(Cr,....C)|| <1 and @) =4, j=1,...k
if and only if the operator matrix
(Ko (i 1) (I = AiA7) ] i (4.3)

is positive semidefinite, where

\/1 = Zla\zl aa|(pa()‘i)|2\/1 - szl Ay |§0a()‘j)|2

Krp(his)j) = o(y)
. j 1= =1 dale)]elo())]a
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Proof Let X;:=(Aj,...,A;,),j=1,...,k, be k distinct points in V;’%I((C), and let

7= 1-3 aa}wa(kjﬂz(Z ba[w()\,)]awa) j=1,...k (4.4)

la|=1 ackFy

where the coefficients b,, « € F}, are given by relation (2.1). Since ¢ has model property,

we have
Mw=(pi(le,...,MZn), i=1,...,n,

where (Mz,,...,Mz,) is either in the set CSOT(H}(w)) or C;ad(HJ%(go)). Due to Proposition
4.2 of [28], for any w € T € H*(Dy,,), there exists x = Zaem Ca Vo € F°(Dy) such that

[o¢]
@ = SOT- lim DY carMy,. (4.5)
k=0 |o|=k
Using (4.4) and (4.5), we infer that

o

(27, (1)

s =0 foranyweZandj=1,...,k.

o
Since 7 is a WOT-closed two-sided ideal of H*°(IDy,,), we obtain
Mypz = m
This shows that
2 e Njyz, j=1Lo.ook.
According to Theorem 4.4 of [28], we have
M2 =Tz, i=1..mj=1,..k
Moreover, notice that
Bﬂ_/\/},,w,z = leNf,w.I’ i=1,...,n
Hence, we deduce that the subspace

M= span{Z;ii) j= 1,...,k}

is invariant under B} for any i = 1,...,1, and M C Ny, 7. Now, we define the operators
X; € BIM ® K) by setting

Xi=PuBilmQI, i=1,...,n
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Note that Z}f\;), . ..,Z}Zf) are linearly independent. Then we can define an operator T €
B(M ® K) by setting

x (7 () _ %) *
T*(Z/, ®h)=Z;) @ Ath
forany s e K andj=1,...,k. A simple calculation shows that
TX1'=X[T, i=1,...,l’l.

Taking into account that M ® I is a co-invariant subspace under B; ® Ixc, i = 1,...,n. Due
to Theorem 4.1, we can find @(Rz,,...,Rz,) € R°(Dy,,) ® B(K) such that

B(CrreesC) 1= Py 76k D (Rays o R, Iy, o € R (Vyo2) B B(K)
has the properties
&(Cy,..., C I MRIK) S MK, D(Cr,.. s, C) ¥ Mmac =T,
and
|®(Cy,....CH| = IT].
In what follows, we prove

R, 2% =Tz

7Lt f((p forany)»eD;’w((C) andi=1,...,n,

where Z}i; is given by relation (4.4). Indeed, a straightforward computation reveals that

b ~

% _ b_ywy’ a=yp,

Ry @a=1"" .
s 0, otherwise.

Consequently, we obtain

820 =R, [1= 3 aulosoP( L b0, 00)
la|>1 acl;
b -
- [i- T alotP (£ 2o, 0
la|>1 yelF;; V&
- 1= X bt (3 6,60, 00
Joe|>1 y el
=W[ 1- Zaa|¢a(x)|2(2 by[so(x)]ygoy)]
Jor|>1 yeF;,

)
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for any i = 1,...,n. Moreover, due to the proof of Theorem 2.1 from [28], we have
Rz, = Yi(Ryy»-. s Ry,) = SOT—}i_r)r} Yi(rRy,,...,TRy,)

foranyi=1,...,n Hence, we conclude that
VilRyy, .. Ry, ) 2 = Uil (W) 2y

foranyi=1,...,n. Since A € Djw((C), we obtain A; = ¥;(¢(A)) forany i = 1,..., n. Therefore,
we infer that

% (L) xr(X) _ WA 70
RZiZf,so =Yi(Ry;,...,Ry,) Zf,w = I/fi((p()»))Zf,w = )\‘iZf,(p

for any i = 1,...,n. This proves our assertion. Since Aj,...,A; are k distinct points in
0y)

Vs (C)CDs (C), wehave R} Z )»_»iZ(A’), i=1,...,mj=1,...,k. This shows that
S S Zi"f9 T e J
() ()
\)(Rzl, .. .,Rzn)*Zf’;) = U()\j)Zf’;)

for any v(Rz,,...,Rz,) € R*(Dy,,). Hence, we deduce that
* ()‘i) (k/) % .
PRz, Rz,) (2, @h) = Z[ @ DOy)*h, j=1,....k. (4.6)
Using (4.6), we obtain

(@(Crr.... C)* (27 @ ).2) ®3)
(R, Rz, (2, ©%).2,7 © )
= (77 @ 2% 2, )

=(Zpg 1 Zsy )y o @ () %, 9) 4.7)
foranyw,y € K and j = 1,..., k. Moreover, notice that

(T2 ©x). 2 @)= (2,7, 2,7, (A x.9) (48)

for any x,y € K and j = 1,..., k. Since ¢(A1),...,¢(At) are in the strict noncommutative
domain Dy, (C), we infer that

(Z(}”f) Z(A/) ~ \/1 - Z\odzl ﬂalﬁoa()\j”z\/l - Z‘le Ao Qo (X7)|?

, _ = 0 (4.9)
fio 210 ) 1= Y o el Ol lp )l g

for any i,j = 1,...,k. Hence, applying (4.7), (4.8), and (4.9), we conclude that (%)) = 4;,
j=1,...,k ifand only if ®(Cy,..., Cp)* | mex = T*.
Since ||®@(Cy,...,C,)| = |IT], it is clear that

|®(Cy,....Co)|| <1 ifandonlyif TT* <Iyex.
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On the other hand, for any 4, ..., i € K, we have

k k k k
(*) () " () " ()
(S eny 2l on)-(r (2 en) (L4 on))
j=1 j=1 j=1 j=1

k

D )
=>120) .z, )y ol (T = AAT ) i )
ij=1

k
=Y Ky 0y )| (Iic = AjAT ) iy ).

ij=1

Consequently, we deduce that ||@(Cy,...,C,)|| <1 if and only if matrix (4.3) is positive

semidefinite. This completes the proof.

O

The following result is a noncommutative multivariable version of a result of Rosenblum

and Rovnyak [31].

Theorem 4.3 Letf:=) cF+ GaZo be a positive regular free holomorphic function, and let

¢ = (Q1,...,9,) be an n-tuple of formal power series with model property. Let T # H*(Dy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,). If X €
B(Np1 ® K) is a self-adjoint operator, then the following statements are equivalent:

(i) Df BRI (X) <X, where BQ Ic := (B1 ® Ic,...,B, ® Ir);
(i) there are a Hilbert space G and a multi-analytic operator
@ : N1 ®G — Npy1 ® K with respect to the constrained weighted shifts

Bi,...,B, such that X = ®D*,

Proof First, we prove that (i) = (ii). Since (Bj,...,By,) is a pure n-tuple of operators in the

noncommutative variety Vs, 7(Ny,4,7) and
XD, po (D) < B s (X) < IXIDP s (D),
we deduce that
SOT- mll—I}éo D/ pon. (X) =0.
Notice that
®f pone X) < O oy (X) <--- <X, meN.
Then we obtain X > 0. Let M :=range X 7 and define

Qi(X2E) = X3 (9B ® Ix)E, E €Nz ®K,

(4.10)

Page 27 of 32
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foranyi=1,...,n Note that

> ad @ (X28) | < Y- |vaax: ([p@®)]; @ )8

la|=1 la|=1
= (s, p.8o1c (X)E,§)
< |x2e|”
for any £ € N,z ® K. Hence, we obtain that

2
)

ag |QiX2e | < |x3¢

%' € -A/f,(p,I ® ]Cv

for any i = 1,...,n. Since f is a positive regular free holomorphic function, each operator
Qi,i=1,...,n, can be uniquely extended to a bounded operator (also denoted by Q;) on
M. Denoting A; := Q} forany i=1,...,n, we have

> auAuAl < I,

Joe|>1

where the convergence is in the weak operator topology. Setting ¢p4(X) := } >, Ao XA},
(the convergence is in the weak operator topology) and using (4.10), we infer that

1,1
(67 (DXEE,XEE) = (07, oy (X06 6]
< IXI(Pf, par (1€ €)
for any £ € N}z ® K, which implies that
SOT- lim ¢ (I) = 0.

This shows that A := (A1,...,A,) is a pure n-tuple of operators in Dy(M). According to
Proposition 4.2 of [28], we know that 7 is a WOT-closed two-sided ideal of H*(Dy,,) if
and only if there is a WOT-closed two-sided ideal J of F**(Dy) such that

T={x(eWMy)):x €]}
Taking into account that

X34, = (¢(B)® I )X?, i=1,...,n. (4.11)
Then, for any x €/, we obtain

1 1

X2 X(rAlvnrrAn) = (X (r(pl(B)r---’r(le(B)) ®I]C)X2
for any r € (0,1). Moreover, since (A4,...,A,) is a pure n-tuple of operators in the non-
commutative domain Dy(M) and (¢1(B),...,¢,(B)) is also a pure n-tuple of operators in

Dy (Ny 1), using F*(Dy)-functional calculus (see [24]), we have

X x(Asye e An) = (X (@1(B), .., 9n(B)) ® Ix) X2 =0
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for any x €J. Since X Y isan injective operator on M, we infer that
x(Ay,...,A,) =0 forany x €.

Consequently, we deduce that (A4;,...,4,) is a pure n-tuple of operators in the noncom-
mutative variety V;;(M), where

Vi (M) :={(Ty,..., T,) € Dp(M): x(T1,..., T,) =Oforany x €]}.

Applying the appropriate result from [24], we know that the noncommutative Poisson
kernel Kr 4 : M — Hfz(go) ® G (G is an appropriate Hilbert space) defined by

Kpahi= ) bapa ® Apadlh, heM,

acF},
where Af 4= (I - Z\wlzl aaAaA;)% is an isometry with the properties that
Kra(M) SNz ®G and K7y (My, ® Ig) = AK}
foranyi=1,...,n. Now we define
D= XKy 7 Njpz ®G = Nypz ® K,
where the constrained Poisson kernel Ky 4.7 : M — ./\ff%z ® G is defined by
Kraz = (Px;, 7 ®Ig)Kpa.
Since ¢ has the model property, we have
M, =gi(Mg,,...,.Myz,), i=1,..,n,
where (Myz,,...,My,) is either in the set CiOT(H}(w)) or C;ad(HJ%(go)). Hence, we obtain
Kia7(0iB)®Ig) =AK; 47, i=1,...,1. (4.12)
Therefore, using (4.11) and (4.12), we infer that

O (¢:(B) ® Ig) = X K4 7 (0i(B) ® Ig) = XEAKT,

1
= (9:(B) ® Ix) X2 K}y 1 = (9:(B) ® I ) ®
foranyi=1,...,n On the other hand, notice that

Bi= pr.vaMZi |Nf'wl
= P./\[f,%z wi (‘/’1 (MZ), v <ﬂn(MZ)) |J\ff’w,1

= wi(q)l (B)r ceerPn (B))
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for any i = 1,...,n. Then we conclude that each operator B;, i = 1,...,n, is in the SOT-
closure of all polynomials in ¢;(B),...,¢,(B) and the identity. Consequently, we obtain
that

OB, ®Ig)=B;RI)P, i=1,...,n

This shows that @ is a multi-analytic operator with respect to the constrained weighted
shifts By, ..., B,. Moreover, since the constrained Poisson kernel Ky 4,7 is an isometry, we
deduce that

[T

DD = XK} 7KpazX? = X.

Now, we prove that (ii) = (i). Note that (By,...,B,) € V;,,7(N},7). Then we have

B ponc(X) = Y au([0(B)], ® Ix) X([0(B)], ® )"

Joe|>1

= 3 aullo®)], 129" (pB)], ® 1)’

Joe|>1

-o( ¥ a8, 816)(ot5), 0 10) )
] >1
<PP* =X,

where the convergence is in the weak operator topology. This completes the proof. O

As an application, we obtain a Beurling-type characterization of the invariant subspaces

under the constrained weighted shifts By, ..., B,,.

Theorem 4.4 Letf =}, p: auZy be a positive regular free holomorphic function, and let
@ =(@1,...,9,) be an n-tuple of formal power series with model property. Let T # H*(IDy,,)
be a WOT-closed two-sided ideal of the noncommutative Hardy algebra H*(Dy,,). A sub-
space M C Ny, 1 ® K is invariant under B; @ Ixc, i = 1,...,n, if and only if there are a

Hilbert space G and an inner multi-analytic operator
@ :N;pz®G—> Npy7 QK

with respect to the constrained weighted shifts By, ..., B, such that
M =& [Nyy1®G]

Proof First, we assume that M C /\/f,wl ® K is invariant under B, ® I, ..., B, ® Ix. Notice
that

PM(B1®I’C)PM=(BL®I]C)PM) i:17“'7n1
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and (By,...,B,) € V5, 7(N},1). Then we have

Ds o o1 (Pa) = Py ( Z ao([¢(B)], ® Ix) P ([0(B)], ® IIC))PM

=1

< Paa(( 3 au([o®), 8 16) (0B, 1) )Py

=1

-2 X o), [o®], 01 )P

=1

According to Theorem 4.3, there are a Hilbert space G and a multi-analytic operator
P :'/\/})W)I ® g - ‘/\GC:‘P:I ® IC

with respect to the constrained weighted shifts B, ..., B, such that P4 = @ ®@*. Moreover,
since P4 is an orthogonal projection, we deduce that @ is a partial isometry and M =
@ [Njpz ® G]. The converse is obvious. This completes the proof. d
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