
Lu and Li Journal of Inequalities and Applications        (2020) 2020:132 
https://doi.org/10.1186/s13660-020-02400-1

R E S E A R C H Open Access

Analysis on control of a class of uncertain
stochastic system by inequality technique
Qinghua Lu1 and Longsuo Li1*

*Correspondence:
lilongsuo6982@126.com
1School of Mathematics, Harbin
Institute of Technology, Harbin,
China

Abstract
In this paper, some theoretical results of PID control of second order nonlinear
uncertain stochastic system are given via inequalities. We extend the results of the
corresponding deterministic systems to stochastic systems. Specifically, as long as we
have a certain understanding of the upper bound of the derivative of the unknown
nonlinear drift term and diffusion term, an analytic design method can be
constructed for these three PID parameters to ensure the global stability and
asymptotic stability of the closed-loop control systems. In addition, the numerical
simulation results verify the theoretical analysis results.
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1 Introduction
The rapid development of control technology has an impact on every field of the control
discipline. Although in the past half century, people have carried out extensive research
on modern control theory, classic proportional integral differential (PID) control is still
the most widely used and successful controller design method in all engineering systems
[1, 2].

There are some reasons for the widely used of the PID controller: It does not need precise
mathematical models and has a simple controller structure; it can not only eliminate steady
state offsets via the integral action, but also anticipate the tendency through the deriva-
tive action; through the linear feedback mechanism, the influence of various uncertainties
such as internal structure uncertainty and external interference can be reduced. On the
contrary, the PID controller also has some shortcomings which cannot be ignored, for in-
stance, the application of various advanced PID controls is not perfect, which is difficult
to master by enterprise technicians. Specifically, one of the key problems in the realiza-
tion of PID controller is how to choose three PID parameters, which are usually realized
by experiment or experience. One of the famous PID parameter design methods is the
Ziegler–Nichols rule. Naturally, with its extensive practical application, PID controllers
have been widely studied in the academic fields, but most of them are for the linear deter-
ministic system, less for the uncertain stochastic system [3–6].

In practical control engineering, due to the modeling error, environmental disturbances
and other factors, a completely deterministic system usually does not exist. It has impor-
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tant theoretical and practical value to study the control of uncertain nonlinear systems. A
stochastic nonlinear system is a kind of nonlinear system with stochastic dynamic char-
acteristics, which has become one of the much-studied topics of nonlinear control theory
in recent years. The effect of PID controller in the actual system is related to many factors.
Therefore, in order to provide theoretical support for the design of PID parameters with
excellent performance and improve the wide application of PID controller in engineering,
the uncertain nonlinear stochastic dynamic system must be investigated [7–14].

Recently, Zhao and Guo investigated the PID control for uncertain nonlinear determin-
istic dynamic. They constructed a three-dimensional manifold within which the three PID
parameters can be chosen arbitrarily to stabilize the nonlinear uncertain dynamical sys-
tems [15, 16]. Then Cong and Guo extended the results of [16] to stochastic system, they
demonstrated the global stability and asymptotic regulation of the closed-loop control
systems [17]. Motivated by these facts, we will further extend the results of [17]. By using
upper bounds of the derivatives of both the nonlinear drift and the diffusion terms, we will
construct a concrete three-dimensional manifold within which the three PID parameters
can be chosen arbitrarily to globally stabilize the uncertain stochastic systems. We mod-
ified some inequalities to ensure that the results of our paper can be degenerated to the
case of deterministic systems of [16] when the diffusion terms is zero. Also, the numerical
simulation is given to verify the theoretical analysis results.

The remainder of the paper is organized as follows. Section 2 will give the preliminaries
and problem description, Sect. 3 will present the main results together with mathematical
proofs, Sect. 4 will show the numerical simulation results to verify the theoretical analysis
results, and Sect. 5 will give the conclusion.

2 Preliminaries
Definition 2.1 (Ω ,F , P) is a probability space. When 0 ≤ t < s < ∞, family {Ft}t≥0 is a
filtration, and it satisfies the relation that Ft ⊂ Fs ⊂ F . For all t ≥ 0, the filtration is right
continuous on the premise of expression that Ft =

⋂
s>t Fs. When the probability space

is complete, if the filtration is right continuous and F0 contains all P-null sets, then it is
considered to satisfy the usual conditions [13].

Set x as the state of the system, x ∈ R
n, f ∈ R

n, g ∈ R
n, and B(t) is a Brownian motion,

then a stochastic system defined by stochastic differential equation is as follows:

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t),

where the f term can be called a drift or a vector field, g(x(t), t) is called the diffusion
coefficient, while the noise term g(x(t), t) dB(t) is a model for uncertainty. Both the external
random effect and the parameter fluctuation in the mathematical model may affect the
uncertainty of the model.

Ito’s Formula ([13]) Set 0 < h ≤ ∞. Using C2,1(Sh × R+; R+) to represent the family V (x, t)
of all nonnegative functions defined on Sh × R+, so that they can be continuously twice
differentiable in x and once in t. Define the differential operator L as follows:

L =
∂

∂t
+

1
2

n∑

i,j=1

[
g(x, t)gT(x, t)

]
ij

∂2

∂xi∂xj
+

n∑

i=1

fi(x, t)
∂

∂xi
.
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If L acts on a function V ∈ C2,1(Sh × R+; R+), then

LV (x, t) =
∂V
∂t

(x, t) +
1
2

tr
[
ggTH(V )

]
(x, t) + f T�V (x, t).

If x(t) ∈ Sh, then

dV
(
x(t), t

)
= LV (x, t) dt +

(
�V
(
x(t), t

))Tg
(
x(t), t

)
dB(t),

where tr is the trace of the matrix, H(V ) = Vxixj is the n × n symmetric Hessian matrix.

3 Main results
Let {B(t)}t≥0 be a standard Wiener process defined on a complete probability space
(Ω ,F , P) with a natural filtration {Ft}t≥0 satisfying the usual conditions (see Defini-
tion 2.1 in the Preliminaries).

The classical PID controller has the following standard form:

u(t) = kpe(t) + ki

∫ t

0
e(s) ds + kdė(t), (1)

where kp, ki, kd are the three controller parameters, e(t) = y(t) – y∗ ∈ R
d is the regulation

error.
Consider the following class of second order nonlinear uncertain stochastic systems:

⎧
⎪⎪⎨

⎪⎪⎩

dx1 = x2 dt,

dx2 = f (x1, x2, t) dt + u(t) dt + g(x1, x2, t) dB(t),

u(t) = kpe(t) + ki
∫ t

0 e(s) ds + kdė(t),

(2)

where u(t) denotes the input signals, x1(0), x2(0) ∈ R; f (x1, x2, t) and g(x1, x2, t) are both
unknown nonlinear functions.

Two function spaces are defined as follows:

FL1,L2 =
{

f ∈ C1(
R

2 ×R
+)
∣
∣
∣

∣
∣
∣
∣
∂f
∂x1

∣
∣
∣
∣≤ L1,

∣
∣
∣
∣
∂f
∂x2

∣
∣
∣
∣≤ L2,∀x1, x2 ∈R,∀t ∈ R

+
}

,

DG1,G2 =
{

W ∈ C1(
R

2 ×R
+)
∣
∣
∣

∣
∣
∣
∣
∂g
∂x1

∣
∣
∣
∣≤ G1,

∣
∣
∣
∣
∂g
∂x2

∣
∣
∣
∣≤ G2,∀x1, x2 ∈R,∀t ∈R

+
}

,

where C1(R2 × R
+) represents the space of all functions from R

2 × R
+ to R, which are

locally Lipschitz in (x1, x2) uniformly in t, piecewise continuous in t, continuous partial
derivative in (x1, x2), where L1, L2 and G1, G2 are known positive constants.

Theorem 1 Consider the PID controlled system (2) with any unknown functions f ∈ FL1,L2

and g ∈ DN1,N2 . Assume f (y, 0, t) = f (y, 0, 0), g(y, 0, t) = g(y, 0, 0), and g(y∗, 0, t) = 0 for all
t ∈ R

+ and y ∈ R. Then, for any L1, L2 > 0 and G1, G2 > 0, there exists a three-dimensional
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manifold Ωpid ⊂R
3, the specific form is as follows:

Ωpid =
{

(kp, ki, kd) ∈R
3
∣
∣
∣ kp > L1, kd > L2 +

1
2

G2
2, ki > 0,

(kp – L1)
(

kd – L2 –
1
2

G2
2

)

– ki –
1
2

G2
1 +

1
2

L2G1G2

>

√(

kd + L2 –
1
2

G2
2

)
(
L2

2ki + 2L2kpG1G2 + 2L1L2G1G2
)

+ L2
2

1
2

G2
1(kd + L2) + (kp + L1)G2

1G2
2

}

,

(3)

when the controller parameters (kp, ki, kd) are taken from Ωpid, the closed-loop system (2)
will be globally stable and asymptotically optimal under the conditions

sup
t≥0

E
[
x2

1(t) + x2
2(t) + u2(t)

]
< ∞ (4)

and

lim
t→∞ E

∣
∣y∗ – x1(t)

∣
∣2 = 0, (5)

for any initial value (x1(0), x2(0)) ∈R
2 and any constant setpoint y∗ ∈R.

Remark 1 Obviously, the manifold Ωpid of the controller parameters is an infinite open
set. Theorem 1 shows that the design of PID parameters has great flexibility and the PID
control system has strong robustness to unknown nonlinear dynamics and random noise.

Proof The first step: We transform the control system (3) into a standard state space equa-
tion by introducing some symbols.

Denote x(t) =
∫ t

0 e(s) ds + f (y∗ ,0,0)
ki

, y(t) = e(t), z(t) = ė(t), h1(y, z, t) = –f (y∗ – y, –z, t) +
f (y∗, 0, t), h2(y, z, t) = –g(y∗ – y, –z, t) (see [16]), then (2) turns into

⎧
⎪⎪⎨

⎪⎪⎩

dx = y dt,

dy = z dt,

dz = [h1(y, z, t) – kix – kpy – kdz] dt + h2(y, z, t) dB(t).

(6)

Here, h1(y, z, t) and h2(y, z, t) can be expressed as follows:

h1(y, z, t) = q1(y, t)y + p1(y, z, t)z, h2(y, z, t) = q2(y, t)y + p2(y, z, t)z,

the functions q1(y, t), p1(y, z, t), q2(y, t) and p2(y, t) are defined as follows:

p1(y, z, t) =

⎧
⎨

⎩

h1(y,z,t)–h1(y,0,t)
z , z 
= 0,

∂h1
∂z (y, 0, t), z = 0,

q1(y, t) =

⎧
⎨

⎩

h1(y,0,t)
y , y 
= 0,

∂h1
∂y (0, 0, t), y = 0,
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p2(y, z, t) =

⎧
⎨

⎩

h2(y,z,t)–h2(y,0,t)
z , z 
= 0,

∂h2
∂z (y, 0, t), z = 0,

q2(y, t) =

⎧
⎨

⎩

h2(y,0,t)–h2(0,0,t)
y , y 
= 0,

∂h2
∂y (0, 0, t), y = 0.

According to the mean value theorem and the definition of FL1,L2 , obviously, for all y, z,
t, the inequality |q1(y, t)| ≤ L1, |p1(y, z, t)| ≤ L2 can be established. This is so because, for
all t ≥ 0 and y ∈ R, f (y, 0, t) = f (y, 0, 0), obviously, q1(y, t) = h1(y,0,0)

y is merely a function of
y, denoted henceforth by q1(y), and q1(·) is continuous. Similarly, q2(y, t) can be denoted
by q2(y), and |q2(y)| ≤ G1, |p2(y, z, t)| ≤ G2.

Hence, the closed-loop equation (6) can be rewritten as

d

⎡

⎢
⎣

x
y
z

⎤

⎥
⎦ =

⎡

⎢
⎣

y
z

F(x, y, z, t)

⎤

⎥
⎦ dt +

⎡

⎢
⎣

0
0

h2(y, z, t)

⎤

⎥
⎦ dB(t), (7)

where

F(x, y, z, t) = –kix +
(
q1(y) – kp

)
y +
(
p1(y, z, t) – kd

)
z.

The second step: The Lyapunov function is constructed now.
Denote Ψ = Ψ0+Ψ1

2 , where Ψ0 = infy,z,t{–p1(y, z, t) + kd}, Ψ1 = supy,z,t{–p1(y, z, t) + kd}, and
ϕ0 = infy ϕ(y) where ϕ(y) = –q1(y) + kp. Then ϕ0 ≥ kp – L1 > 0 and Ψ0 ≥ kd – L2 > 0 under
the condition of kp > L1 and kd > L2 + 1

2 G2
2.

Similar to the cases in [16] and [17], we continue to prove that the following quadratic
form plus an integral term is indeed a stochastic Lyapunov function:

V (x, y, z) = [x, y, z]P[x, y, z]T +
∫ y

0

(
ϕ(s) – ϕ0

)
s ds,

where the constant matrix P is

P =
1
2

⎡

⎢
⎣

μki ki 0
ki ϕ0 + μΨ μ

0 μ 1

⎤

⎥
⎦ , (8)

and μ > 0 is a constant defined by

μ =
2[ϕ0(Ψ0 – 1

2 G2
2) + ki + 1

2 G2
1] – L2G1G2

4ϕ0 + L2
2

.

It can be proved that p is a positive definite matrix, so V (x, y, z) is a positive definite func-
tion, and it is radially unbounded in x, y, z.

The third step: We calculate the differential operator L (see the Preliminaries) associated
with (7),

LV (x, y, z) =
∂V
∂t

+
[
y, z, F(x, y, z, t)

]T�V +
1
2
[
0, 0, h2(y, z, t)

]
H(V )

[
0, 0, h2(y, z, t)

]T.
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It is obvious that the first term on the right-hand side is zero, and the third term can be
expressed as follows:

1
2

h2
2(y, z, t) =

1
2

q2
2(y)y2 + q2(y)p2(y, z, t)yz +

1
2

p2
2(y, z, t)z2,

according to the definition of h2(y, z, t) and the fact that Hessian matrix H(V ) is P. There-
fore, after analyzing the second item and considering the above third term, it can be found
that

LV (x, y, z) = –[y, z]Q(y, z, t)

[
y
z

]

,

where Q(y, z, t) is a symmetric matrix, and the specific expression is

Q(y, z, t) =

[
m1(y, z, t) m2(y, z, t)
m2(y, z, t) m3(y, z, t)

]

,

and we have

m1(y, z, t) = –ki + μϕ(y) –
1
2

q2
2(y),

m2(y, z, t) = –
μ(Ψ + p1(y, z, t) – kd) + q2(y)p2(y, z, t)

2
,

m3(y, z, t) = –μ – p1(y, z, t) + kd –
1
2

p2
2(y, z, t).

Now, we prove that Q(y, z, t) is actually positive definite for all y, z ∈R and t ∈R
+.

Denote α = – μ

2 [Ψ + p1(y, z, t) – kd], β = –μ – p1(y, z, t) + kd , note that by the definitions
of ϕ0, Ψ0, Ψ1, we have

–ki + μϕ(y) –
1
2

q2
2(y) ≥ –ki + μϕ0 –

1
2

G2
1 > 0, (9)

–μ + Ψ1 –
1
2

p2
2(y, z, t) ≥ β –

1
2

p2
2(y, z, t) ≥ –μ + Ψ0 –

1
2

G2
2 > 0, (10)

∣
∣Ψ + p1(y, z, t) – kd

∣
∣≤ L2, (11)

here, the expressions Ψ = Ψ0+Ψ1
2 and |p1(y, z, t)| ≤ L2 hold.

Therefore, by (9) and (10), the following inequalities can be obtained:

(

–ki + μϕ(y) –
1
2

q2
2(y)
)(

β –
1
2

p2
2(y, z, t)

)

≥
(

–ki + μϕ0 –
1
2

G2
1

)(

–μ + Ψ0 –
1
2

G2
2

)

>
1
4
(
μ2L2

2 + G2
1G2

2 + 2|μL2G1G2|
)

≥
[

α –
1
2

q2(y)p2(y, z, t)
]2

.
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According to the above inequality and (9), the matrix Q(y, z, t) is positive definite for all y,
z, t.

The minimum eigenvalue of Q(y, z, t) can be obtained as

λmin
{

Q(y, z, t)
}

= θ (y,α,β)

�=
1
2

{

μϕ(y) – ki –
1
2

q2
2 + β –

1
2

p2
2

–

√[(

μϕ(y) – ki –
1
2

q2
2

)

–
(

β –
1
2

p2
2

)]2

+ 4
(

α –
1
2

p2q2

)2}

.

Define λ(y) = infα,β θ (y,α,β), where the infimum is taken for all |α – 1
2 p2q2| ≤ 1

2 ×
√

μ2L2
2 + G2

1G2
2 + 2|μL2G1G2| and –μ + Ψ0 ≤ β ≤ –μ + Ψ1.

We can derive that λ(·) is a positive function of y, and λ(·) is a continuous function by
[16]. Further, by the boundedness of the function ϕ(y), there exists λ > 0 such that λ(y) ≥ λ.

Therefore, we have

LV (x, y, z) ≤ –λ
[
y2 + z2]. (12)

The fourth step: By the Itô formula (see the Preliminaries), we have

dV (x, y, z) = LV (x, y, z) dt + (z + μy)h2(y, z, t) dB(t).

We express the diffusion term as G(y, z, t), noting the definition of h2(y, z, t), we have

G(y, z, t) = (z + μy)h2(y, z, t) = μq2(y)y2 + p2(y, z, t)z2 +
(
q2(y) + μp2(y, z, t)

)
yz.

Then, for any case where T > 0, the following equation holds:

V
(
x(T), y(T), z(T)

)
= V (x0, y0, z0) +

∫ T

0
LV (x, y, z) dt +

∫ T

0
G(y, z, t) dB(t). (13)

We wish to prove the following equation:

E
∫ T

0
G(y, z, t) dB(t) = 0.

We need to prove the following inequality:

E
∫ T

0

∣
∣G(y, z, t)

∣
∣2 dt < ∞. (14)

From the above expression of G(y, z, t) and the boundedness of q2(y) and p2(y, z, t), we can
come to the following conclusion:

∣
∣G(y, z, t)

∣
∣2 = O

(
y4 + z4).
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Therefore, by taking p = 4 in Theorem 4.1 in [13], we can get (14). So, considering the
expectation on both sides of (13) and using Eq. (12), we get

EV
(
x(T), y(T), z(T)

)≤ V (x0, y0, z0) – E
∫ T

0
λ
(
y2 + z2)dt. (15)

Therefore, according to the definition of V (x, y, z) and the positive attribute of P, for all
T ≥ 0, we get

E
(
x2(T) + y2(T) + z2(T)

)≤ V (x0, y0, z0) (16)

and

∫ T

0
E
(
y2(t) + z2(t)

)
dt ≤ V (x0, y0, z0). (17)

Therefore, we get the global stability as follows:

sup
t≥0

E
[
y2(t) + z2(t) + u2(t)

]
< ∞,

this is expected result (4). In order to prove the optimality of the trace, we can get it by
letting T → ∞ in (17),

∫ ∞

0
E
(
y2(t) + z2(t)

)
dt ≤ V (x0, y0, z0). (18)

The fifth step: We need to verify the uniform continuity of Ey2(t) on (0,∞) in order to
use the Barbalat lemma in Ref. [18], from which it can be concluded that Ey2(t) → 0 when
t → ∞.

First of all, according to the mean value theorem, there exists a random variable ȳ ∈
[yt1 , yt2 ] such that

∣
∣Ey2(t1) – Ey2(t2)

∣
∣≤ E

∣
∣y2(t1) – y2(t2)

∣
∣≤ E

[
2ȳ|yt1 – yt2 |

]
.

By the Schwarz inequality, we have

E
[
2ȳ|yt1 – yt2 |

]≤ 2
√

Eȳ2
√

E|yt1 – yt2 |2. (19)

There exists a constant M1 > 0 such that

E|ȳ|2 ≤ 2E
{|yt1 |2 + |yt2 |2

}≤ M1. (20)

According to the boundedness property (4), we know that there is a constant M2 > 0 such
that

E
{

sup
t∈[t1,t2]

|zt|2
}

≤ M2. (21)
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Finally, by using (19)–(21), we can get the following inequality:

∣
∣Ey2(t1) – Ey2(t2)

∣
∣≤ 2δ

√
M1M2 ≤ ε.

The sixth step: We draw the conclusion that

lim
t→∞ E

∣
∣y∗ – x1(t)

∣
∣2 = 0.

Then the proof of Theorem 1 has been finished. �

4 Simulation
We use a numerical simulation example to illustrate the theoretical results. We consider
the following system:

⎧
⎨

⎩

dx1 = x2 dt,

dx2 = f (x1, x2, t) dt + u(t) dt + g(x1, x2, t) dB(t).

We use the PID controller

u(t) = kp
(
x1(t) – y∗) + ki

∫ t

0

(
x1(s) – y∗)ds + kd

dx1(t)
dt

,

such that x1(t) converges to the given constant setpoint y∗. The two function spaces FL1,L2

and DG1,G2 are defined in Sect. 3. The three-dimensional manifold Ωpid ⊂ R
3 can be found

in Eq. (3) of Sect. 3.
Let: L1 = 5 and L2 = 5, G1 = 2 and G2 = 1, the domain of the set Ωpid is restricted to 0 ≤ kp,

ki, kd ≤ 50. Then Fig. 1 shows the graphic display of the three-dimensional manifold.

Figure 1 Graphic display of the three-dimensional manifold
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5 Conclusion
The theory and the design method of the PID controller for a class of second order non-
linear uncertain stochastic system are given in this paper. We have shown that as long as
the upper bounds of the derivative of the nonlinear uncertain diffusion and drift func-
tions are valid, the global stability and asymptotic regulation of the closed-loop stochastic
control system can be guaranteed by constructing a three-dimensional manifold within
which the three PID parameters can be chosen arbitrarily. Also, when the diffusion term
is zero, it can be degenerated to the case of deterministic systems of [16]. Furthermore,
the numerical simulation is given to verify the theoretical analysis results.
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