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Abstract
The subspace technique has been widely used to solve unconstrained/constrained
optimization problems and there exist many results that have been obtained. In this
paper, a subspace algorithm combining with limited memory BFGS update is
proposed for large-scale nonsmooth optimization problems with box-constrained
conditions. This algorithm can ensure that all iteration points are feasible and the
sequence of objective functions is decreasing. Moreover, rapid changes in the active
set are allowed. The global convergence is established under some suitable
conditions. Numerical results show that this method is very effective for large-scale
nonsmooth box-constrained optimization, where the largest dimension of the test
problems is 11,000 variables.
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1 Introduction
Consider the following large-scale nonsmooth optimization problems:

min f (x), s.t. l ≤ x ≤ u, (1.1)

where f (x) : �n → � is supposed to be locally Lipschitz continuous and the number of
variables n is supposed to be large. The vectors l and u represent the lower and the upper
bounds on the variables, respectively.

Many practical optimization problems involve nonsmooth functions with large amounts
of variables (see, e.g., [1, 24]). The active-set method can be easily generalized when the
objective function is nonsmooth. For example, Sreedharan [34] extends the method devel-
oped in [33] to solve nonsmooth problem with a special objective function and inequality
constraint. Also, it is quite easy to generalize the ε-active-set method to the nondifferen-
tiable case [25]. Yuan et al. [42, 45] use the two-point gradient method and the trust region
method to solve nonsmooth problems. Wolfe [35] and Lemaréchal [22] initiated a giant
stride forward in nonsmooth optimization by the bundle concept. Kiwiel [20] proposed
a bundle variant, which is close to bundle trust iteration method [32]. Some good results
about the bundle technique can be found in [19, 21, 31] etc. The basic assumption of the
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bundle methods is that at every point x ∈ �n, the value of the objective function f (x) and
an arbitrary subgradient ξ ∈ �n from the subdifferential can be evaluated [7] with

∂f (x) = conv
{

lim
t→∞∇f (xt) | xt → x and ∇f (xt) exists

}

where “conv” denotes the convex hull of a set. The idea behind bundle methods is to ap-
proximate ∂f (x) by gathering subgradient information from previous iterations into a bun-
dle. At the moment, various versions of bundle methods are regarded as the most effective
and reliable methods for nonsmooth optimization. Bundle methods are efficient for small-
and medium-scale problems. This is explained by the fact that bundle methods need rel-
atively large bundles to be capable of solving the problems efficiently [19]. At present,
Haarala et al. (see [14, 15] etc.) introduce the limited memory bundle methods for large-
scale nonsmooth unconstrained and constrained minimization, which are a hybrid of the
variable metric bundle methods and the limited memory variable metric methods and
some good results are obtained. The dimension of the test problems can be arrived one
thousand variables. For unconstrained nonsmooth problems, Karmitsa et al. [18] tested
and compared different methods from both groups and some methods which may be con-
sidered as hybrids of these two and/or some others, where the largest dimension of test
nonsmooth problems is 4000. Yuan et al. [38–40, 43, 46] present the conjugate gradient
algorithms for solving unconstrained nonsmooth problems and the nonsmooth problems
with 60,000 variables are successfully solved.

Normally the nonsmooth optimization problems are difficult to solve, even when they
are unconstrained. Derivative free methods, like Powell’s method [11] or genetic algo-
rithms [13] may be unreliable and become inefficient whenever the dimension of the prob-
lem increases. The direct application of smooth gradient-based methods to nonsmooth
problems may lead to a failure in optimality conditions, in convergence, or in gradient ap-
proximation [23]. Therefore, special tools for solving nonsmooth optimization problems
are needed, especially for constrained nonsmooth problems. In this paper, we present a
new algorithm that combines an active-set strategy with the gradient projection method.
The active sets are based on guessing technique to be identified at each iteration, the search
direction in free subspace is determined by limited memory BFGS algorithm, which will
provide an efficient means for attacking large-scale nonsmooth bound constrained opti-
mization problems. This paper has the following main attributes:

♣ the nonsmooth objective function is descent;
♣ a limited memory BFGS method is given for nonsmooth problem; the iteration se-

quence {xk} is feasible;
♣ the global convergence of the new method is established;
♣ large-scale nonsmooth problems (11,000 variables) are successfully solved.
This paper is organized as follows. In the next section, we briefly review some nons-

mooth analysis, the L-BFGS method for unconstrained optimization, and the motivation
based on these techniques. In Sect. 3, we describe the active-set algorithm for (1.1). The
global convergence will be established in Sect. 4. Numerical results are reported in Sect. 5.
Throughout this paper, ‖ · ‖ denotes the Euclidean norm of vectors or matrix.

2 Motivation based on nonsmooth analysis and the L-BFGS update
This section will state some results on nonsmooth analysis and the L-BFGS formula, re-
spectively.
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2.1 Results of convex analysis and nonsmooth analysis
Let f MY : �n → � be the so-called Moreau–Yosida regularization of f and be defined by

f MY(x) = min
z∈�n

{
f (z) +

1
2λ

‖z – x‖2
}

, (2.1)

where λ is a positive parameter. Then it is not difficult to see that the problem (1.1) is
equivalent to the following problem:

min
x∈B

f MY(x), B = {x | l ≤ x ≤ u}. (2.2)

The function f MY has some good properties: it is a differentiable convex function and has a
Lipschitz continuous gradient even when the function f is nondifferentiable. The gradient
function of f MY can be proved to be semismooth under some reasonable conditions [12,
30]. Based on these features, many algorithms have been proposed for (2.2) (see [2] etc.)
when B = �n. Set

θ (z) = f (z) +
1

2λ
‖z – x‖2

and denote p(x) = argmin θ (z). Then p(x) is well-defined and unique since θ (z) is strongly
convex. By (2.1), f MY(x) can be expressed by

f MY(x) = f
(
p(x)

)
+

1
2λ

∥∥p(x) – x
∥∥2.

In what follows, we denote the gradient of f MY by g . Some features about f MY(x) can be
seen in [3, 8, 16]. The generalized Jacobian of f MY(x) and the property of BD-regular can
be found in [6, 29], respectively. Some properties are given as follows.

(i) The function f MY is finite-valued, convex, and everywhere differentiable with

g(x) = ∇f MY(x) =
x – p(x)

λ
. (2.3)

Moreover, the gradient mapping g : �n → �n is globally Lipschitz continuous with mod-
ulus λ, i.e.,

∥∥g(x) – g(y)
∥∥ ≤ 1

λ
‖x – y‖, ∀x, y ∈ �n. (2.4)

(ii) If g is BD-regular at x, which means all matrices V ∈ ∂Bg(x) are nonsingular, then
there exist constants μ1 > 0, μ2 > 0 and a neighborhood Ω of x such that

dT Vd ≥ μ1‖d‖2,
∥∥V –1∥∥ ≤ μ2, ∀d ∈ �n, V ∈ ∂Bg(x).

It is obviously that f MY(x) and g(x) can be obtained through the optimal solution of
argminz∈�n θ (z). However, p(x), the minimizer of θ (z), is difficult or even impossible to
solve exactly. Such makes that we cannot apply the exact value of p(x) to define f MY(x)
and g(x), thus the numerical methods are often used to solve it. In the following, we al-
ways suppose that the results (i)–(ii) holds without special notes.
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2.2 L-BFGS update
At every iteration xk , the L-BFGS method stores a small number (say m) of correction
pairs {si, yi} (i = k – 1, . . . , k – m) to get Hk+1, instead of storing the matrices Hk with

sk = xk+1 – xk , yk = ∇hk+1 – ∇hk ,

where h(x) : �n → � is a continuously differentiable function. In fact, this method is an
adaptation of the BFGS method to large-scale problems (see [4, 5, 37, 41, 44] for details).
The L-BFGS update formula is defined by

Hk+1 = V T
k

[
V T

k–1Hk–1Vk–1 + ρk–1sk–1sT
k–1

]
Vk + ρksksT

k

= V T
k V T

k–1Hk–1Vk–1 + V T
k ρk–1sk–1sT

k–1Vk + ρksksT
k

= · · ·
=

[
V T

k · · ·V T
k–m+1

]
Hk–m+1[Vk–m+1 · · ·Vk]

+ ρk+m–1
[
V T

k–1 · · ·V T
k–m+2

]
sk–m+1sT

k–m+1[Vk–m+2 · · ·Vk–1] + · · · + ρksksT
k , (2.5)

where ρk = 1
yT

k sk
and Vk = I – ρkyksT

k . These correction pairs contain information about the
curvature of the function and, in conjunction with the BFGS formula, define the limited
memory iteration matrix. This method often provides a fast rate of linear convergence and
requires minimal storage.

It is well known that the positive definiteness of update matrix Hk is very important to
analyze the convergence of the algorithm. Byrd et al. [4] show that the limited memory
BFGS matrix has this property if the curvature sT

k yk > 0 is satisfied. Similarly Powell [28]
proposes that yk should be designed by

yk =

{
yk , if sT

k yk ≥ 0.2sT
k Bksk ,

θkyk + (1 – θk)Bksk , otherwise,

where θk = 0.8sT
k Bk sk

sT
k Bk sk –sT

k yk
, Bk is an approximation of ∇2h(xk) and Bk = H–1

k .
Inspired by the Moreau–Yosida regularization and the limited memory technique, we

will give a limited memory BFGS method for box-constrained optimization with nons-
mooth objective function. In the given algorithm, we also combine an active-set strategy
with the gradient projection method. The techniques of the following algorithm are sim-
ilar to those in Facchinei and Lucidi [10], Ni and Yuan [26], and Xiao and Wei [36], where
the main difference lies in solving of the nonsmooth optimization problem.

3 Algorithm
Setting the feasible region B = {x ∈ �n : li ≤ xi ≤ ui, i = 1, . . . , n}, where xi denotes the ith
element of vector x. A vector x ∈ B is said to be a stationary point for problem (2.2) if the
following relations:

⎧⎪⎨
⎪⎩

li = xi ⇒ gi(x) ≥ 0,
li < xi < ui ⇒ gi(x) = 0,
xi = ui ⇒ gi(x) ≤ 0,

(3.1)
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hold, where gi is the ith element of vector g(x). Considering the observation of the above
section, we will first solve (2.2). And we will develop its solution to problem (1.1). The
iterative method is used to solve (2.2) and defined by

xk+1 = xk + αkdk , k = 0, 1, 2, . . . , (3.2)

where αk is a steplength and dk is a search direction of f MY at xk . Let x ∈ B be a stationary
point of problem (2.2) and define the active constraint set

Γ =
{

i : li = xi}, Ψ =
{

i : xi = ui
}

, (3.3)

thus we can define the set of the free variables by

Υ = {1, . . . , n} \ (Γ ∪ Ψ ).

Therefore (3.1) can be rewritten as

⎧⎪⎨
⎪⎩

gi(x) ≥ 0, ∀i ∈ Γ ,
gi(x) = 0, ∀i ∈ Υ ,
gi(x) ≤ 0, ∀i ∈ Ψ .

(3.4)

It is reasonable to define the approximation Γ (x), Υ (x) and Ψ (x) to Γ , Υ and Ψ , respec-
tively:

Γ (x) =
{

i : xi ≤ li + ai(x)gi(x)
}

,

Ψ (x) =
{

i : xi ≥ ui + bi(x)gi(x)
}

,

Υ (x) = {1, . . . , n} \ (Γ ∪ Ψ ),

(3.5)

where ai and bi are nonnegative continuous bounded from above on B, which have the
properties, namely if xi = li or xi = ui then ai(x) > 0 or bi(x) > 0, respectively. Similar to
Theorem 3 in [10] for smooth optimization, we can get some results about Γ (x), Υ (x),
Ψ (x), Γ , Υ , and Ψ in nonsmooth problems.

Theorem 3.1 For any feasible point x, Γ (x) ∩ Ψ (x) = ∅. Suppose that strict complemen-
tarity holds and x is a stationary point of problem (2.2), then there exists a neighborhood
of x and every feasible point x in the neighborhood, the following relations:

Γ (x) = Γ , Υ (x) = Υ , Ψ (x) = Ψ ,

hold.

Proof For any feasible x, if k ∈ Γ (x), it is obviously that gk(x) ≥ 0 holds. Suppose that
k ∈ Ψ (x), then uk ≥ xk ≥ uk + bk(x)gk(x) ≥ uk is true. This implies that lk = xk = uk and
gk(x) = 0, which is a contradiction. Then Γ (x) ∩ Ψ (x) = ∅ holds.

Now we prove that the second conclusion of this theorem holds. If i ∈ Γ , by the defi-
nition of Γ and the strict complementarity, then gi(x) > 0 holds. Since ai is nonnegative,
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xi ≤ li + ai(x)gi(x). Since both ai and gi are continuous in x, we deduce that i ∈ Γ (x) holds.
So Γ ⊆ Γ (x) is true.

Otherwise if i ∈ Γ (x), then by the definition of Γ (x), ai(x)gi(x) ≥ xi – li ≥ 0 holds. Since
ai is nonnegative, gi(x) > 0 holds. Since gi is continuous in x and the strict complementarity
holds, we deduce that i ∈ Γ holds. Thus Γ (x) ⊆ Γ holds.

Therefore, Γ (x) = Γ holds. By the similar way, we can obtain Υ (x) = Υ and Ψ (x) = Ψ .
The proof is complete. �

Theorem 3.1 proves that Γ (x), Υ (x) and Ψ (x) are “good” estimate of Γ , Υ , and Ψ , re-
spectively. In the next, we give the choices of the direction dk and the stepsize αk along
with the current point xk ∈ B, respectively. Consider the sets Γk = Γ (xk), Υk = Υ (xk) and
Ψk = Ψ (xk), the search direction dk = (dΓk

k , dΥk
k , dΨk

k ) is chosen as

di
k = xi

k – li, i ∈ Γk ; (3.6)

di
k = ui – xi

k , i ∈ Ψk ; (3.7)

di
k = –

(
ZHkZT gk

)
, i ∈ Υk . (3.8)

where dΥk
k denotes the subspace direction for the inactive variables, Hk = ZT HkZ ∈

�|Υk |×|Υk | is an approximation of the reduced inverse Hessian matrix, Hk is an approxima-
tion of the full space inverse Hessian matrix, and Z is the matrix with columns {ei | i ∈ Υk}
and ei is the ith column of the identity matrix in �n×n.

For smooth optimization problems, several authors use the projected search for
quadratic and nonlinear programming problems with bounds (see [27]). The projected
search finds a steplength αk = βk > 0 with sufficient decrease in the function φk : � → �
such that

φk(α) ≤ φk(0) + σ∇φk(0)α, (3.9)

where β ∈ (0, 1) and σ ∈ (0, 1
2 ) are constants,

φk(α) = f MY(
[xk + αdk]+)

,

[·]+ is the projection into B defined by

[x]+ =

⎧⎪⎨
⎪⎩

xi, if li ≤ xi ≤ ui,
li, if xi < li,
ui, if xi > ui.

(3.10)

In this paper, we also use this technique to determine the steplength αk . Based on the
selections about dk and αk and let ms ≤ m be the number of the correction pairs, we give
the steps of this algorithm.

Sub-algorithm Up-to-date (ms, {sk}, {yk}, H0, d, Z)
Step 1: d = Z′d;
Step 2: if ms = 0, d = H0d, return;
Step 3: α = (sms–1

k )T d/(yms–1
k )T sms–1

k ; d = d – αyms–1
k ;
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Step 4: Call Up-to-date (ms – 1, {sk}, {yk}, H0, d, Z);
Step 5: d = d + (α – (dT yms–1

k /(yms–1
k )T sms–1

k ))sn–1
k ;

Step 6: d = Z′d.

Now we state the algorithm for nonsmooth optimization problems (2.2) with bound
constrained conditions.

Algorithm 1 (main-Algorithm)
Step 1: Given x0 ∈ B, constants σ ∈ (0, 1

2 ) and m ∈ (3, 20), initial matrix θ I , ai(x) and
bi(x); set k = 0.

Step 2: Using (3.5) to decide Γk = Γ (xk), Ψk = Ψ (xk), and Υk = Υ (xk).
Step 3: According to (3.6)–(3.8), obtain dk .
Step 4: dk = 0, stops.
Step 5: Find αk by (3.9).
Step 6: Let xk+1 = [xk + αkdk]+ and get f MY(xk+1) and g(xk+1).
Step 7: Update Hk by (2.5).
Step 8: Set k = k + 1 and go to Step 2.

Remark The given algorithm can be regarded as an extension of [36] from smooth opti-
mization to nonsmooth optimization.

4 Global convergence
Assumption A The matrix Hk (k = 1, 2, . . .) is positive definite, namely, there exist con-
stants 0 < λ1 ≤ λ2 satisfying

λ1‖y‖2 ≤ yT Hky ≤ λ2‖y‖2, for all nonzero y ∈ �|Υk |.

Assumption B The level set φ = {x ∈ �n | f MY(x) ≤ f MY(x0)} ∩ K is compact and f MY is
bounded from below.

Similar to the proof techniques of paper [36] on smooth box optimization, we can get
the following lemma. So we only state it as follows but omit the proof.

Lemma 4.1 Assume that dk �= 0 be defined by (3.6)–(3.8) and xk ∈ B, we have

min

{
1,

‖u – l‖∞
‖dk‖∞

}
≥ βk ≥ min

{
1,

χk

‖dk‖∞

}
(4.1)

and

‖dk‖2 ≤ –�gT
k dk . (4.2)

where � > 0 is a constant, χk = min{|ai(xk)gi
k|, |bi(xk)gi

k|, i ∈ Υk , gi
k �= 0}, βk = sup0≤ω≤1{ω |

l ≤ xk + ωdk ≤ u}, and gi
k is the ith element of g(xk). Moreover, xk is a KKT point of (2.2) if

and only if dk = 0.

If xk is not a KKT point, by Lemmas 4.1, it is easy to deduce that dk is descent.
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Theorem 4.1 The sequence {xk , dk , Hk} is generated by Algorithm 1. Let Assumption A
and B hold, and ‖ZT HkZ‖ ≤ ζ1 hold for all k with constant ζ1 > 0. Then every accumulation
point of {xk} is a KKT point of (2.2).

Proof We will prove this theorem by contradiction. Let x∗ be any accumulation point of
{xi}, then for i = 1, 2, . . . , there exists a subspace {xki} satisfying limk→∞ xki = x∗. Suppose
that x∗ is not a KKT point, by (3.3) and (3.4), we can conclude that there exists j ∈ Γ or
j ∈ Ψ such that

g(x∗)j < 0 or g(x∗)j > 0 (4.3)

or j ∈ Υ satisfying

g(x∗)j �= 0. (4.4)

By the line search (3.9) and (4.2), we can deduce that the sequence {f MY(xk)} is descent.
Using f MY is bounded from below in Assumption B, we have

∞ >
∞∑

k=1

(
f MY(xk) – f MY(xk+1)

) ≥
∞∑

k=1

–σαkgT
k dk , (4.5)

this implies that

∞∑
k=1

–αkgT
k dk < ∞.

In particular, we get

lim
k→∞

–αkgT
k dk = 0. (4.6)

Using the definition of dk , setting ϑ1 = maxx∈B ‖gk‖2, and

νk =
∑
i∈Γk

(
ai(xk)

)2 +
∑
i∈Ψk

(
bi(xk)

)2,

we get

‖dk‖2 =
∥∥ZHkZT gk

∥∥2 +
∑
i∈Γk

(
li – xi

k
)2 +

∑
i∈Ψk

(
ui – xi

k
)2

≤ ζ 2
1 ‖gk‖2 +

∑
i∈Γk

(
ai(xk)gi

k
)2 +

∑
i∈Ψk

(
bi(xk)gi

k
)2

=
(
ζ 2

1 + νk
)‖gk‖2

≤ (
ζ 2

1 + νk
)
θ1.

The above relation and (4.1) implies that there exists a constant β∗ ∈ (0, 1) such that

βk ≥ β∗, ∀k. (4.7)
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Suppose that αk satisfies the line search (3.9), if αk < 0.1β∗, then there exists an unaccept-
able steplength αk,i ≤ 10αk with i ≥ 0 satisfying

f MY(xk) + αk,igT
k dk + ζ2α

2
k,i‖dk‖2 ≥ f MY(xk + αkdk) ≥ f MY(xk) + σαk,igT

k dk ,

where ζ2 = 1
2 maxx∈B ‖∇2f MY(x)‖. Then we obtain

αk,i ≥ –(1 – σ )gT
k dk

ζ2‖dk‖2 ≥ (1 – σ )
ζ2�

,

where the second inequality follows from (4.2). Therefore, we get

αk ≥ min
{

0.1αk,i, 0.1β∗} = min

{
(1 – σ )
10ζ2ζ

, 0.1β∗
}

> 0, ∀k.

This together with (4.6) implies that

lim
k→∞

gT
k dk = 0. (4.8)

By the definition of Γk and Ψk , we can conclude that every term of the right side in the
following relation:

–dT
k gk = gT

k ZHkZT gk –
∑
i∈Γk

(
li – xi

k
)
gi

k –
∑
i∈Ψk

(
ui – xi

k
)
gi

k

is larger than zero. Thus, by (4.8), we get

lim
k→∞

∥∥ZT gk∥∥ = 0, lim
k→∞

∑
i∈Γk

(
li – xi

k
)
gi

k = 0, lim
k→∞

∑

i∈Ψ k

(
ui – xi

k
)
gi

k = 0.

Therefore, for some j ∈ Υ such that (4.4). By the above three relations, for all sufficiently
large i, we get j /∈ Γ (xki ) ∪ Ψ (xki ) ∪ Υ (xki ), this is a contradiction. This completes the
proof. �

Remark If the condition g(x) = 0 holds, by (2.3) and the convexity of f MY(x), it is not dif-
ficult to get x = p(x). Accordingly the point x is the unique optimal solution of (1.1).

5 Numerical results
In the experiments, all codes were written in MATLAB r2010a and run on a PC with
CPU Intel(R) Core(TM) i3-3217U CPU 1.80 GHz, 4.00 G bytes of RAM memory, and
Windows 7 operating system. Our experiments are performed on a set of the nonlinear
box-constrained nonsmooth problems from Karmitsa [17] which have the given initial
points; these problems are listed in Table 1. In the experiment, we choose σ = β = 0.1,
ai(x) = bi(x) = 10–5 in (3.5), θ = 1 and the “basic matrix” to be the identity matrix I in the
limited memory BFGS method, and m = 5. For the subproblem (2.1), we use the PRP con-
jugate gradient algorithm to solve it where the iteration number and the function number
are added to the main-Algorithm program. The PRP conjugate gradient algorithm for (2.1)
is listed as follows:
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Table 1 Tested problems

No. Name of problem No. Name of problem

1 Generalization of MAXQ 6 Number of active faces
2 Generalization of MXHILB 7 Generalization of Brown function 2
3 Chained LQ 8 Chained Mifflin 2
4 Chained CB3 I 9 Chained Crescent I
5 Chained CB3 II 10 Chained Crescent II

PRP algorithm for subproblem (2.1)
Step 1: Given z0, constants λ > 0, τ0 > 0, and ι ∈ (0, 1), dsub

0 = –gsub
0 = – z0–x0

λ
, set k = 0.

Step 2: If ‖gsub
k ‖ < ι, stop.

Step 3: Find αsub
k satisfying the following Armijo line search:

f MY(
zk + αsub

k dsub
k

)
– f MY(z0) ≤ αsub

k τ0
(
dsub

k
)T gsub

k ,

where αsub
k = max{1, 1

2 , 1
22 , 1

23 , . . .} such that the above inequality.
Step 4: Let zk+1 = zk + αsub

k dsub
k and gsub

k+1 = zk+1–x0
λ

.
Step 5: If ‖gsub

k+1‖ < ι, stops, otherwise compute the search direction by

dsub
k+1 = –gsub

k+1 +
(gsub

k+1 – gsub
k )T gsub

k+1

‖gsub
k ‖ .

Step 6: Set k = k + 1 and go to Step 3.

In the above algorithm, x0 follows Algorithm 1, ι = 1e–3, and τ0 = 0.25. Since we
aim to design the given algorithm to solve large-scale nonsmooth problems, the dimen-
sions of the test problems are 5000, 7000, 10,000, and 11,000. The following Himmeblau
stop rule is used: If |f MY(xk)| > 1e–4, let stop1 = |f MY(xk )–f MY(xk+1)|

|f MY(xk )| ; otherwise, let stop1 =
|f MY(xk) – f MY(xk+1)|. The program stops if stop1 < 1e–4 is satisfied. In the experiment,
we find that the different stop rules will influence the iteration number and the function
number obviously but for the final function value. Since the results of iteration number
are stable, we choose the Himmeblau stop rule. In order to show the efficiency of the given
method, we also test the normal Active-set algorithm with L-BFGS update and compare
their performance. The columns of Table 2 has the following meaning:

dim: the dimension of the problem;
NI: the total number of iterations;
NF: the total number of the function value;
cpu-time: the CPU time in second;
f (x): denotes the function value at the point x when the program is stopped.
From the numerical results of Table 2, it is not difficult to see that both of these two

methods are effective for solving these ten box-constrained nonsmooth problems. The
iteration number and the function number do not change with the dimension increasing
except for problems Generalization of MAXQ and Chained Crescent I, which shows that
the given algorithm is feasible and stable. For problems Chained Crescent I and Chained
Crescent II, since they have many similar properties, they have the same optimization
value, respectively, with the determined dimensions. The cpu-time is interesting although
it is becoming large with the dimension increasing.
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Table 2 Numerical results

No. dim Algorithm 1 Active-set algorithm
NI/NF f (x) cpu-time NI/NF f (x) cpu-time

1 5000 15/32 3.486539e–003 5.163633e+000 397/804 1.061325e–001 1.560166e+002
7000 13/28 3.489925e–003 8.143252e+000 211/432 5.293420e–002 1.418673e+002

10,000 13/28 3.491556e–003 1.987453e+001 581/1172 2.028926e–002 8.082568e+002
11,000 13/28 3.491902e–003 4.258827e+001 161/332 5.865048e–002 5.825857e+002

2 5000 7/16 4.547255e–001 1.734731e+001 7/16 4.547255e–001 1.712891e+001
7000 7/16 4.715477e–001 3.138740e+001 7/16 4.715477e–001 3.159020e+001

10,000 7/16 4.893804e–001 6.361721e+001 7/16 4.893804e–001 6.094959e+001
11,000 7/16 4.941456e–001 8.386614e+001 7/16 4.941456e–001 8.375694e+001

3 5000 6/28 –4.034727e+003 1.731611e+000 16/58 –5.766614e+003 2.558416e+000
7000 6/28 –5.648940e+003 2.137214e+000 16/58 –8.073721e+003 4.258827e+000

10,000 6/28 –8.070261e+003 4.196427e+000 16/58 –1.153438e+004 7.488048e+000
11,000 6/28 –8.877367e+003 8.190052e+000 16/58 –1.268794e+004 1.755011e+001

4 5000 23/63 9.998007e+003 5.257234e+000 23/63 9.998007e+003 4.929632e+000
7000 23/63 1.399801e+004 6.630042e+000 23/63 1.399801e+004 6.520842e+000

10,000 23/63 1.999801e+004 9.921664e+000 23/63 1.999801e+004 9.406860e+000
11,000 23/63 2.199802e+004 1.096687e+001 23/63 2.199802e+004 1.063927e+001

5 5000 23/63 9.998007e+003 1.388409e+000 23/63 9.998007e+003 9.828063e–001
7000 23/63 1.399801e+004 2.199614e+000 23/63 1.399801e+004 1.887612e+000

10,000 23/63 1.999801e+004 3.759624e+000 23/63 1.999801e+004 3.198020e+000
11,000 23/63 2.199802e+004 4.539629e+000 23/63 2.199802e+004 3.978025e+000

6 5000 7/16 5.525453e+000 2.979619e+000 7/16 5.525453e+000 2.792418e+000
7000 7/16 5.860786e+000 4.960832e+000 7/16 5.860786e+000 4.898431e+000

10,000 7/16 6.216606e+000 1.113847e+001 7/16 6.216606e+000 8.767256e+000
11,000 7/16 6.311735e+000 1.753451e+001 7/16 6.311735e+000 2.138774e+001

7 5000 9/20 4.961701e+002 3.603623e+000 11/24 4.961701e+002 4.446029e+000
7000 9/20 6.946779e+002 5.350834e+000 11/24 6.946779e+002 6.583242e+000

10,000 9/20 9.924395e+002 9.578461e+000 11/24 9.924395e+002 1.235528e+001
11,000 9/20 1.091693e+003 2.368095e+001 11/24 1.091693e+003 3.383662e+001

8 5000 5/12 –2.859465e+003 2.028013e+000 29/80 –2.983598e+003 1.918812e+000
7000 5/12 –4.003716e+003 2.496016e+000 29/80 –4.177659e+003 2.386815e+000

10,000 5/12 –5.720094e+003 4.586429e+000 29/80 –5.968752e+003 4.758031e+000
11,000 5/12 –6.292219e+003 8.580055e+000 29/80 –6.565783e+003 1.244888e+001

9 5000 9/20 7.248551e+002 3.478822e+000 11/24 7.248551e+002 5.007632e+000
7000 9/20 1.014855e+003 5.272834e+000 11/24 1.014855e+003 6.536442e+000

10,000 9/20 1.449855e+003 9.204059e+000 11/24 1.449855e+003 1.343169e+001
11,000 23/48 1.594855e+003 2.447656e+001 25/52 1.594855e+003 2.750298e+001

10 5000 9/20 7.248551e+002 3.400822e+000 11/24 7.248551e+002 4.383628e+000
7000 9/20 1.014855e+003 4.992032e+000 11/24 1.014855e+003 6.520842e+000

10,000 9/20 1.449855e+003 9.656462e+000 11/24 1.449855e+003 1.171568e+001
11,000 9/20 1.594855e+003 2.772138e+001 11/24 1.594855e+003 2.436736e+001

To directly show the performance of these two algorithms, the tool of Dolan and Moré
[9] is used to analyze them. Figure 1 shows that the performance of Algorithm 1 and
Active-set algorithm is relative to cpu-time of Table 2. It is not difficult to see that Al-
gorithm 1 has won, since it has the higher probability of being the optimal solver. Fig-
ure 1 shows that Algorithm 1 can successfully solve 100% of the test problems at t ≈ 2
and Active-set algorithm completely solves the test problems at about t ≈ 41. All in all,
although the proposed method does not obtain significant development as we have ex-
pected, we think that the enhancement of this proposed method is still noticeable.

6 Conclusions
(i) It is well known that the nonsmooth problems are very difficult to solve even when
the objective function is unconstrained, especially for large-scale nonsmooth problems.
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Figure 1 Performance of cpu-Time of these two algorithms.

The Moreau–Yosida regularization technique is an effective tool to deal with this problem.
Then we use this technique and propose a subspace algorithm for solving box-constrained
nonsmooth optimization problems.

(ii) In order to decrease the workload of the computer and get good numerical perfor-
mance, the limited memory BFGS method is utilizable in the given algorithm. The numer-
ical performance of the test problems show that the presented algorithm is very interesting
for large-scale problems. The dimension is from 5000 to 11,000 variables, which are larger
than those of the unconstrained nonsmooth problems of [18].

(iii) In the experiment, we find the different stop rules will obviously influence the itera-
tion numbers and the function numbers but for the final functions. The reason lies in the
stop rule, then further work in the future is to find more correct stop rules of the given
algorithms.

(iv) Inspired by the idea of [26] and [10], we extend their techniques to nonsmooth prob-
lems. The proof methods of this paper are similar to [36]. However, all of these three papers
concentrate on the continuous differentiable optimization problems.

(v) Considering the above discussions, we think there are at least three issues that could
lead to improvements. The first point is the constant m in the L-BFGS update formula
that could be adjusted. Another important point that should be considered is probably
the choice of the parameters in the active-set identification technique, since the value of
the used parameters is not the only choice. The last one is the most important one, which
is from the numerical performance, namely whether are there better stop rules, other op-
timality conditions and convergence conditions in the nonsmooth problems? All of these
aspects are for further work in the future.

Overall, we think that the method provide a valid approach for solving large-scale box-
constrained nonsmooth problems, since the numerical performance is interesting.
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