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Abstract
In this paper, we obtain the endpoint boundedness for the commutators of singular
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weighted generalized Morrey spaces. We also get similar results for the commutators
of fractional integral operators with BMO functions and the associated maximal
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1 Introduction and main results
The Morrey spaces were introduced by Morrey in [11] to investigate the local behavior of
solutions to second order elliptic partial differential equations. Chiarenza and Frasca [2]
showed the boundedness of the Hardy–Littlewood maximal operator, singular integral
operators, and fractional integral operators on the Morrey spaces.

Let f be a measurable function on R
n. The Hardy–Littlewood maximal function is de-

fined by

M(f )(x) = sup
B

1
|B|

∫
B

∣∣f (y)
∣∣dy,

where the supremum is taken over all balls B containing x.
We say that T is a singular integral operator if there exists a function K which satisfies

the following conditions:

Tf (x) = p.v.
∫
Rn

K(x – y)f (y) dy,

∣∣K(x)
∣∣ ≤ C

|x|n ,
∣∣∇K(x)

∣∣ ≤ C
|x|n+1 , x �= 0.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-020-02394-w
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-020-02394-w&domain=pdf
http://orcid.org/0000-0003-0462-5625
mailto:lwmingg@sina.com


Qi et al. Journal of Inequalities and Applications        (2020) 2020:129 Page 2 of 15

The BMO(Rn) space is defined by

BMO
(
R

n) =
{

b ∈ Lloc
(
R

n) : ‖b‖BMO = sup
B

1
|B|

∫
B

∣∣b(x) – bB
∣∣dx < ∞

}
,

where bB = 1
|B|

∫
B b(y) dy.

For the singular integral operator T and b ∈ BMO, the commutator [b, T] is defined by

[b, T]f (x) =
∫
Rn

(
b(x) – b(y)

)
K(x – y)f (y) dy.

For 1 < p < ∞, we say a weight w ∈ Ap if

[w]p = sup
B

(
1

|B|
∫

B
w(y) dy

)(
1

|B|
∫

B
w(y)–p′/p dy

)p/p′

< ∞.

For p = 1, we write w ∈ A1 if Mw(y) ≤ Cw(y), a.e.y ∈R
n.

It is a classical result that the operators T are bounded on Lp(w) whenever 1 < p < ∞
and w ∈ Ap, and for p = 1 and w ∈ A1, we have the weak type result which can be found in
[9]. Komori and Shirai extended them to the weighted Morrey spaces in [10].

Let f be a measurable function on R
n and 1 ≤ p < ∞, 0 ≤ κ < 1. For two weights w and

u, the weighted Morrey space is defined by

Lp,κ (w, u) =
{

f ∈ Lloc
p(w) : ‖f ‖Lp,κ (w,u) < ∞}

,

where

‖f ‖Lp,κ (w,u) = sup
B

(
1

u(B)κ

∫
B

∣∣f (x)
∣∣pw(x) dx

) 1
p

,

and the supremum is taken over all balls B inR
n. When w = u, we write Lp,κ (w, u) as Lp,κ (w).

Komori and Shirai in [10] proved that, for 1 < p < ∞ and w ∈ Ap, T and [b, T] are bounded
on Lp,κ (w), and if p = 1 and w ∈ A1, then for all t > 0 and any ball B,

w
({

x ∈ B :
∣∣Tf (x)

∣∣ > t
}) ≤ C

t
‖f ‖L1,κ (w)w(B)κ .

Qi et al. [14] obtained the weighted endpoint estimates for the commutators of the singular
integral operators with BMO functions and associated maximal operators on the weighted
Morrey space L1,κ (w). They also gave similar results for the commutators of the fractional
integral operators with BMO functions and associated maximal operators.

Let w and u be two weights and 1 ≤ q ≤ β ≤ p ≤ ∞. We define the generalized two-
weight Morrey space (Lq(w), Lp(u))β := (Lq(w), Lp(u))β (Rn) as the space of all measurable
functions f satisfying ‖f ‖(Lq(w),Lp(u))β < ∞, where

‖f ‖(Lq(w),Lp(u))β := sup
r>0

r‖f ‖(Lq(w),Lp(u))β ,

with

r‖f ‖(Lq(w),Lp(u))β =
(∫

Rn

(
u
(
B(y, r)

) 1
β

– 1
q – 1

p ‖f χB(y,r)‖Lq(w)
)p dy

) 1
p

,
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for any r > 0, with the usual modification when p = ∞. In the case w = u, the spaces
(Lq(w), Lp(u))β are the spaces (Lq(w), Lp)β defined by Feuto in [7]. In the case w = u ≡ 1,
the spaces (Lq(w), Lp(u))β are the spaces (Lq, Lp)β defined in [8] by Fofana. For q < β and
p = ∞, the space (Lq(w), Lp)β is the weighted Morrey space Lq,κ (w) with κ = 1

q – 1
β

.
Feuto [7] proved that the singular integral operators, the commutators of the singular

integral operators with BMO functions, and other operators were bounded on these gen-
eralized weighted Morrey spaces (Lq(w), Lp)β for q > 1. Here we consider the boundedness
of the commutators of the singular integral operators with BMO functions on the endpoint
generalized weighted Morrey space (L1(w), Lp)β . The weighted endpoint estimates for the
commutators of the singular integral operators with BMO functions have many applica-
tions in partial differential equations. The BMO functions and the associated maximal
operators can be applied in optimization problems, see [5, 6].

Let Ψ : [0,∞) → [0,∞) be an increasing function. We define space LΨ ,∞(w) as the space
of all measurable functions f satisfying ‖f ‖LΨ ,∞(w) < ∞, where

‖f ‖LΨ ,∞(w) := sup
t>0

tΨ
(
w

{
x ∈R

n :
∣∣f (x)

∣∣ > t
})

.

When Ψ (t) = t1/p with 0 < p < ∞, then the space LΨ ,∞(w) is the weak weighted Lebesgue
space Lp,∞(w).

Let w, u be two weights, Ψ : [0,∞) → [0,∞) be an increasing function and 1 ≤ β ≤ p ≤
∞. We define the generalized weak weighted Morrey space (LΨ ,∞(w), Lp(u))β as the space
of all measurable functions f satisfying ‖f ‖(LΨ ,∞(w),Lp(u))β < ∞, where

‖f ‖(LΨ ,∞(w),Lp(u))β := sup
r>0

r‖f ‖(LΨ ,∞(w),Lp(u))β ,

with

r‖f ‖(LΨ ,∞(w),Lp(u))β =
(∫

Rn

(
u
(
B(y, r)

) 1
β

–1– 1
p ‖f χB(y,r)‖LΨ ,∞(w)

)p dy
) 1

p
.

When Ψ (t) = t, w = u, the space (LΨ ,∞(w), Lp(u))β is the generalized weak weighted Mor-
rey space (L1,∞(w), Lp)β defined in [7]. Feuto proved for the singular integral operator T ,
if w ∈ A1, then

‖Tf ‖(L1,∞(w),Lp)β ≤ C‖f ‖(L1(w),Lp)β .

In this paper, we extend the methods used in [14] and obtain the endpoint boundedness
for the commutators of the singular integral operators with BMO functions and the as-
sociated maximal operators on the generalized weighted Morrey spaces (L1(w), Lp)β . The
results are more general than [14] and have different forms. We also give similar results
for the commutators of the fractional integral operators with BMO functions and the as-
sociated maximal operators.

In order to state our results, we need to recall some notations and facts about the Young
functions and Orlicz spaces; for further information, see [1]. A function Φ : [0,∞) →
[0,∞) is a Young function if it is convex and increasing, and if Φ(0) = 0 and Φ(t) → ∞ as
t → ∞.
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Given a locally integrable function f and a Young function Φ , define the mean Luxem-
burg norm of f on a ball B by

‖f ‖Φ ,B = inf

{
λ > 0 :

1
|B|

∫
B
Φ

( |f (x)|
λ

)
dx ≤ 1

}
.

For α, 0 ≤ α < n, and a Young function Φ , we define the Orlicz maximal operator

Mα,Φ f (x) = sup
B�x

|B| α
n ‖f ‖Φ ,B.

If α = 0, we write Mα,Φ simply as MΦ . If α = 0 and Φ(t) = t, Mα,Φ is the Hardy–Littlewood
maximal operator M. If Φε(t) = t log(e + t)ε , ε ≥ 0, we write MΦε simply as ML(log L)ε .

If 0 < α < n and Φ(t) = t, Mα,Φ is a fractional maximal operator of order α, and we write
it as Mα . If Φε(t) = t log(e + t)ε , we write Mα,Φ simply as Mα,L(log L)ε .

Given α, 0 < α < n, for an appropriate function f on R
n, the fractional integral operator

(or the Riesz potential) of order α is defined by

Iαf (x) =
∫
Rn

f (y)
|x – y|n–α

dy.

For b ∈ BMO(Rn), we define the commutators of the operator Iα and b by

[b, Iα]f (x) =
∫
Rn

(b(x) – b(y))f (y)
|x – y|n–α

dy.

A weight w is said to belong to the class Ap,q for 1 < p, q < ∞ if there exists a positive
constant C such that, for any ball B in R

n,

(
1

|B|
∫

B
w(x)q dx

)1/q( 1
|B|

∫
B

w(x)–p′
dx

)1/p′

≤ C < ∞.

The following theorems are our main results.

Theorem 1.1 If 1 < q ≤ β < p < ∞ and w ∈ Aq, then the Hardy–Littlewood maximal op-
erator M and ML(log L) are bounded on (Lq(w), Lp)β .

If q = 1 ≤ β < p < ∞ and w ∈ A1, then there exists a constant C > 0 independent of f such
that

∥∥M(f )
∥∥

(L1,∞(w),Lp)β ≤ C‖f ‖(L1(w),Lp)β .

Theorem 1.2 Let 1 ≤ β < p ≤ ∞, w ∈ A1, Φ(t) = t log(e + t), and Ψ (t) = 1
Φ(1/t) = t

log(e+t–1) ,
then there exists a constant C > 0 independent of f such that

∥∥Ψ (ML(log L)f )
∥∥

(L1,∞(w),Lp)β ≤ C
∥∥Φ

(|f |)∥∥(L1(w),Lp)β .

Theorem 1.3 Let T be any singular integral operator, w ∈ A1, Φ(t) = t log(e + t), Ψ (t) =
t

log(e+t–1) , and b ∈ BMO, 1 ≤ β < p ≤ ∞. Then there exists a constant C > 0 independent of
f such that

∥∥Ψ
(∣∣[b, T]f

∣∣)∥∥
(L1,∞(w),Lp)β ≤ C

∥∥Φ
(|f |)∥∥(L1(w),Lp)β .
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We also study similar estimates for the commutators of the fractional integral operators
with BMO functions and the associated maximal operators and get the following results.

Theorem 1.4 Let 0 < α < n, w ∈ A1, 1/q = 1 – α/n, 1 ≤ β < p ≤ ∞, and 0 < 1 + 1/p – 1/β <
1/q, Φ(t) = t log(e + t), Ψ (t) = t

log(e+t–1) , Γ (t) = t1/q log(e + t)–1, and Θ(t) = t1/q log(e + t–1).
Then there exists a constant C > 0 independent of f such that

∥∥Ψ (Mα,L(log L)f )
∥∥

(LΓ ,∞(w),Lp)β ≤ C
∥∥Φ

(|f |)∥∥(L1(Θ(w)),Lp(w))β .

Theorem 1.5 Let 0 < α < n, w ∈ A1, b ∈ BMO, 1/q = 1 – α/n, 1 ≤ β < p ≤ ∞, and 0 <
1 + 1/p – 1/β < 1/q, Φ(t) = t log(e + t), Ψ (t) = t

log(e+t–1) , Γ (t) = t1/q log(e + t)–1, and Θ(t) =
t1/q log(e + t–1). Then there exists a constant C > 0 independent of f such that

∥∥Ψ
(∣∣[b, Iα]f

∣∣)∥∥
(LΓ ,∞(w),Lp)β ≤ C

∥∥Φ
(|f |)∥∥(L1(Θ(w)),Lp(w))β .

From these results, we see that the commutators of the fractional integral operators
with the BMO functions and the associated maximal operators map the weighted Mor-
rey spaces to some weighted Orlicz–Morrey spaces. Hence we can further consider the
boundedness for these integral operators on general weighted Orlicz–Morrey spaces.

2 Proof of Theorem 1.1, Theorem 1.2, and Theorem 1.3
Lemma 2.1 ([9]) Let w ∈ A∞, then there exists a constant C > 0 such that, for any cube Q,
w(2Q) ≤ Cw(Q).

Lemma 2.2 ([9]) Let 1 < p < ∞ and w ∈ Ap. Then there exists a constant C > 0 independent
of f such that

∥∥M(f )
∥∥

Lp(w) ≤ C‖f ‖Lp(w).

Let w ∈ A1. Then there exists a constant C > 0 independent of f such that

∥∥M(f )
∥∥

L1,∞(w) ≤ C‖f ‖L1(w).

Lemma 2.3 ([15]) There exists a constant C > 0 such that, for any ball B and all x ∈ B,

M(f χ(2B)c )(x) ≤ C
∞∑
i=1

1
|2i+1B|

∫
2i+1B

∣∣f (y)
∣∣dy

for every locally integrable function f .

Lemma 2.4 ([12]) Let Φ(t) = t log(e + t), then there exists a positive constant C such that,
for any weight w and all t > 0,

w
({

x ∈R
n : ML(log L)f (x) > t

}) ≤ C
∫
Rn

Φ

( |f (x)|
t

)
Mw(x) dx

for every locally integrable function f .
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Lemma 2.5 ([9]) Let w ∈ A1, then there exists a constant C > 0 and η > 0 such that, for any
ball B and a measurable subset E ⊂ B,

w(E)
w(B)

≤ C
( |E|

|B|
)η

.

Lemma 2.6 ([7]) Let 1 ≤ s ≤ q < ∞, w ∈ Aq/s, and T : Lq
loc(w) → Lq

loc(w) a sublinear oper-
ator which satisfies the following property: for all balls B ⊂R

n, x ∈ B,

T(f χ(2B)c )(x) ≤ C
∞∑
i=1

i
(

1
|2i+1B|

∫
2i+1B

∣∣f (y)
∣∣s dy

)1/s

.

Then
(1) if q > 1 and T is bounded on Lq(w), then it is also bounded on (Lq(w), Lp)β for

q ≤ β < p ≤ ∞,
(2) if for all λ > 0,

w
({

x ∈ R
n :

∣∣T(f )(x)
∣∣ > λ

}) ≤ C
1
λ

∫
Rn

∣∣f (y)
∣∣dyw(y) dy,

then for 1 ≤ β < p ≤ ∞, T is bounded on (L1(w), Lp)β to (L1,∞(w), Lp)β .

Proof of Theorem 1.1 By Lemma 2.2, Lemma 2.3, and Lemma 2.6, we obtain that the
Hardy–Littlewood maximal operator M is bounded on (Lq(w), Lp)β for w ∈ Aq, and for
w ∈ A1, then there exists a constant C > 0 independent of f such that

∥∥M(f )
∥∥

(L1,∞(w),Lp)β ≤ C‖f ‖(L1(w),Lp)β .

Because ML(log L) ≈ M2, which was obtained by Perez in [12], we have ML(log L) is bounded
on (Lq(w), Lp)β . This ends the proof. �

Proof of Theorem 1.2 Fix y ∈R
n and r > 0, let B = B(y, r) be a ball centered at y with radius r.

By Lemma 2.4, we have

w
({

x ∈ B : ML(log L)f (x) > t
})

=
∫

{x∈Rn :ML(log L)f (x)>t}
χB(x)w(x) dx

≤ C
∫
Rn

Φ

( |f (x)|
t

)
M(χBw)(x) dx

≤ C
(∫

3B
+

∫
(3B)c

)
Φ

( |f (x)|
t

)
M(χBw)(x) dx

≤ I + II.



Qi et al. Journal of Inequalities and Applications        (2020) 2020:129 Page 7 of 15

To estimate the term I, since w ∈ A1, we have

I ≤ C
∫

3B
Φ

( |f (x)|
t

)
w(x) dx

≤ CΦ

(
1
t

)∫
3B

Φ
(∣∣f (x)

∣∣)w(x) dx

≤ CΦ

(
1
t

)∥∥Φ
(|f |)χ3B

∥∥
L1(w).

For the term II, observe that for x ∈ (3B)c, x ∈ B′, B′ is a ball and B′ ∩ B �= ∅. We have

1
|B′|

∫
B′

χB(z)w(z) dz =
1

|B′|
∫

B′∩B
w(z) dz

≤ C
|x – y|n

∫
B

w(z) dz =
C

|x – y|n w(B).

Therefore we obtain

M(χBw)(x) ≤ C|x – y|–nw(B).

Since w ∈ A1, we get

II ≤ C
∫

(3B)c
Φ

( |f (x)|
t

)
|x – y|–nw(B) dx

≤ C
∞∑
j=1

∫
3j+1B\3jB

Φ

( |f (x)|
t

)
w(B)

|3j+1B| dx

≤ C
∞∑
j=1

w(B)
w(3j+1B)

∫
3j+1B

Φ

( |f (x)|
t

)
w(x) dx

≤ CΦ

(
1
t

) ∞∑
j=1

w(B)
w(3j+1B)

∥∥Φ
(|f |)χ3j+1B

∥∥
L1(w).

Hence, we obtain

∥∥Ψ (ML(log L)f )χB
∥∥

L1,∞(w) = sup
t>0

tw
{

x ∈ B : Ψ (ML(log L)f )(x) > t
}

= sup
t>0

tw
{

x ∈ B : ML(log L)f (x) > Ψ –1(t)
}

= sup
t>0

Ψ (t)w
{

x ∈ B : ML(log L)f (x) > t
}

≤ C

(∥∥Φ
(|f |)χ3B

∥∥
L1(w)

+
∞∑
j=1

w(B)
w(3j+1B)

∥∥Φ
(|f |)χ3j+1B

∥∥
L1(w)

)
.
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Thus, for any r > 0, by Lemma 2.1 and Lemma 2.5, we have

r
∥∥Ψ (ML(log L)f )

∥∥
(L1,∞(w),Lp)β

=
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Ψ (ML(log L)f )

)
χB(y,r)

∥∥
L1,∞(w)

)p

dy)
1
p

≤ C
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(w)

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

w(B(y, r))
w(B(y, 3j+1r))

w
(
B(y, r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3j+1r)
∥∥

L1(w)

)p

dy

) 1
p

≤ C
(∫

Rn

(
w

(
B(y, 3r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(w)

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

(
w(B(y, r))

w(B(y, 3j+1r))

) 1
β

– 1
p

w
(
B
(
y, 3j+1r

)) 1
β

–1– 1
p

× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(w)

)p

dy

) 1
p

≤ C
∥∥Φ

(|f |)∥∥(L1(w),Lp)β

(
1 +

∞∑
j=1

1

3jnη( 1
β

– 1
p )

)

≤ C
∥∥Φ

(|f |)∥∥(L1(w),Lp)β .

This ends the proof. �

Lemma 2.7 ([13]) Let T be any Calderón–Zygmund singular integral operator, Φ(t) =
t log(e + t), ε > 0, and b ∈ BMO. Then there exists a positive constant C such that, for all
weights w,

w
({

x ∈R
n :

∣∣[b, T]f (x)
∣∣ > t

}) ≤ C
∫
Rn

Φ

( |f (x)|
t

)
ML(log L)1+ε w(x) dx.

Lemma 2.8 ([9]) Let w ∈ A1, then there exist a constant C > 0 and θ > 0 such that, for any
ball B,

(
1

|B|
∫

B
w(y)1+θ dy

) 1
1+θ ≤ C

1
|B|

∫
B

w(y) dy.

Proof of Theorem 1.3 Fix y ∈R
n and r > 0, let B = B(y, r). By Lemma 2.7, we have

w
({

x ∈ B :
∣∣[b, T]f (x)

∣∣ > t
})

=
∫

{x∈Rn :|[b,T]f (x)|>t}
w(x)χB(x) dx

≤ C
∫
Rn

Φ

( |f (x)|
t

)
ML(log L)1+ε (wχB)(x) dx

≤ C
(∫

3B
+

∫
(3B)c

)
Φ

( |f (x)|
t

)
ML(log L)1+ε (wχB)(x) dx

≤ I + II.
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To estimate the term I, since w ∈ A1, it is easy to prove that ML(log L)1+ε (wχB)(x) ≤ Cw(x),
x ∈ 3B, we have

I ≤ C
∫

3B
Φ

( |f (x)|
t

)
w(x) dx ≤ CΦ

(
1
t

)∥∥Φ
(|f |)χ3B

∥∥
L1(w).

For the term II, observe that for x ∈ (3B)c, x ∈ B′, B′ is a ball and B′ ∩B �= ∅, by Lemma 2.8,
for any δ : 0 < δ ≤ θ , we have

(
1

|B′|
∫

B′

(
w(z)χB(z)

)1+δ dz
) 1

1+δ ≤
(

1
|B′|

∫
B

w(z)1+δ dz
) 1

1+δ

=
( |B|

|B′|
) 1

1+δ
(

1
|B|

∫
B

w(z)1+δ dz
) 1

1+δ

≤ C
( |B|

|B′|
) 1

1+δ
(

1
|B|

∫
B

w(z) dz
)

≤ C
( |B|

|B′|
) 1

1+δ w(B)
|B| .

Noticing the definition of the maximal function M, we obtain

ML(log L)1+ε (wχB)(x) ≤ (
M

(
w1+δχB

)
(x)

) 1
1+δ

≤ C
( |B|

|x – y|n
) 1

1+δ w(B)
|B|

and

II ≤ C
∫

(3B)c
Φ

( |f (x)|
t

)( |B|
|x – y|n

) 1
1+δ w(B)

|B| dx

≤ C
∞∑
j=1

∫
3j+1B\3jB

Φ

( |f (x)|
t

)( |B|
|3j+1B|

) 1
1+δ w(B)

|B| dx

≤ C
∞∑
j=1

( |B|
|3j+1B|

) 1
1+δ w(B)

|B|
|3j+1B|

w(3j+1B)

∫
3j+1B

Φ

( |f (x)|
t

)
w(x) dx

≤ CΦ

(
1
t

) ∞∑
j=1

( |B|
|3j+1B|

) –δ
1+δ w(B)

w(3j+1B)
∥∥Φ

(|f |)χ3j+1B
∥∥

L1(w).

Hence, we obtain

∥∥Ψ
(∣∣[b, T]f

∣∣)χB
∥∥

L1,∞(w) = sup
t>0

tw
{

x ∈ B : Ψ
(∣∣[b, T]f

∣∣)(x)) > t
}

= sup
t>0

Ψ (t)w
{

x ∈ B :
∣∣[b, T]f (x)

∣∣ > t
}
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≤ C

(∥∥Φ
(|f |)χ3B

∥∥
L1(w)

+
∞∑
j=1

( |B|
|3j+1B|

) –δ
1+δ w(B)

w(3j+1B)
∥∥Φ

(|f |)χ3j+1B
∥∥

L1(w)

)
.

Thus, for any r > 0, by Lemma 2.1 and Lemma 2.5, we have

r
∥∥Ψ

(∣∣[b, T]f
∣∣)∥∥

(L1,∞(w),Lp)β

=
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Ψ

(∣∣[b, T]f
∣∣)χB(y,r)

∥∥
L1,∞(w)

)p dy
) 1

p

≤ C
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(w)

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

( |B|
|3j+1B|

) –δ
1+δ w(B(y, r))

1
β

– 1
p

w(B(y, 3j+1r))
∥∥Φ

(|f |)χB(y,3j+1r)
∥∥

L1(w)

)p

dy

) 1
p

≤ C
(∫

Rn

(
w

(
B(y, 3r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(w)

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

( |B|
|3j+1B|

)η( 1
β

– 1
p )– δ

1+δ

w
(
B
(
y, 3j+1r

)) 1
β

–1– 1
p

× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(w)

)p

dy

) 1
p

≤ C
∥∥Φ

(|f |)∥∥(L1(w),Lp)β

(
1 +

∞∑
j=1

(
1

3(j+1)n

)η( 1
β

– 1
p )– δ

1+δ

)

≤ C
∥∥Φ

(|f |)∥∥(L1(w),Lp)β ,

in which we take δ > 0 small enough such that η( 1
β

– 1
p ) – δ

1+δ
> 0. This ends the proof. �

3 Proof of Theorem 1.4 and Theorem 1.5
Given an increasing function ϕ : [0,∞) → [0,∞), as in [3], we define the function hϕ by

hϕ(s) = sup
t>0

ϕ(st)
ϕ(t)

, 0 ≤ s < ∞.

If ϕ is submultiplicative, then hϕ ≈ ϕ. Also, for all s, t > 0, ϕ(st) ≤ hϕ(s)ϕ(t).
In this section, we set Φ(t) = t log(e + t), it is submultiplicative and so hΦ ≈ Φ . Let 0 <

α < n, and q be a number 1/q = 1 – α/n. Denote

Γ (t) =

⎧⎨
⎩

0, t = 0,
t

Φ(tα/n) , t > 0.

So

Γ (t) ≈ t1/q log(e + t)–1.
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The function Γ is invertible with

Γ –1(t) ≈ [
t log(e + t)

]q = Φ(t)q.

Lemma 3.1 ([3]) If ϕ(t)/t is decreasing, then for any positive sequence {tj},

ϕ

(∑
j

tj

)
≤

∑
j

ϕ(tj).

Lemma 3.2 ([14]) Let 0 < α < n, 1/q = 1 – α/n. Then there exists a constant C > 0 such
that, for any t > 0, for any weight w, we have

Γ
(
w

({
x ∈R

n : Mα,L log L(f )(x) > t
}))

≤ C
∫
Rn

Φ

( |f (y)|
t

)
hΨ

(
Mw(y)

)
dy.

Proof of Theorem 1.4 Fix y ∈R
n and r > 0, let B = B(y, r). By Lemma 3.2, we have

Γ
(
w

({
x ∈ B : Mα,L(log L)f (x) > t

}))
= Γ

(∫
{x∈Rn :Mα,L(log L)f (x)>t}

w(x)χB(x) dx
)

≤ C
∫
Rn

Γ

( |f (x)|
t

)
hΓ

(
M(wχB)

)
(x) dx

≤ C
(∫

3B
+

∫
(3B)c

)
Γ

( |f (x)|
t

)
hΓ

(
M(wχB)

)
(x) dx

≤ I + II.

Now we estimate the term I. Noticing that, for s > 0, we have

hΓ (s) = sup
t>0

Γ (st)
Γ (t)

= s sup
t>0

Φ(tα/n)
Φ(((st)α/n)

≤ CΘ(s).

Since w ∈ A1, we get

I ≤ C
∫

3B
Φ

( |f (x)|
t

)
hΓ

(
w(x)

)
dx

≤ C
∫

3B
Φ

( |f (x)|
t

)
Θ

(
w(x)

)
dx

≤ CΦ(1/t)
∥∥Φ

(|f |χ3B
)∥∥

L1(Θ(w)).

For the term II, observe that for x ∈ (3B)c, x ∈ B′, B′ is a ball and B′ ∩ B �= ∅. As in the
proof of Theorem 1.2, we have

M(χBw)(x) ≤ C|x – y|–nw(B).

Since w ∈ A1, Θ is submultiplicative, we get

II ≤ C
∫

(3B)c
Φ

( |f (x)|
t

)
hΨ

(|x – y|–nw(B)
)

dx
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≤ C
∞∑
j=1

∫
3j+1B\3jB

Φ

( |f (x)|
t

)
Θ

(
w(B)

|3j+1B|
)

dx

≤ C
∞∑
j=1

∫
3j+1B

Φ

( |f (x)|
t

)
Θ

(
w(3j+1B)
|3j+1B|

w(B)
w(3j+1B)

)
dx

≤ C
∞∑
j=1

∫
3j+1B

Φ

( |f (x)|
t

)
Θ

(
w(x)

w(B)
w(3j+1B)

)
dx

≤ C
∞∑
j=1

Θ

(
w(B)

w(3j+1B)

)∫
3j+1B

Φ

( |f (x)|
t

)
Θ

(
w(x)

)
dx

≤ CΦ(1/t)
∞∑
j=1

Θ

(
w(B)

w(3j+1B)

)∥∥Φ
(|f |)χ3j+1B

∥∥
L1(Θ(w)).

Hence, we obtain

∥∥Ψ (Mα,L(log L)f )χB
∥∥

LΓ ,∞(w)

= sup
t>0

tΓ
(
w

{
x ∈ B : Ψ (Mα,L(log L)f )(x) > t

})

= sup
t>0

tΓ
(
w

{
x ∈ B : Mα,L(log L)f (x) > Ψ –1(t)

})

= sup
t>0

Ψ (t)Γ
(
w

{
x ∈ B : Mα,L(log L)f (x) > t

})

≤ C

(∥∥Φ
(|f |)χ3B

∥∥
L1(Θ(w))

+
∞∑
j=1

Θ

(
w(B)

w(3j+1B)

)∥∥Φ
(|f |)χ3j+1B

∥∥
L1(Θ(w))

)
.

Thus, for any r > 0, we have

r
∥∥Ψ (Mα,L(log L)f )

∥∥
(LΓ ,∞(w),Lp)β

=
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Ψ (Mα,L(log L)f )

)
χB(y,r)

∥∥
LΓ ,∞(w)

)p

dy)
1
p

≤ C
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(Θ(w))

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

Θ

(
w(B(y, r))

w(B(y, 3j+1r))

)
w

(
B(y, r)

) 1
β

–1– 1
p

× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(Θ(w))

)p

dy

) 1
p

≤ C
(∫

Rn

(
w

(
B(y, 3r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(Θ(w))

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

log(e + 3jnη)

3jnη( 1
β

–1– 1
p + 1

q )
w

(
B
(
y, 3j+1r

)) 1
β

–1– 1
p
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× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(Θ(w))

)p

dy

) 1
p

≤ C
∥∥Φ

(|f |)∥∥(L1(Θ(w)),Lp(w))β

(
1 +

∞∑
j=1

log(e + 3jnη)

3jnη( 1
β

–1– 1
p + 1

q )

)

≤ C
∥∥Φ

(|f |)∥∥(L1(Θ(w)),Lp(w))β .

This ends the proof. �

Lemma 3.3 ([4]) Let 0 < α < n, 1/q = 1 – α/n, w ∈ A1, and b ∈ BMO. Then there exists a
constant C > 0 such that, for any t > 0,

Γ
(
w

({
x ∈R

n :
∣∣[b, Iα](f )(x)

∣∣ > t
}))

≤ C
∫
Rn

Φ

( |f (y)|
t

)
Θ

(
w(y)

)
dy.

Lemma 3.4 ([9]) Let f (x) ≥ 0, f ∈ L1
loc(Rn), and 0 < δ < 1, then M(f )δ ∈ A1.

Proof of Theorem 1.5 Fix y ∈ R
n and r > 0, let B = B(y, r). For any w ∈ A1 and δ : 0 < δ ≤ θ ,

by Lemma 3.4, we have M(w1+δχB)1/(1+δ) ∈ A1. By Lemma 3.3, we obtain

Γ
(
w

({
x ∈ B :

∣∣[b, Iα]f (x)
∣∣ > t

}))

= Γ

(∫
{x∈Rn :|[b,Iα ]f (x)|>t}

w(x)χB(x) dx
)

≤ CΓ

(∫
{x∈Rn :|[b,Iα ]f (x)|>t}

M(wχB)(x) dx
)

≤ CΓ

(∫
{x∈Rn :|[b,Iα ]f (x)|>t}

(
M

(
w1+δχB

)
(x)

)1/(1+δ) dx
)

≤ C
∫
Rn

Φ

( |f (x)|
t

)
Θ

((
M

(
w1+δχB

)
(x)

)1/(1+δ))dx

≤ C
(∫

3B
+

∫
(3B)c

)
Φ

( |f (x)|
t

)
Θ

((
M

(
w1+δχB

)
(x)

)1/(1+δ))dx

≤ I + II.

Now we estimate the term I. Noticing that w ∈ A1, Lemma 2.8, we have
Θ((M(w1+δχB)(x))1/(1+δ)) ≤ CΘ(Mw(x)) ≤ CΘ(w(x)). Then

I ≤ C
∫

3B
Φ

( |f (x)|
t

)
Θ

(
w(x)

)
dx ≤ CΦ(1/t)

∥∥Φ
(|f |)χ3B

∥∥
L1(Θ(w)).

For the term II, as the proof of Theorem 1.3, for x ∈ (3B)c,

(
M

(
w1+δχB

)
(x)

) 1
1+δ ≤ C

( |B|
|x – y|n

) 1
1+δ w(B)

|B| .
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By Lemma 2.2, we get

II ≤ C
∫

(3B)c
Φ

( |f (x)|
t

)
Θ

(( |B|
|x – y|n

) 1
1+δ w(B)

|B|
)

dx

≤ C
∞∑
j=1

∫
3j+1B\3jB

Φ

( |f (x)|
t

)
Θ

(( |B|
|3j+1B|

)η– δ
1+δ

w(x)
)

dx

≤ CΦ(1/t)
∞∑
j=1

Θ

( |B|
|3j+1B|

)η– δ
(1+δ) ∥∥Φ

(|f |)χ3j+1B
∥∥

L1(Θ(w)).

Hence, we obtain

∥∥Ψ
(∣∣[b, Iα]f

∣∣)χB
∥∥

LΓ ,∞(w)

= sup
t>0

tΓ
(
w

{
x ∈ B : Ψ

(∣∣[b, Iα]f
∣∣)(x) > t

})

= sup
t>0

tΓ
(
w

{
x ∈ B :

∣∣[b, Iα]f (x)
∣∣ > Ψ –1(t)

})

= sup
t>0

Ψ (t)Γ
(
w

{
x ∈ B :

∣∣[b, Iα]f (x)
∣∣ > t

})

≤ C

(∥∥Φ
(|f |)χ3B

∥∥
L1(Θ(w))

+
∞∑
j=1

Θ

( |B|
|3j+1B|

)η– δ
(1+δ) ∥∥Φ

(|f |)χ3j+1B
∥∥

L1(Θ(w))

)
.

Thus, for any r > 0, we have

r
∥∥Ψ

(∣∣[b, Iα]f
∣∣)χB

∥∥
(LΓ ,∞(w),Lp)β

=
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Ψ

(∣∣[b, Iα]f
∣∣)χB(y,r)

∥∥
LΓ ,∞(w)

)p dy
) 1

p

≤ C
(∫

Rn

(
w

(
B(y, r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(Θ(w))

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

Θ

( |B(y, r)|
|B(y, 3j+1r)|

)η– δ
(1+δ)

w
(
B(y, r)

) 1
β

–1– 1
p

× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(Θ(w))

)p

dy

) 1
p

≤ C
(∫

Rn

(
w

(
B(y, 3r)

) 1
β

–1– 1
p
∥∥Φ

(|f |)χB(y,3r)
∥∥

L1(Θ(w))

)p dy
) 1

p

+ C

(∫
Rn

( ∞∑
j=1

log(e + 3jn(η– δ
1+δ

))

3jn(η( 1
β

–1– 1
p + 1

q )– δ
δ(1+q) )

w
(
B
(
y, 3j+1r

)) 1
β

–1– 1
p

× ∥∥Φ
(|f |)χB(y,3j+1r)

∥∥
L1(Θ(w))

)p

dy

) 1
p
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≤ C
∥∥Φ

(|f |)∥∥(L1(Θ(w)),Lp(w))β

(
1 +

∞∑
j=1

log(e + 3jn(η– δ
1+δ

))

3jn(η( 1
β

–1– 1
p + 1

q )– δ
δ(1+q) )

)

≤ C
∥∥Φ

(|f |)∥∥(L1(Θ(w)),Lp(w))β ,

in which we take δ > 0 small enough such that η( 1
q – 1 – 1

p + 1
β

) – δ
q(1+δ) > 0 and η – δ

1+δ
> 0.

This ends the proof. �
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