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1 Introduction
Consider the following semi-parametric error-in-variables (EV) model:

yi=&B +g(t) + e,
xi =& + [Lis

(1.1)

where €; = o;e;, 07 = f(u;), y; are the response variables, (&, ¢, ;) are design points, &; are
the potential variables observed with measurement errors u;, Eu; = 0, e; are random errors
with Ee; = 0 and Ee? = 1, 8 is an unknown parameter, g(-) and f(-) are functions defined on
closed interval [0, 1]. In model (1.1), there exists a function /(-) defined on closed interval
[0, 1] satisfying

& =h(t) +v; (1.2)

where v; are also design points.
Model (1.1) includes many special forms which were studied by many scholars in recent
years for complete data. When p; = 0, it reduces to the general semi-parametric model,
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which was first introduced by Engle et al. [5] to study the effect of weather on electricity
demand.

In many applications, however, there often exist covariate measurement errors. For ex-
ample, it has been well documented in the literature that covariates such as blood pressure,
urinary sodium chloride level, and exposure to pollutants are often subject to measure-
ment errors, and covariate measurement errors may cause difficulties and complications
in conducting statistical analysis. So EV models are somewhat more practical than ordi-
nary regression models. When g(-) = 0, the model (1.1) reduces to the usual linear EV
model. Fan et al. [6] discussed the strong consistency and asymptotic normality for the
estimators of the ordinary least-square estimators. Further discussions can be found in
Miao et al. [15], Miao and Liu [14], Liu and Chen [13] and so on. Model (1.1) has also
been investigated by some authors. Cui and Li [4] derived the asymptotic distributions for
the estimators of B, g(-) and error variance. Hu et al. [10] derived the asymptotic normal-
ity for the estimators of the parametric and nonparametric components; Zhou et al. [22]
discussed the inference process for asymptotic distribution of estimators.

In the literature on the semi-parametric model and the EV model, scholars mainly study
the situation of complete data, but in practical applications, they often encounter the situ-
ation of incomplete data. Incomplete data includes missing data, truncated data and cen-
sored data. Among them, missing data is the most common. In practical application, vari-
ables may be lost due to design or happenstance. For example, the responses y; may be very
expensive to measure and only part of the y; are available. Another example is that the y;
represent the responses to a set of questions and some sampled individuals refuse to supply
the desired information. Actually, missing of responses is very common in opinion polls,
market research surveys, mail enquiries, social-economic investigations, and so on. Xu
et al. [19] investigated the problem of testing nonparametric function and proposed two
bias-corrected test statistics based on the quadratic conditional moment method. Yang
and Xia [20] derived the asymptotically normal distribution for the restricted estimator
of the parametric component. Wei and Mei [18] defined an empirical likelihood-based
statistic and error-prone covariates and proved that its limiting distribution is a chi-square
distribution.

Missing data includes completely random loss (MCAR), random missing (MAR) and
nonrandom missing (NMAR). In this paper, we choose model (1.1) and assume that y;
is missing at random (MAR). Therefore, we obtain a random incomplete data sequence
(i, 81,1, t;). The MAR assumption implies that §; and y; are conditionally independent
given & and ¢;. Thatis, P(8; = 1|y;, &, t;) = P(8; = 1|§;,¢;). The MAR is a common assumption
for statistical analysis with missing data and is reasonable in many practical situations; see
Little and Rubin [12].

When people face the loss of data, one method is to delete data with missing values.
Another method is interpolation, which is based on the analysis of fully observed data and
uses predicted or average values to interpolate the missing part of the data. In regression
problems, commonly used imputation approaches include linear regression imputation
by Healy and Westmacott [9], nonparametric kernel regression imputation by Cheng [3],
semi-parametric regression imputation by Wang et al. [16], and by Wang and Sun [17].
This paper extends the methods to the estimation of 8 and g(-) under the semi-parametric

EV model (1.1). We use two methods to estimate 8 and g(-) with missing responses and



Zhang and Xiao Journal of Inequalities and Applications (2020) 2020:144 Page 3 of 21

study the strong consistent rates for the estimators of 8 and g(-), according to f(-) being
known or unknown.

The paper is organized as follows. In Sect. 2, we list some assumptions. The main results
are given in Sect. 3. Simulation study is presented in Sect.s 4. Some preliminary lemmas
are stated in Sect. 5. Proofs of the main results are provided in Sect. 6.

2 Assumptions
In this section, we list some assumptions, which will be used in the theorems below.
(A0) Let{e;1<i<mn},{u;1<i<n}and{5;1 <i<n}beindependent random
variables satisfying
(i) Ee;=0,Epn;=0,Ee} =1, Eu} = E2>0.
(ii) sup;Ele;|"* < 00, sup; E|p|"? < oo from some y; > 8/3, y5 > 4.
(iii) {e, 1 <i<mn}, {1 <i<n}and{;,1 <i<n}areindependent of each other.
(A1) Let{v;,1<i<mn}in (1.2) be a sequence satisfying 0 < X; < oo for i =0,1,2,3.
(i) limyoon™ Y0, v = Xo,limyoon™t Y1, 8v7 = X1 as.
(i) limysoo ™t Y1 072V = Xo,limy oo n™' Y 1 0728V = X5 aus.
(iii) 1im,— o0 sup,(v/nlogn)™ maxi << | D in) 8j,vj,| < 00 a.s., where {j1,jo, ..., jn}
is a permutation of (1,2,...,n).
(iv) maxi<j<, |vi| = O(nl/s)'
(A2) (i) 0<m <minj<<,f(u;) <maxi<i<,f(u;) <M < oco.
(ii) f(-), g(-), h(-) satisfy the first-order Lipschitz condition on a closed interval
[0,1].
(A3) Let Wf,/(t) (1 <j < n) be weight functions defined on [0, 1] and satisfying
(i) maxi<j<y Y 1y §iWy(t) = O(1) as.
(iD) sup;ero1) 2oy Wt =41 >a-n ') = o(n™"*) as. for any a > 0.
(iif) sup,e(o,1) maxi<j<p W5(1) = o(n™?log™ n) as.
(A4) Let W,;(t) (1 <j < n) be weight functions defined on [0, 1] and satisfying
(i) maxi<j<n Y 1y Wyi(t:) = O().
(it) sup;ero1) 2oy WiOI(It =8| > a - n™"'*) = o(n™"'*) for any a > 0.
(i) sup,cpo1) Maxi<j<y Wiyi(t) = o(n™*log™ n).
(A5) Let VAV,fj(u) (1 <j < n) be weight functions defined on [0, 1] and satisfying (A3).

Remark 2.1 Assumptions (A0)—(A5) are standard regularity conditions and they are used
commonly in the literature; see Gao et al. [7], Hirdle et al. [8] and Chen [2].

3 Main results

3.1 Estimation without considering heteroscedasticity

For model (1.1) without heteroscedasticity, firstly, one deletes all the missing data. Then
one can get the model 8;y; = §,&;8 +8,¢(;) + 8;€;. If §; can be observed, we can apply the least-
square estimation method to estimate the parameter §. If 8 is known, using the complete
data (8;y;, 8ix:,8:t;), 1 < i < n, the estimator of g(-), given B, is

g6, B) = WE(t) S - x:B). (3.1)
j=1

Then under this condition of the semi-parametric EV model, Liang et al. [11] improved the
least-square estimator (LSE) on the basis of the usual partially linear model, and employed
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the estimator of parameter 8 to minimize the following formula:

SS(B) = 8i{[yi— %P - g1 (8, )] - E2B%).

i=1

Therefore, one can get the LSE of 8

n -1 5
= [Z (% - E,E)] PR (32)
i=1 i=1

where ’;zc =Xi— Z;’:I 8 W (L)%, 975 =i~ 27:1 8 Wity
Using f., we define the following the estimators of g(-):

&)= Za W) — x:Be). (3.3)

Apparently, the estimators 8, and g(¢) are formed without taking all sample information
into consideration. Hence, in order to make up for the missing data, we imply an imputa-
tion method from Wang and Sun [17], and let

ul =8y +(1- 8i)[xi,éc +85(t)]- (3.4)

Therefore, using complete data (Ul»],xi, t;)),1 <i < n, similar to (3.2) and (3.3), one can get
other estimators for 8 and g(-), that is,

.31—|:i ; } leu’ (3.5)

i=1

Using B, we define the following the estimators of g(-):
a® =Y WU -xp), (3.6)

where i[lI = L[ll — Z;lzl Wn]‘(ti)ljjl, 5&,’ =X;— Z;I:l an(t,')x/.

3.2 Estimation when or,.z = f(u;) are known
When the errors are heteroscedastic, we consider two different cases according to f(-). If
aiz = f(u;) are known, then ;‘3 is modified to be the weighted least-square estimator (WLSE)

n -1 4,
= [Z o728 - 55)} D 078k (3.7)
i=1 i=1

Using BWI , we define the following the estimators of g(-):

§XV1 (t) = 28 (t)(y; x;ﬁ\vl (38)
=1
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Then similar to (3.4) one can make up for the missing data and let
Ul =8+ (1~ 5i)[xi/§w/1 +8,1(t)]- (3.9)

Therefore, using complete data (L[ill,xi, t;)),1 <i <mn, similar to (3.4)—(3.5), one can get
other estimators for 8 and g(-), that is,

311{2”:0,»2(56?—& ] ZU*Z” . (3.10)
i=1

Using Bll , we define the following the estimators of g(-):

AIl (t) = Z Wn}(t) xj,éll); (3.11)

j=1

where &LII = ULII — Z]}‘il an(ti)l,[jll, 56,‘ =X; — Z}q:l W,,,'(t,-)xj.
Therefore, we have the following results.

Theorem 3.1 Suppose that (A0), (A1)(i), (ii), (iii), (A2)—(A3) are satisfied. For every t €
[0,1], we have

@) Bw, - B = o(n 1) as.

(b) & (1) - g(®) = o %) as.

Theorem 3.2 Suppose that (A0), (A1)(i), (ii), (iii), (A2)—(A4) are satisfied. For every t €
[0,1], we have

@) By —B=oln1)as.

(b) 8(t) - g(t) = o(n™%) as.

3.3 Estimation when ¢? = f(u;) are unknown

We address the case that the O'iz = f(u;) are unknown and must be estimated. Note that,
when Ee? = 1, we have E[y; — &8 — g(t:)]* = f (u;). So, the estimator of f(u;) can be defined
by

i) —Za Wi () (7 — X5 Be)” - B2 B2 (3.12)

For the sake of convenience, we assume that min;<;<, fn(u,-) > 0. Then we can define a
nonparametric estimator of oiz, 6,% = f’n(ui). Consequently, the WLSE of 8 is

-1
[20_25 - 53)} Za’z&x 5. (3.13)

Using ﬁWZ, we define the following estimators of g(-):

87 = WO ) - xipw,). (3.14)
j=1

Page 5 of 21
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Similarly, one can make up for the missing data and let
Ul-IZ = Siyi + (1 - (Sl) [xiBWZ +§MWZ (ti)]. (315)

Therefore, using complete data (L[ilz,x,v, t;)),1 <i <wn, one can get other estimators for g
and g(-), that is,

" -1
B, = [Z 62(x2 -8 Eﬁ)] Y 6 Ed (3.16)
i=1 i

Using ﬁIz, we define the following the estimators of g(-):
20 => WU -xB), (3.17)
j=1

where f[ilz = UiI2 - 27:1 an(t,f)UfZ, 6 :fn(ui).
Therefore, we have the following results.

Theorem 3.3 Suppose that (A0)—(A3), (A5) are satisfied with y, > 16/3 and y, > 16/3 in
(A0). For every u € [0,1], we have f,(u) — f (1) = o(n™/%) as.

Theorem 3.4 Suppose that (A0)—(A3), (A5) are satisfied with y, > 16/3 and y, > 16/3 in
(AO). For every t € [0,1], we have

@) Bw,-B= o(n 1) as.

(b) &) -g(®) = o %) as.

Theorem 3.5 Suppose that (A0)—(A5) are satisfied with y, > 16/3 and y, > 16/3 in (A0).
For every t € [0,1], we have

(@) B, - B =o(n ) as.

(b) &2(t) - g(t) = o ¥) as.

4 Simulation study
In this section, we carry out a simulation to study the finite sample performance of the
proposed estimators. In particular:

(1) we compare the performance of the estimators BWp ﬁh, ﬁ% and ,312 by their mean
squared errors (MSE), also, we compare the performance of the estimators gr,f“ '),
§,I} ), §,‘,V2(~) and <éf,2(~) by their global mean squared errors (GMSE);

(2) we give the boxplots for the estimators of 8 and g(t,/2);
(3) we give the fitting figure for the estimators of g(-).

Observations are generated from

yi=&p +g(t) + €,
Xi=&i + iy

(4.1)

where B =1, g(¢) = sin(27t), € = oie;, 07 = f (w;), f(u) = [1 + 0.5cos(2wu)]?, t; = (i — 0.5)/n,
u;=(i—1)/nand & = t> + v;. {v;,1 <i < n}is an iid. N(0,1) sequence. {u;,1 <i < n}
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Table 1 The MSE for the estimators of 8

n p Bw, B Bw, B

50 0.1 0.0129 0.0104 0.0123 0.0091
100 0.1 0.0053 0.0041 0.0047 0.0041
200 0.1 0.0024 0.0020 0.0029 0.0021

50 0.25 0.0166 0.0131 0.0189 0.0146
100 0.25 0.0086 0.0070 0.0096 0.0074
200 0.25 0.0045 0.0032 0.0047 0.0036

50 0.5 0.0201 0.0167 0.0226 0.0195
100 0.5 0.0132 00114 0.0158 0.0110
200 0.5 0.0058 0.0041 0.0050 0.0039

is an i.i.d. N(0,0.22) sequence. {e;,1 < i < u} is an ii.d. N(0,1) sequence. {v;,1 < i < u},
{1 <i<mn}and {e;,1 <i < n} are independent. d; is a B(1,1 — p) sequence where the
missing probability p = 0.1,0.25,0.5. For the proposed estimators, the weight functions are
taken as

K((t-1t)/hy,) K((t-1t)/by)

e = Wi(t) = ST K(E- t)/b,)

S K (e~ ) hy)’

o Klu—-u)ll,)
W) = ST K (- )75’

where is K(-) a Gaussian kernel function, %, b, [, are bandwidth sequences.

4.1 Compare the estimators for 8 and g(-)

Because otherwise there would be too much computation, we have to take a small sample
size for convenience of the simulation. We generate the observed data with sample size
n=>50, 100 and 200 from the model above. The MSE of the estimators for 8 based on M =
100 replications are defined as

M
MSE( Z B -
I=1
where /§ ({) is the /th estimator of 8. The GMSE of the estimators for g(-) are defined as

M n
GMSE({) = A%n Z Z[gr(tk, ) —g(tk)]z,

=1 k=1

where g(#, /) is the /th estimator of g(t).

It is well known that an important issue is the selection of an appropriate bandwidth
sequence. The common methods are grid point and cross-validation. Here we use the
grid point method to select optimal bandwidths. The bandwidth sequences 4, b, [, are
taken uniformly over 50 points with step length of 0.02 on the closed interval [0, 1]. Then
we calculate the MSE for the estimators of 8 and the GMSE for the estimators g(-) for each
(M, by, 1) and select optimal bandwidths to minimize the MSE for the estimators of 8 and
the GMSE for the estimators g(-). The MSE or GMSE for the estimators are reported in
Tables 1-2. On the other hand, we give the boxplots for the estimators of g and g(z,,2)
with n = 50,100,200 and p = 0.25.

From Tables 1-2 and Fig. 1, it can be seen that:



Zhang and Xiao Journal of Inequalities and Applications (2020) 2020:144

Table 2 The GMSE for the estimators of g(-) and f(-)

n p ') 41 0) 0] G30) h.()
50 0.1 0.1199 0.1134 01112 0.1028 0.2816
100 0.1 0.0646 0.0577 0.0557 0.0547 0.1563
200 0.1 0.0401 0.0397 0.0374 0.0346 0.0945
50 0.25 0.1504 0.1335 0.1314 0.1304 03413
100 0.25 0.0795 0.0785 0.0752 0.0705 0.2048
200 0.25 0.0510 0.0505 0.0461 0.0434 0.1011
50 0.5 0.1700 0.1580 0.1718 0.1525 0.3693
100 0.5 0.1134 0.1082 0.1027 0.1018 0.2305
200 0.5 0.0583 0.0568 0.0531 0.0508 0.1550
B B B By By B Bz Bz Bz Bz Bia Bia
! 0 I T
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Figure 1 p=0.25and n =50, 100, 200,The boxplots for the estimators of B and g(-)

0.7 =
L L L

L L L L L
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200
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0.6 + . |

L L L L L L L L L L
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

(i)

For every fixed # and p, the MSE of Bll and 312 are smaller than that of BWI and
BWZ, the GMSE ofgf,i1 (1) and <@f,2(~) are smaller than that ofg,‘,v1 (-) and g,f”%). It
shows that the interpolation method is more effective than the delection method.
For every fixed 1 and p, the MSE of By, and f;, are very close to that of By, and
,311, the GMSE ofﬁ,‘,vz(-) and 25,2(~) are close to that ofgyl (1) and <éf,2(~).

For every fixed n, the MSE for the estimators of 8 and the GMSE for the estimators
of g(-) increase as the increasing of p.

For every fixed p, the MSE for the estimators of 8 and the GMSE for the estimators
of g(-) all decrease as the increasing of 7.

Fig. 1 shows that the variances of the estimators decrease on increasing of sample

size n.

Page 8 of 21
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Figure 2 p=0.25,n=50,100 and 200, the fitting figure for @/J
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Figure 3 p=0.25,n=50,100 and 200, the fitting figure for Q/ﬂz

(vi) The simulation results are consistent with the theoretical results.

4.2 The fitting figure for the estimators of g(-)

In this section, we give the fitting figure of g,ﬁl () and §£2(-) with p = 0.25. From Figs. 2-3,

one can see that

(i) for every fixed n, the graph for the estimators of g(-) is very close to g(-);

(ii) for every fixed n, the graph of g,’} (-) is very close to <éf,2(~);
)
)
)

(v) the simulation results are consistent with the theoretical results.

(iii) the fitting effect is better on the increase of n;

(iv) when n reaches 200, the fitting effect is ideal;

5 Preliminary lemmas

In the sequel, let C, Cy, Cy, ... be some finite positive constants, whose values are unimpor-
tant and may change. Now, we introduce several lemmas, which will be used in the proof
of the main results.

Lemma 5.1 (Baek and Liang [1], Lemma 3.1) Let«a > 2, ey,...,e, be independent random
variables with Ee; = 0. Assume that {a,;,1 <i < n,n > 1} is a triangular array of numbers
With maxy<i<y |au| = Om™?) and Y, a2, = o(n=**(logn)™). If sup; E|e;|" < oo for some
y >2a/(a = 1), then

n
Zam'ei = o(n_l/o‘) a.s.
i=1

Lemma 5.2 (Hérdle et al. [8], Lemma A.3) Let V4,...,V, be independent random vari-
ables with EV; = 0, and sup, ;- E|Vj|" = C < oo(r > 2). Assume that {ay;, k,i =1,...,n}
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is a sequence of numbers such that sup,; ., |an| = O(n™') for some 0 < p; < 1 and
Z;;l a;; = O(n??) for py > max(0,2/r — p1). Then

max =O0(n~*logn) a.s. fors=(p1—p2)/2.

1<i<n

n
Z ai; Vi
k=1

Following the proof line of Lemma 4.7 in Zhang and Liang [21], one can verify the fol-

lowing two lemmas.

Lemma 5.3
() Let A; = A(t, Z} L Wai()A(L), where A(-) = g(-) or h(-). Let
Af =A(t) - Z;:l S W,f](tl)A(t,), where A(-) = g(-) or h(-). Then (A0)—(A4) imply that
max;<j<, |4 = o(n™*) and max, <;<, |A¢| = o(n"*) as.
(b) (AO)—(A4) imply that 'Y 1 €2 — 3o, S0 &l < Cim, n 1 Y0 8i(EF)? — 2y as.
and Y 1| 18:EC| < Conas.
(©) (A0)—(A4) imply that w* Y1 07262 — 35, 3 1 10728 < Can,
n Y 072810 — Ty as.and Y 1 |0728iE) < Can as.
(d) (A0)—(A4) imply that max,<;<, |&| = O(n"'®) and max;<;<, |&f| = O(n'/®) a.s.
(€) (A0)—(A4) imply that max, <<, |0, 2&| = O(n"'®) and max, <;<, |0, 2Ef| = O(n"/®) as.

Lemma 5.4
(a) Suppose that (A0)—(A4) are satisfied. Then one can deduce that

AW (py N _1
lrgas);{gn () g(t,)| o(n 4) a.s.
(b) Suppose that (A0)—(A4) are satisfied. Then one can deduce that
AWa ey N _1
lrgai);{gn () g(tl)| o(n 4) a.s.

One can easily get Lemma 5.3 by (A0)—(A4). The proof of Lemma 5.4 is analogous to
the proof of Theorem 3.1(b) and Theorem 3.2(b).

6 Proof of main results
Now, we introduce some notations which will be used in the proofs below.

=&i- Z & Wi (:)§), e = i — Z & Wit s
j=1 J=1
(t)—ZS Wy (t)g(t),

€= Z 8§ W (L)€ =6 - Z Wi (t)&;, =i — Z Wi () s

Jj=1 Jj=1

gi=gt) - Z W, (t)g(t), € =€ — Z Wi(ti)ej, S2= Zai-zgiz’
-1

j=1 j=1

Page 10 of 21
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L Dok -85, S, ) o7 (E -8s)).
i=1 i=1
Proof of Theorem 3.1(a) From (3.7), one can write
=S5 S ara(6 )7 - Lo - 2
i=1
=82 [ guu)(}+£l,c_lzl€,3)+za;25i53 }
i=1
_Slnizo 25%- (EZ—MZ/B)+ZO' 8L:u’l€l ZG -5 )IB
+Za 285 gl +Za 25,16 gl 220_258 Wy (t)g €

i=1 j=1
— Z Zai_28i5/Wncj(ti)6iﬂj — Z Zai_28iajwncj(ti)ﬂiej
i=1 j=1 i=1 j=1
+ Z Z o 288 Wi(t)EE 1B +2 ) D 07 8id Wit i
i=1 j=1 i=1 j=1
Y DY oS W () Wt e
i=1 j=1 k=1
- Z Z Za 20181 W (£ W (t) 1 B
i=1 j=1 k=1
12
=S Y A (6.1)
k=1

Thus, to prove ,3% — B = o(n"V*) as., we only need to verify that S;> < Cn!a.s. and
n ' Ap, = o(m*) as. fork=1,2,...,12.
Step 1. We prove S;2 < Cn! a.s. Note that

Sta= Y o778 —Er) = [07%8:(E ) -o07%8:82]
i=1 i=1
2
:Z{ -2 |:§‘ + W — Z(S L‘)/L,-:| —aiZSiEi}
i=1

n n 2
= 20_28 20_25 - Ei) + ZO’i_z(Si |:Z SJWHCI(Q)M]:|
i=1 j=1
n n
+2Za 28:Ef i — 220 28,E¢ Za Wt -2 o7 8w Y Wty
i=1 j=1

:= By, + By, + B3, + By, + Bs,, + Bgy,.

Page 11 of 21
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By Lemma 5.3(c), we have n !By, — X a.s. Next, we verify that By, = o(By,) = o(n) a.s.
for k=2,3,...,6. Applying (A0), taking r > 2, p; = 1/2, p5 = 1/2 in Lemma 5.2, we have

n

Z({i -Eg) = no . Z n (& —Eg) = O(n% log n) =o(n) as, (6.2)
i=1

i=1

where ¢; are independent random variables satisfying E¢; = 0 and sup,;, E|¢;|" < oo.
Therefore, we obtain By, = O(1n"/? log n) = o(n) a.s. from (A0) and (6.2). On the other hand,
taking o =4, y > 8/3 in Lemma 5.1, we have

n

Z & W,i(:)g

j=1

max
1<i<n

= o(n_%) a.s., max = o(n_%) a.s., (6.3)

1<i<n|%

j=

Z Wi ()¢
1

where the ¢; are independent random variables satisfying E¢; = 0 and sup,_,, E|;]” < 00,
for some y > 8/3. It also holds if one replace W/,fj(ti) with VAV,f}-(ui). Meanwhile, by (A0) and
Lemma 5.2, taking » = p > 2, p1 = 1/4, po = 3/4 in Lemma 5.2, one can also deduce that

n
_1 -
> nioT s E

i=1

|Ban| = i - = O(n% log n) =o(n) as. (6.4)

Note that, from Lemma 5.3, (6.2) and (6.3), we have

2

n n
|Bs,| < Z‘Gi_28i| 1n<1la<>; ZSerfj(ti)pL/ = o(n%) a.s., (6.5)
i=1 =="j=1
n B n 3
|Bs,| < 22’0{2655!?| - max Z(SjW,fj(ti)u,» = o(rﬂ) a.s., (6.6)
i=1 ~ T lj=1
n n n
|Ben| < 2|:Z(|gi26iﬂi’ _E|U;28illi‘) + ZE‘o—i25iMi|j| . ln<1la<); ZS}W;}-(E‘)IM
i=1 i=1 ==j=1
= o(n%) a.s. (6.7)

Therefore, for (6.2)—(6.7), one can deduce that S?, = By, + o(n) = By, + o(B1,) a.s., which

yields
li Bln . Bln
im —-=lim ————= a.s.
n—00 Sln n—oo By, + 0(B1,)

Therefore, by Lemma 5.3(b), we get 51_3 <Cn'as.

Step 2. We verify that n 1A, = o(n™V*) as. for k = 1,2,...,12. From (A0), we find
{n: = €, — w;B,1 < i < n} are sequences of independent random variables with En; = 0,
sup; E|n;|? < Csup; E|e;l? + Csup; E|u;|? < co. Similar to (6.4), we deduce that

n
nlAy, =nt Za;za,»g}m = O(n_% log n) = o(n_%) a.s. (6.8)
i=1
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Similar to the proofs of (6.2)—(6.3), one can easily deduce that

—Z|w, = [Z |wi| - Elay]) + ZE@,@ =0(1) as., (6.9)
i=1 i=1

D o EWet)lwl =0(1) as, > Wyt =0(1) as., (6.10)
j i=1

1 n

=Yl =01) as., - 1=0(1) as., 6.11
- 1=21|a)l | (1) as Z | ;] (1) as (6.11)

where ®; = w; — 27:1 Wt wj, @f = w;— Z;l:l d; W;j(ti)a)j, w; are independent random vari-
ables satisfying Ew; = 0 and sup, ;. E|w;|" < oo for some r > 2.
Meanwhile, from (A0)—(A3), Lemma 5.3, (6.2)—(6.3), (6.9)—(6.11), one can achieve

W (6

:| = o(rz_%) a.s.,

n n
n Asy < [ZM‘Z&MI el + D Lo s D08
i=1 i=1 j=1

=o(n1) as,

28 W t)e,

nlAg, <n 12!0_285 ’ max

i=1

- max
1<i<nmn

Z W k(t

1<i<n

n
n 1A, <nt E ’al._28,<| - max

3 Wt
j=1

= o(n_%) a.s.

One can similarly get n1A;, = o(n™V*) for i = 2,3,4,7,8,9,10, 12. Thus, the proof of The-

orem 3.1(a) is completed. O

Proof of Theorem 3.1(b) From (3.8), for every ¢ € [0, 1], one can write

810 -g0)= Y § W)~ xPw) —g(®)

j=1

Za Wi (D)[§8 +8(t) + € = (& + m)Bwy | - g(®)

= Y EWEOEPB - Bwy) + Y §WE(E)8[g(t) - g(0)]

j=1
Y GWt)e + > Wt mB + Y Wit (Bw, - B)
— -
= Fln(t) + F2n(t) + FBn(t) + F4n(t) + FSn(t)'

Therefore, we only need to prove that Fy,(£) = o(n""*) a.s. for k = 1,2,...,5. From (A0)—
(A3), Theorem 3.1(a), Lemma 5.3, (6.2), (6.3), for every ¢ € [0,1] and any a > 0, one can
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get
Fiu() < 1B - Bwy |- W)
1 n
<o(ni)- [ > sWeOh()| + Za Wty ]
j=1

m

8, Vi

sy § : i Vik
k=1

< o(n_%) -1 0Q1) + Cmax|Wn‘,(t)| max
1<j<nm Yy 1<m

Fy(t) Za [e6)-g®] - I(ltj ¢l > a-n4)

#3550 - [g6) -g0)] - 1(15—tl<a-n)

One can easily get Fy,(t) = o(n"V'*) a.s. for k = 3,4,5 from (6.3) and Theorem 3.1(a). The
proof of Theorem 3.1(b) is completed. d

Proof of Theorem 3.2(a) From (3.9)—(3.10), one can write

i=1 i=1

B —B =55 [Z o7 &+ )l =D o (v i) - Siﬂi)ﬁ}

=Sy { Z o (& + i) |:5i(€i - wiB) +8i(g(t) - &, (¢))

i=1

+ (1= 8)(E + 1) (Bw, — B) + 80 (&) = Y Wiyi()(8(ej — 1;B)

j=1

+8;(g(t) -8, (1) + A=) (& + Mj)(,éwl B)+8) :| + 20‘26 }

=S£3{Zo'i725i§i(€i_ﬂi,3)+ZO—;281’§1‘ [g(t) -8, (8]

i=1 i=1

+Zo 2EE+ 1) (1= 8)(Bw, — ﬂ)—ZZa 28, Wi (t)Ei(ej — 14;)

= i=1 j=1

- Z Z o 28 Wiy(t)&(g() - 8, (1))

i=1 j=1

—ZZU-ZWH,(a)au 8)(& + 1) (B, — ﬂ)+ZG‘2& (@) () - g(t))

i=1 j=1 i=1

+ Z ZG Sz Wn}(tz W (t]) g(t/ + Zgi_zgigi + Zoi_28i,ui6i
i=1 i=1

i=1 j=1

Page 14 of 21
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—ZZO‘ 8 Wii(t)eip; — Za ),3

i=1 j=1

+ Z Z Ui_z(Sian(ti)Miﬂjﬁ

i=1 j=1

+Y o 8i(g(t) - 8 (1)) Zo-”(l 8:)(&: + 1) (Bw, — B)
=1

n n n n n
- Z Z 0728 Wi (t:) i€y + Z Z Z 0728 Wi (6) Wi (&) pce

i=1 j=1 i=1 j=1 k=1

n n n n n
Y Y oW B =Y Y Y 0728 Wit Wkt 1k B

i=1 j=1 i=1 j=1 k=1

- Z Zai_zajwnj(ti)ﬂl[ (t) ng (t )]

i=1 j=1

—ZZU-ZWH,(t)(l 8)iki(& + 1) (Bwy — ﬁ)+Za (g, (&) - g(@)

i=1 j=1 i=1
n
+ZZG /"l'l n}(tz W (t]) g(t} + Zai_Zlaigi
i=1 j=1 i=1
24
=52 Y Do
k=1

Using a similar approach to step 1 in the proof of Theorem 3.1(a), one can get S;> <
Cn! a.s. Therefore, we only need to verity that 771Dy, = o(nV*) a.s. for k = 1,2,...,24.
From (A0)—(A4), Lemmas 5.2—5.4, Theorem 3.1, (6.2)—(6.4), (6.9)—(6.11), one obtains

n Dy, =nt ZG[ZSZ&(Q —up)=nt. O(n% logn) = o(n’%) a.s.,
i-1

n
n'Dy, <! lr;lla;’g L) -8, 1(t -Z|a[28i§i‘ = o(n_%) a.s.,

NBw, - Bl

Xn: O'L'_z(l - 8i)§j2

i=1

niDg, <n!

n
+n’IZ|oi’2§i| - |1 - 4;] - max

. 1<i<n
i=1

Z Wt

1Bw; - Bl

1

,-7251‘(1 — )il - |/§W1 -Bl= 0(1’1’1) a.s.,

n Dy, < n~! max
1<i<n

Z W(ti Mjﬁ)‘ : Z‘Ui_2§i| = o(n_%)
i1

n D5, < n~! max

1<i<n

Z 8 Wiyi(ti

1<i<n

- max |g() -2 6] - Y Jor %] =o(nt) .
i=1
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n

Z Wt (1 - 6))§;

j=1

1Bw, - Bl

n
nDg, <n! Z|Gi_2§i| - max

- 1<i<nmn
i=1

: |I§W1 -Bl= o(n_%) a.s.

n
+n! Z|ai_2§,-| - max
] 1<i<n

Z Wi ()1 = 8))
i1

One can easily get n7Dy, = o(nV*) as. for k = 7,8,...,24. Thus, the proof of Theorem
3.2(a) is completed. O

Proof of Theorem 3.2(b) From (3.11), for every ¢ € [0, 1], one can write

GO -g) =Y W) {85+ (1= 8§)[(& + 11)Bw, + 8 &)] - &+ 1)Br } —g(®)

Jj=1

= Y W)= 8)&(Bw, — B) + Y W1 - 8)[2)" (1) - g(1)]

j=1 j=1

+ Z Wi (£)dj€; + Z Wi (D11 Bwy — B) - Z W, (0814 B,

j=1 j=1 j=1

+ > WyO[gt) —g@®)] + Y Wi(EB - Br) + > Wiy®wi(B - Br)

j=1 j=1 j=1
8
= E Gk,,.
k=1

Therefore, we only need to prove that Gy, (¢) = o(n~"/%) a.s. for k = 1,2,...,8. Similar to
F1,(¢) = o(n™1"*), we can get

5 1
B - Bl=o(m ) s,

Gui(t) < Z Wi ()1 - 8)&;

j=1

Then from (A0)—(A4), Lemmas 5.3-5.4, (6.2) and (6.3), for every ¢ € [0,1] and any a > 0,

one can get

> Wy -8)

Gon(t) < - max|2, () - g(6) = o(nt) as.
j=1 e
Gon(t) <Y Wi(0)8j11(Bw, — B)| + | > Wr(0)814;8
j=1 J=1
<IB-Bwl- Z Woi(£)8j15| + Z W()wiB| = o(n‘%) as.,
j=1 j=1

Genlt) < 3 Wi(®) - [8(t) —g®] - 1(1ty — t] >a - )

j=1

+ Z W,,@) - [g@) -g@®)] - 1(1; -t <a- n‘%) =o(n%) as.

j=1
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One can easily get Gy, (¢) = o(n~'/*) a.s. for k = 3,4,7,8. Thus, the proof of Theorem 3.2(b)
is completed. O

Proof of Theorem 3.3 From (3.12), one can write

Folu) = f ()

Za W) {[E(B - B + & + & - isB] - 182 —f ()

= 8 We(u) (e} —f(w) Za WE (B - B) +Z§Wc(u
i=1

i=1

+Xn:8 Wc u)(ZS Wi(ti)e ) +Z§ Wc () (1 i)ﬁ?
i-1
+Z(S W” u)(ZSW (t; /L,‘,&) +QZ5 (B - Be)

+228W (W& (B - Bo)ei 2228Wc(u55W”(t)€j(ﬂ—/§c)

i=1 i=1 j=1

—226 w)éf 1B - Be) ﬂc+2228 WEFS; W (1)1 - Bo)Be

i=1 j=1

+225 c(u)giei — 2228 (SWC 228 Wc(ugluiﬁc

i=1 j=1

+2 Z Z SW g Wt miBe -2 > 8 Wi (u)eid; Wi (t)e;

i=1 j=1 i=1 j=1

=2 sWeweuiPe+2) Y 5iWrw)ed; Wi (t:) e
i=1

i=1 j=1

+2 Z Z 8 Wi () i Wei(t; )M;,Bc 2 Z Z 8 Wi (1) i ;j(ti)ﬂj/ég

i=1 j=1 i=1 j=1

=2 O N S W ()8 W (£ €Sk W () Be

i=1 j=1 k=1

21
= Z Ukn(”):
k=1

Uln(u)

Z(S Wc u) e —f(u)

e—l u)—f(u))
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= J11n (1) + J120 (1),

We get E(e] — 1) = 0 and sup,_;_,, Ele} — 1|"'? < 0o, where y, > 16/3. From (A0)—(A3),
(A5), Theorem 3.1(a), Lemma 5.3, (6.2)—(6.3), we have Jix, () = o(m~ %) a.s. for k = 1,2.
Therefore, we can get U1,,(u) = o(n~%) a.s. By Lemma 5.2, taking p; = 3/8, p» = 1/8, y = 4,
we can get Uy, (u) = o(n™V*) as. for k = 8,10. By Lemma 5.1, taking y > 4, @ = 2, we can
get Uy, (u) = o(n''*) a.s. for k = 12, 14. Similarly, one can deduce that Uy, («) = o(n~'*) a.s.
for k=2,3,...,21. Thus, the proof of Theorem 3.3 is completed. O

Proof of Theorem 3.4(a) Let T, =Y " 6,25 (x - 75), similar to Theorem 3.1(a), one

can write
,BWZ - /3

= Tffiz&n}z&&?(ﬂ —wiP) + Y 6. Sine Za‘za £2)B
i=1 i=1
+ ZUmQS &f gl + Zomzél,u ‘g — Z Zomzé S Wi t)é”e,

i=1 j=1
- Z Z 6,:528,'3]“”;}-(2)61'#}' - Z Z 6,:528,'8]‘W;j(t[)/14€]'
i=1 j=1 i=1 j=1
+ ZZG’ZS S We (6L 1B +2ZZG*25 W ()it
i=1 j=1 i=1 j=1
+ Z Z Zo-za 858k Wy () Wi (£ sjex
i=1 j=1 k=1
—ZZZo”aaakW” () Wi (&) B
i=1 j=1 k=1
12
=T Y Gin.
k=1

Similar to step 1 in the proof of Theorem 3.1, we can get len < Cn~! a.s. Therefore, we
only need to verify that n 1 Gy, = o(n"1*) a.s. for k = 1,2,...,12. From (A0)—(A5), Lemmas
5.2-5.4, Theorem 3.1(a), Theorem 3.3, (6.2)—(6.4), (6.9)—(6.11), one obtains

n

n1 G <Y (6,7 — 072kl (e — wiP)| + | Yo7 8 (e - Miﬂ)'
i=1 i=1
_2 1 2 (o, _ly _1
< 1n<1?<>;|0 ; | -n ;|8,§i (¢ u,,3)| + o(n 4) = o(n 4) a.s.,

n

2(6;12 — ai’z)éiuie,»

i=1

n
1 -2
E 0; “8iLi€;

i=1

n Gy, <n” +nt

n
< max’a —-0; 2’ n_12|8,’pciei|+o(n_%) =0(n_1) a.s.,

1<i<m -
i=1
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n

n
n1Gs, <n’t Z(&,f—a{z)éi(u?— 28| +nt Zoi‘zzSi(M?—Ei),B‘
i=1 i=1
- 2 1 1
<1H<1?<Xn|g -07%|n 1Z|8 -E)B|+o(nT)=0(n"T) as.

The proofs of 1™ Gy, = o(n~'*) a.s. for k = 4,5,...,12 are similar. Thus, the proof of The-
orem 3.4(a) is completed. O

The proof of Theorem 3.4(b) is similar to the proof of Theorem 3.1(b).

Proof of Theorem 3.5(a) Let Ty, =Y & 6, 2(x? -85 ) similar to Theorem 3.2(a), one can

i=1 Oni

write
ﬁ]z - ﬁ

= T2—n2{Z 6,:52(Si§i(€i - wip ZU d; Sl t) AWZ (¢ ))

i=1

+ Z&&Zéi(fi + 1)1~ 8)(Bw, - B Z 20_23 W,i(t)Ei(e; — wiB)

i=1 i=1 j=1

- Z Za‘zs Wiy (6)E:(2(5) -2 (1)

i=1 j=1

—ZZU-ZW (&L = 8) (& + 1) (Bw, — /3)+Zo 2 () - g(t))

i=1 j=1 i=1

YN ELEWL ) @) 6) - g) + 6.7 ?+Z Sifkiei
i=1 j=1 i=1

—ZZa 8 Wa(ti)eins; - Zo*s ﬁ+zzo’26 Wit wits
i=1 j=1 i=1 j=1

+Z 28k (g(t:) - &y (8:)) + Zamu,l 8) (& + i) (Bw, — B)

- ZZ& 28 Wit i€ + 2226_28 Wi () Waie(£) 1€

i=1 j=1 i=1 j=1 k=1
+ ZZ% 8 Wiyt it ~ 2220-26 Wi (8) Wik (£ 1
i=1 j=1 i=1 j=1 k=1

=30 62 Witdigt) - &) ()]

i=1 j=1

—ZZU-ZW (&)1 = 8) (& + 1) (Bw, — /3)+Zam fii(g (t) - g(6)

i=1 j=1 i=1

n

YN G W(E) @) (6) - g®) + Y 6,0 iugt
i=1

i=1 j=1
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24
-2
=Ty, ZH"”'
k=1

Using a similar approach to step 1 in the proof of Theorem 3.4(a), we can get T,> <
Con~ ! as. Then from (A0)—(A4), Lemmas 5.2—5.4, Theorem 3.4(a), Theorem 3.3, (6.2)—
(6.4), (6.9)—(6.11) one obtains

n n
n Hyy <Y (6,7 — 072)8ikilei — wip)| + | 0728k — pip)
i1 i1
< lnsllfclsxn|&n_i2 - oi‘2| nt ;|8i§i(ei - ,uiﬁ)| + o(n_%) = o(n_%) a.s.,
' Hy, <nt 2(5,;2 —07%)8iE(gt) -8 (t) |+t Zafzfsigi(g(ti) -8,2(t)
i=1 i=1

n
~n_ _ ~ 25 _1 _1
<o oo - o7 maxlee) ~8120)] - Y lor o) =o(¥)

a.s.

The proofs of n ' Hy, = o(n'*) as. for k = 3,4,...,24 are similar. Thus, the proof of The-
orem 3.5(a) is completed. O

The proof of Theorem 3.5(b) is similar to the proof of Theorem 3.2(b).
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