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Abstract
We examine the weighted Grushin system involving advection terms given by

{
�Gu – a · ∇Gu = (1 + ‖z‖2(α+1)) γ

2(α+1) v–p in R
n,

�Gv – a · ∇Gv = (1 + ‖z‖2(α+1)) γ
2(α+1) u–q in R

n,

where �Gu =�xu + |x|2α�yu, z = (x, y) ∈R
n :=R

n1 ×R
n2 is the Grushin operator,

α ≥ 0, p ≥ q > 1, ‖z‖2(α+1) = |x|2(α+1) + |y|2, γ ≥ 0 and a is a smooth divergence-free
vector that we will specify later. Inspired by recent progress in the study of the
Lane–Emden system, we establish some Liouville-type results for bounded stable
positive solutions of the system. In particular, we prove the comparison principle to
establish our result. As consequences, we obtain a Liouville-type theorem for the
weighted Grushin equation involving advection terms

�Gu – a · ∇Gu = (1 + ‖z‖2(α+1)) γ
2(α+1) u–p in R

n.

The main tools in the proof of the main result are the comparison principle, nonlinear
integral estimates via the stability assumption and the bootstrap argument. Our
results generalize and improve the previous work in (Duong et al. in Complex Var.
Elliptic Equ. 64(12):2117–2129, 2019).
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1 Introduction
In this paper, we study the Liouville-type theorem for bounded stable positive classical
solutions of the weighted nonlinear degenerate elliptic system involving advection terms

⎧⎨
⎩�Gu – a · ∇Gu = (1 + ‖z‖2(α+1))

γ
2(α+1) v–p in R

n,

�Gv – a · ∇Gv = (1 + ‖z‖2(α+1))
γ

2(α+1) u–q in R
n,

(1.1)
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and of the scalar equation

�Gu – a · ∇Gu =
(
1 + ‖z‖2(α+1)) γ

2(α+1) u–p in R
n, (1.2)

where �Gu = �xu + |x|2α�yu, z = (x, y) ∈R
n := R

n1 ×R
n2 is the Grushin operator, �x and

�y are Laplace operators with respect to x ∈R
n1 and y ∈R

n2 , and ‖z‖2(α+1) := |x|2(α+1) + |y|2.
Here we always assume that α ≥ 0, p ≥ q > 1, γ ≥ 0 and a is a smooth divergence-free
vector field:

divG a = 0 and
∣∣a(z)

∣∣ ≤ ε

1 + ‖z‖ for all z = (x, y) ∈R
n, ε small enough, (1.3)

where divG = divx +|x|α divy.
For simplicity of the presentation, we define the following parameters which play an

important role in the sequel:

Q := n1 + (1 + α)n2 is the homogeneous dimension of Rn;

τ+
0 :=

√
pq(p – 1)

q – 1
+

√√√√pq(p – 1)
q – 1

+

√
pq(p – 1)

q – 1
,

τ–
0 :=

√
pq(p – 1)

q – 1
–

√√√√pq(p – 1)
q – 1

+

√
pq(p – 1)

q – 1
,

σ + :=

√
pq(p + 1)

q + 1
+

√√√√pq(p + 1
q + 1

–

√
pq(p + 1)

q + 1
,

σ – :=

√
pq(p + 1)

q + 1
–

√√√√pq(p + 1
q + 1

–

√
pq(p + 1)

q + 1
.

We start by noting that, in the case a ≡ 0 and γ = 0, the system (1.1) and Eq. (1.2) reduce
to ⎧⎨

⎩�Gu = v–p in R
n,

�Gv = u–q in R
n,

(1.4)

and

�Gu = u–p in R
n. (1.5)

In the case α = 0, Eq. (1.5) arises in many branches of applied sciences and has been studied
in a number of recent works; see [6, 20] and the references therein. The nonexistence
of positive stable classical solutions of (1.5) was examined in [20]. This result was then
generalized in [6] to positive stable weak solutions of a weighted equation. More precisely,
the authors of [6] figured out the critical exponent and established an optimal Liouville-
type theorem for this class of solutions. When α > 0, the Liouville-type theorem for a
special class of solutions of (1.4) and (1.5). “the so-called stable solutions” has been studied
by Duong, Lan, Le and Nguyen [10]. We summarize here some results in [10].
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Theorem 1.1 ([10]) Assume that p ≥ q > 1 and

Q < 2 +
8

p + q + 2
τ+

0 ,

then (1.4) has no bounded stable positive solution.

Corollary 1.1 ([10]) Let p > 1 and

Q < 2 +
4

p + 1
(
p +

√
p(p + 1)

)
, (1.6)

then Eq. (1.5) has no bounded stable positive solution.

We remark that for Eq. (1.5) (with α = 0), the critical exponent on the right-hand side of
(1.6) was first found in [20]. This exponent has been shown to be optimal in the class of
positive stable weak solutions; see [6].

Similar to the celebrated Lane–Emden system in the case of positive exponents, the
system (1.4) is also a natural extension of Eq. (1.5). It is worth to remark that there are
many papers developing various useful tools to study the nonexistence of positive stable
solutions (see for example [2, 12, 13, 17, 22, 26] and the references therein. For other results
on Grushin operators, Wei et al. [25] established a Liouville-type theorem for weak stable
solutions of weighted p-Laplace-type Grushin equation in the case of negative exponent
nonlinearity. Some important and interesting results can be found in [21].

Recently, elliptic problems involving advection terms, i.e. a �= 0, have received consider-
able attention [3, 4, 8, 11]. In particular, Duong and Nguyen [11] studied the equation

–�Gu + ∇Gw · ∇Gu = ‖z‖s|u|p–1u in R
n, s ≥ 0. (1.7)

Taking advantage of the variational structure, and using the approach of Farina [13], he
established some Liouville-type theorems for the class of stable sign-changing weak solu-
tions. Now, we state this result as follows.

Theorem 1.2 ([11]) Suppose that there is a nonnegative constant θ such that

|∇Gw| ≤ C
‖z‖θ + 1

.

Assume in addition that

lim
R→+∞ R– (1+min(θ ;1))(p+β)+s(β+1)

p–1

∫
R<‖z‖<2R

e–w = 0,

for β ∈ (1, 2p + 2
√

p(p – 1) – 1). Then any stable weak solution u to (1.7) must be the trivial
one.

In the general case where a �= 0, elliptic problems with advections have no variational
structure and this requires another approach to obtaining a classification of stable solu-
tions. Recall that, in this case, see e.g. [3], a positive classical solution u of

–�u + a · ∇u = up in R
n (1.8)
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is called stable if there is a smooth positive function F such that

–�F + a.∇F ≥ pup–1F .

Recently, relying on Farina’s approach [13] and the generalized Hardy inequality, Cowan
[3] established a Liouville-type theorem for stable positive solution of (1.8) under the
smallness condition imposed on the divergence-free a.

On the other direction, the Liouville-type theorem for the class of stable solutions for
system

⎧⎨
⎩–�u + a · ∇u = vp in R

n,

–�v + a · ∇v = uq in R
n,

(1.9)

was examined by Duong [8]. He established a Liouville-type result for stable positive solu-
tions of the system in the case p ≥ q ≥ 1 and pq > 1. In particular, when p = q, his result is
a natural extension of Cowan [3] to the equation with advection. Furthermore, we would
also like to mention that when pq ≤ 1, the system (1.9) has no positive supersolutions (see
Theorem 1.3 [9]).

For the general equation or system with γ �= 0, the Liouville property is less understood
and is more delicate to deal with than γ = 0. There exist many excellent papers using Fa-
rina’s approach to the Hardy–Hénon equation and the weighted nonlinear elliptic equa-
tions. We refer to [7, 22, 24] and the references therein. Inspired by the ideas in [2, 16], Hu
[18] adopt the new approach of a combination of second order stability, Souplet’s inequal-
ity [23] and a bootstrap iteration to establish Liouville-type theorems for the semi-stable
solutions of⎧⎨

⎩–�u = (1 + |x|2)
γ
2 vp in R

n,

–�v = (1 + |x|2)
γ
2 uq in R

n,
(1.10)

and of the scalar equation

–�u =
(
1 + |x|2) γ

2 up in R
n. (1.11)

In particular, Hu [18] has obtained the following result.

Theorem 1.3 ([18])
1. Suppose γ > 0, 2σ – < p ≤ q and

n < 2 +
(4 + 2γ )(q + 1)

pq – 1
σ +.

Then there is no classical positive semi-stable solution of (1.10). In particular, there is
no classical positive semi-stable solution of (1.10) for any 2 ≤ p ≤ q if n ≤ 10 + 4γ .

2. Let p > 4
3 , γ > 0 and

n < 2 +
2(2 + γ )

p – 1
(
p +

√
p(p – 1)

)
.

Then there does not exist a classical positive semi-stable solution of (1.11).
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In this paper, we propose to study the system (1.1) which can be regarded as a natural
generalization of the scalar equation (1.2). Motivated by [8, 10, 18], we give the classifi-
cation of bounded stable positive solutions of (1.1) under the assumption (1.3). Before
stating our main results, let us recall the definition of such solutions motivated by [8, 10].

Definition 1.1 A positive solution (u, v) ∈ C2(Rn)×C2(Rn) of (1.1) is called stable if there
are positive smooth functions ξ , η such that

⎧⎨
⎩–�Gξ + a · ∇Gξ = p(1 + ‖z‖2(α+1))

γ
2(α+1) v–p–1η in R

n,

–�Gη + a · ∇Gη = q(1 + ‖z‖2(α+1))
γ

2(α+1) u–q–1ξ in R
n.

(1.12)

The main result in this paper is the following.

Theorem 1.4 Assume that p ≥ q > 1 and

Q < 2 +
4(γ + 2)
p + q + 2

τ+
0 , (1.13)

then (1.1) has no bounded stable positive solution.

The key in our proof is the comparison principle and nonlinear integral estimates. How-
ever, the techniques used to prove the comparison principle in [14, 18] for the Laplace op-
erator do not seem applicable to the system (1.1) because the operator �G no longer has
symmetry and it degenerates on the manifold {0} ×R

n2 . Then, in this paper, we establish
the comparison principle for Grushin operators by developing the idea in [1, 10, 12, 15].
In addition, the L1-estimate to the bootstrap iteration in [2] does not work in the case of
Grushin operator, we instead switch to the L2-estimate in the bootstrap argument. We
also employ the idea in [1, 10, 12, 15] to prove the “inverse” comparison principle which
is crucial to proving our result.

Recall that a classical solution of (1.2) is called stable if

p
∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–p–1φ2 dx dy ≤ 1
4

∫
Rn

|aφ + 2∇Gφ|2 dx dy, (1.14)

for all φ ∈ C1
c (Rn).

When p = q, by using the comparison principle below, we obtain a direct consequence
of Theorem 1.4 for the scalar equation (1.2).

Corollary 1.2 Let p > 1 and

Q < 2 +
2(γ + 2)

p + 1
(
p +

√
p(p + 1)

)
. (1.15)

Then Eq. (1.2) has no bounded stable positive solution.

We remark also that the method used in the present paper can be applied to study the
weighted systems, and to more general class of degenerate operator, such as the �λ oper-
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ator (see [19, 22]) of the form

�λ :=
n∑

i=1

∂xi

(
λ2

i ∂xi

)
, λ = (λ1, . . . ,λn) : Rn →R

n.

Here λi : Rn →R, i = 1, . . . , n are nonnegative continuous functions satisfying some prop-
erties such that �λ is homogeneous of degree two with respect to a group dilation in R

n.
The organization of this paper is as follows. In Sect. 2, we establish the stability inequality

and the comparison principle for the system (1.1) and then prove an a priori estimate of
the solutions. In Sect. 3, we give the proof of the main result.

2 Stability inequality and comparison principle
2.1 Stability inequality
Lemma 2.1 Assume that (u, v) is a positive stable solution of the system (1.1) with (1.3) is
satisfied. Then, for φ ∈ C1

c (Rn), we have

√
pq

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v
–p–1

2 u
–q–1

2 φ2 dx dy ≤ 1
4

∫
Rn

|aφ + 2∇Gφ|2 dx dy. (2.1)

Proof We follow the idea in [2, 8]. Let φ ∈ C1
c (Rn). Multiplying the first equation in (1.12)

by φ2

ξ
, we obtain

∫
Rn

(
–�Gξ

φ2

ξ
+ a · ∇Gξ

φ2

ξ

)
dx dy = p

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v–p–1η
φ2

ξ
dx dy. (2.2)

Using integration by parts and Young’s inequality: 2zz′ – z′2 ≤ z2, we obtain

∫
Rn

(
–�Gξ

φ2

ξ
+ a · ∇Gξ

φ2

ξ

)
dx dy

=
∫
Rn

(
2
φ

ξ
∇Gφ∇Gξ – |∇Gξ |2 φ2

ξ 2 + a · ∇Gξ
φ2

ξ

)
dx dy

=
∫
Rn

(
(2∇Gφ + aφ)

φ

ξ
∇Gξ – |∇Gξ |2 φ2

ξ 2

)
dx dy

≤ 1
4

∫
Rn

|aφ + 2∇Gφ|2 dx dy. (2.3)

Consequently, combining (2.2) and (2.3), it follows that

p
∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v–p–1η
φ2

ξ
dx dy ≤ 1

4

∫
Rn

|aφ + 2∇Gφ|2 dx dy. (2.4)

By the same argument, we also have

q
∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–q–1ξ
φ2

η
dx dy ≤ 1

4

∫
Rn

|aφ + 2∇Gφ|2 dx dy. (2.5)
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We now add the inequalities (2.4) and (2.5) to obtain

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1)

(
pv–p–1η

φ2

ξ
+ qu–q–1ξ

φ2

η

)
dx dy

≤ 1
2

∫
Rn

|aφ + 2∇Gφ|2 dx dy. (2.6)

Now note that

2
√

pqv
–p–1

2 u
–q–1

2 φ2 ≤ pv–p–1η
φ2

ξ
+ qu–q–1ξ

φ2

η
.

Putting this back into (2.6) gives the desired result. �

2.2 Comparison principle
In this subsection, we shall prove the comparison principle for the system (1.1) without
stability assumption.

Lemma 2.2 Suppose that (u, v) is a bounded positive solution of (1.1). Assume that 1 < q ≤
p and (1.3) hold. Then

(p – 1)vp–1 ≤ (q – 1)uq–1. (2.7)

Proof Let d = q–1
p–1 ≤ 1 and l = d

1
p–1 . The inequality (2.7) is equivalent to

v ≤ lud. (2.8)

Put w = v – lud . A direct calculation leads to

�Gw = �Gv – ldud–1�Gu – ld(d – 1)ud–2|∇Gu|2

≥ �Gv – ldud–1�Gu

= a · ∇Gv +
(
1 + ‖z‖2(α+1)) γ

2(α+1) u–q – ldud–1(a · ∇Gu +
(
1 + ‖z‖2(α+1)) γ

2(α+1) v–p)
= a · ∇Gw + ud–1(1 + ‖z‖2(α+1)) γ

2(α+1)
(
u–dp – lpv–p).

Therefore

�Gw – a · ∇Gw ≥ ud–1(1 + ‖z‖2(α+1)) γ
2(α+1)

(
u–dp – lpv–p)

≥ ud–1(u–dp – lpv–p)
= ud–1

(
1

udp –
lp

vp

)

= ud–1 vp – lpudp

udpvp . (2.9)

We now prove (2.8) by contradiction. Suppose that

M = sup
Rn

w > 0 (M ≤ +∞). (2.10)
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Next, we divide the proof into two cases.
Case 1. If there exists z∗ such that sup

Rn w = w(z∗) = v(z∗) – lud(z∗) > 0, then

∂w
∂zi

(
z∗) = 0 and

∂2w
∂z2

i

(
z∗) ≤ 0 for i = 1, . . . , n.

This implies that

∇Gw
(
z∗) = 0 and �Gw

(
z∗) ≤ 0.

However, the right-hand side of (2.9) at z∗ is positive. This is a contradiction.
Case 2. If the supremum of w is attained at infinity.
Take a cut-off function χ ∈ C∞

c (Rn, [0, 1]) verifying χ = 1 on B1 × B1 and χ = 0 outside
B2 × B21+α . Put φR(x) = χm( x

R , y
R1+α ). Here m > 0 will be chosen later. A simple calculation

yields

|�GφR| ≤ CR–2φ
m–2

m
R , φ–1

R |∇Gφ|2 ≤ CR–2φ
m–2

m
R . (2.11)

Let wR = φRw which is a compactly supported function. Then there exists zR = (xR, yR) ∈
B2R × B(2R)1+α such that

wR(zR) = sup
Rn

wR(z) = max
Rn

wR(z) → M as R → +∞. (2.12)

This implies that

∇GwR(zR) = 0 and �GwR(zR) ≤ 0. (2.13)

In what follows, all the estimates are taken at the point zR. First, using ∇GwR(zR) = 0, we
have

0 = ∇GwR = ∇GφRw + φR∇Gw.

Hence,

∇Gw = –φ–1
R ∇GφRw. (2.14)

Since �GwR(zR) ≤ 0, we get

0 ≥ �GwR = �GφRw + 2∇GφR · ∇Gw + φR�Gw.

Thus,

φR�Gw ≤ (
2φ–1

R |∇GφR|2 – �GφR
)
w. (2.15)

Combining (2.11) and (2.15), one has

φR�Gw ≤ CR–2φ
m–2

m
R w. (2.16)
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Using (2.11), (2.14) and the fact that |a(z)| ≤ ε
‖z‖+1 , one has

|a · ∇GwφR| ≤ CR–2φ
m–1

m
R w. (2.17)

Recall that v – lud = w and at zR, we get

vp

wp –
(lud)p

wp ≥ 1. (2.18)

Multiplying (2.9) by φR and using (2.16), (2.17) and (2.18), we obtain

φRud–1 wp

udpvp ≤ CR–2φ
m–2

m
R w.

Recall that the constant C is independent of R. Consequently,

φ
m+2

m
R ud–1 wp

udpvp ≤ CR–2φRw.

Choosing m = 2
p–1 (or p = m+2

m ), we get

ud–1 wp
R

udpvp ≤ CR–2wR or ud–1 wp–1
R

udpvp ≤ CR–2. (2.19)

It follows from (2.19), the boundedness of (u, v) and d ≤ 1 that

wp–1
R (zR) ≤ CR–2.

Finally, letting R → +∞, we get M = 0, which contradicts (2.10). The proof is complete. �

Combining the proof of Lemma 2.2 with the idea in [1, 10, 12, 15], we have the inverse
comparison principle as follows.

Lemma 2.3 Suppose that (u, v) is a bounded positive solution of (1.1). Assume that 1 < q ≤
p and (1.3) hold. Then we have

u ≤ ‖v‖
p–q
q–1∞ v, (2.20)

where ‖v‖∞ = sup
Rn v.

Proof Let l = ‖v‖
p–q
q–1∞ and w = u – lv. We need to show that w ≤ 0. Notice that

�Gw – a · ∇Gw = �Gu – a · ∇Gu – l(�Gv – a · ∇Gv)

=
(
1 + ‖z‖2(α+1)) γ

2(α+1) v–p – l
(
1 + ‖z‖2(α+1)) γ

2(α+1) u–q

=
v–p

‖v‖–p
∞

(
1 + ‖z‖2(α+1)) γ

2(α+1) ‖v‖–p
∞ – l

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–q

≥ (
1 + ‖z‖2(α+1)) γ

2(α+1)

(
v–q

‖v‖–q
∞

‖v‖–p
∞ – lu–q

)
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= ‖v‖q–p
∞

(
1 + ‖z‖2(α+1)) γ

2(α+1)
(
v–q – lqv–q)

≥ ‖v‖q–p
∞

(
v–q – lqv–q). (2.21)

In order to obtain the proof, it suffices to use the arguments as in Lemma 2.2 by noting
that (2.9) is replaced by (2.21). The details are then omitted. �

In what follows, the constant C does not depend on a positive parameter R and may
change from line to line.

Lemma 2.4 Suppose that (u, v) be a bounded stable positive solution of (1.1). Assume that
1 < q ≤ p and (1.3) hold. Then for R > 0 there exists C > 0 independent of R such that

∫
BR×BR1+α

u–q dx dy ≤ CRQ– 2(pq–q)
pq–1 – γ (pq–1)

pq–q (2.22)

and
∫

BR×BR1+α

v– p+q+2
2 dx dy ≤ CRQ–2–γ . (2.23)

Proof Using Lemma 2.2, we get

v– p+1
2 ≥

(
p – 1
q – 1

) p+1
2(p–1)

u– (q–1)(p+1)
2(p–1) . (2.24)

Take a cut-off function φ ∈ C∞
c (Rn, [0, 1]) verifying φ = 1 on B1 × B1 and φ = 0 outside

B2 × B2α+1 . For R > 0, put φR(x) = φm( x
R , y

R1+α ), where m ≥ 2 which is fixed. Then there
exists C > 0 independent of R such that

|∇GφR| ≤ CR–1φ
m–1

m
R . (2.25)

By virtue of (2.1) and (2.24), we derive

(
p – 1
q – 1

) p+1
2(p–1) √

pq
∫

B2R×B(2R)α+1

(
1 + ‖z‖2(α+1)) γ

2(α+1) u
–pq+1

p–1 φ2
R dx dy

≤ √
pq

∫
B2R×B(2R)α+1

(
1 + ‖z‖2(α+1)) γ

2(α+1) v– p+1
2 u– q+1

2 φ2
R dx dy

≤ 1
4

∫
Rn

|aφR + 2∇GφR|2 dx dy. (2.26)

Recall that pq–1
pq–q > 1. Then, by combining the Hölder inequality, (2.25) and (2.26), we get

∫
B2R×B(2R)α+1

u–qφ2
R dx dy

≤
(∫

B2R×B(2R)α+1

(
1 + ‖z‖2(α+1)) γ

2(α+1) u
–pq+1

p–1 φ2
R dx dy

) pq–q
pq–1
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×
(∫

B2R×B(2R)α+1

(
1 + ‖z‖2(α+1))– γ (pq–1)2

2(α+1)(q–1)(pq–q) φ2
R

) q–1
pq–1

≤ C
(∫

B2R×B(2R)α+1

|aφR + 2∇GφR|2 dx dy
) pq–q

pq–1

×
(∫

B2R×B(2R)α+1

(
1 + ‖z‖2(α+1))– γ (pq–1)2

2(α+1)(q–1)(pq–q) φ2
R dx dy

) q–1
pq–1

≤ CR–2 pq–q
pq–1

(∫
B2R×B(2R)α+1

φ
2(m–1)

m
R dx dy

) pq–q
pq–1

×
(∫

B2R×B(2R)α+1

(
1 + ‖z‖2(α+1))– γ (pq–1)2

2(α+1)(q–1)(pq–q) φ2
R dx dy

) q–1
pq–1

≤ CR–2 pq–q
pq–1 RQ pq–q

pq–1 R– γ (pq–1)
pq–q RQ q–1

pq–1 = CRQ– 2(pq–q)
pq–1 – γ (pq–1)

pq–q . (2.27)

Hence, the desired integral estimate (2.22) follows. Finally, (2.23) follows from using the
same argument as above where we use (2.20) instead of (2.7). �

3 Proof of the main result
3.1 Beginning of the proof
In this subsection, we give a preparation for the bootstrap iteration. Using Lemmas 2.2
and 2.1, we get the following.

Lemma 3.1 Under the same assumptions of Lemma 2.4, suppose that

τ–
0 < t < τ+

0 .

Then we have∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–qv–2t–1φ2 dx dy

≤ C
∫
Rn

v–2t(|∇Gφ|2 + φ|�Gφ| + |a|∣∣∇G
(
φ2)∣∣)dx dy,

for all φ ∈ C2
c (Rn) satisfying 0 ≤ φ ≤ 1. Here C does not depend on (u, v).

Proof Using Lemma 2.1 with the test function v–tφ we have

√
pq

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v
–p–1

2 u
–q–1

2 v–2tφ2 dx dy

≤ 1
4

∫
Rn

∣∣av–tφ + 2∇G
(
v–tφ

)∣∣2 dx dy

=
1
4

∫
Rn

(∣∣av–tφ
∣∣2 + 4a · ∇G

(
v–tφ

)(
v–tφ

)
+ 4

∣∣∇G
(
v–tφ

)∣∣2)dx dy

=
1
4

∫
Rn

(∣∣av–tφ
∣∣2 + 4

∣∣∇G
(
v–tφ

)∣∣2)dx dy,

where in the last equality, we have used divG a = 0.
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Applying the Hardy inequality related to Grushin type operators, see e.g. [5], one obtains

∫
Rn

∣∣a(z)v–tφ
∣∣2 dx dy ≤ ε2

∫
Rn

|v–tφ|2
‖z‖2 dx dy ≤ 4ε2

(Q – 2)2

∫
Rn

∣∣∇G
(
v–tφ

)∣∣2 dx dy.

Combining the above two estimates, we derive that

√
pq

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v
–p–1

2 u
–q–1

2 v–2tφ2 dx dy

≤
(

1 +
ε2

(Q – 2)2

)∫
Rn

∣∣∇G
(
v–tφ

)∣∣2 dx dy

=
(

1 +
ε2

(Q – 2)2

)(
t2

∫
Rn

|∇Gv|2v–2t–2φ2 dx dy

+
∫
Rn

v–2t|∇Gφ|2 dx dy –
1
2

∫
Rn

v–2t�G
(
φ2)dx dy

)
. (3.1)

Multiplying the second equation in (1.1) by v–2t–1φ2 and integrating by parts we arrive at

(2t + 1)
∫
Rn

|∇Gv|2v–2t–2φ2 dx dy –
1
2t

∫
Rn

v–2t�G
(
φ2)dx dy

–
1
2t

∫
Rn

v–2ta · ∇G
(
φ2)dx dy

=
∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–qv–2t–1φ2 dx dy. (3.2)

Combining (3.1) and (3.2), we obtain

√
pq

∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) v
–p–1

2 u
–q–1

2 v–2tφ2 dx dy

≤ t2

2t + 1

(
1 +

ε2

(Q – 2)2

)∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–qv–2t–1φ2 dx dy

+ C
∫
Rn

v–2t(|∇Gφ|2 + φ|�Gφ| + |a|∣∣∇G
(
φ2)∣∣)dx dy. (3.3)

Using Lemma 2.2 and (3.3), we get

(√
pq(p – 1)

q – 1
–

t2

2t + 1

(
1 +

ε2

(Q – 2)2

))∫
Rn

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–qv–2t–1φ2 dx dy

≤ C
∫
Rn

v–2t(|∇Gφ|2 + φ|�Gφ| + |a|∣∣∇G
(
φ2)∣∣)dx dy.

Since τ–
0 < t < τ+

0 , we have
√

pq(p–1)
q–1 – t2

2t+1 (1 + ε2

(Q–2)2 ) > 0 provided ε is sufficiently small,
which completes the proof. �

3.2 End of the proof
The bootstrap argument in this subsection is quite similar to that in [10, 12]. For com-
pleteness, we present the details.
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Take a cut-off function φ ∈ C∞
c (Rn, [0, 1]) verifying

φ = 1 on B1 × B1 and φ = 0 outside B2 × B2α+1 . (3.4)

Let w be a smooth function and let κ = Q
Q–2 if Q > 2. For Q > 2, put wR(x) = w(Rx, R1+αy),

then, by using the Sobolev inequality (see [26]) and integration by parts, we have

(∫
B1×B1

w2κ
R dx dy

) 1
2κ

≤
(∫

B2×B2α+1

(wRφ)2κ dx dy
) 1

2κ

≤ C
(∫

B2×B2α+1

∣∣∇G(wRφ)
∣∣2 dx dy

) 1
2

= C
(∫

B2×B2α+1

|∇GwR|2φ2 + w2
R|∇Gφ|2 +

1
2
∇G

(
w2

R
)∇G

(
φ2)dx dy

) 1
2

= C
(∫

B2×B2α+1

|∇GwR|2φ2 + w2
R|∇Gφ|2 +

1
2

w2
R
(
–�G

(
φ2))dx dy

) 1
2

≤ C
(∫

B2×B2α+1

(
R2|∇Gw|2 + w2)(Rx, . . . , R1+αy

)
dx dy

) 1
2

.

So we get

(∫
B1×B1

w2κ
R dx dy

) 1
2κ ≤ C

(∫
B2×B2α+1

(
R2|∇Gw|2 + w2)(Rx, R1+αy

)
dx dy

) 1
2

.

From a scaling argument it follows that

(∫
BR×BRα+1

w2κ dx dy
) 1

κ

≤ CR2+Q( 1
κ –1)

∫
B2R×B(2R)α+1

|∇Gw|2 dx dy + CRQ( 1
κ –1)

∫
B2R×B(2R)α+1

w2 dx dy. (3.5)

Suppose that (u, v) is a positive stable solution of (1.1). Set

w = v–t for τ–
0 < t < τ+

0 .

A simple calculation gives

|∇Gw|2 = t2|∇Gv|2v–2t–2.
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Let φR = φ( x
R , y

R1+α ) where φ is given in (3.4). Then

∫
BR×BRα+1

|∇Gw|2 dx dy = C
∫

BR

|∇Gv|2v–2t–2 dx dy

≤ C
∫

B2R×B(2R)α+1

|∇Gv|2v–2t–2φ2
R dx dy. (3.6)

Multiplying the second equation in (1.1) by v–2t–1φ2
R and using integration by parts, we

obtain

∫
B2R×B(2R)α+1

|∇Gv|2v–2t–2φ2
R dx dy

=
1

2t + 1

∫
B2R×B(2R)α+1

(
1 + ‖z‖2(α+1)) γ

2(α+1) u–qv–2t–1φ2
R dx dy

+
1

2t(2t + 1)

∫
B2R×B(2R)α+1

v–2t�G
(
φ2

R
)

dx dy

+
1

2t(2t + 1)

∫
B2R×B(2R)α+1

v–2ta · ∇G
(
φ2

R
)

dx dy.

Inserting this into (3.6), using Lemma 3.1, we obtain

∫
BR×BRα+1

|∇Gw|2 dx dy ≤ CR–2
∫

B2R×B(2R)α+1

w2 dx dy.

Substituting the above inequality into (3.5), we have

(∫
BR×BRα+1

w2κ dx dy
) 1

κ

≤ CRQ( 1
κ –1)

∫
B2R×B(2R)α+1

w2 dx dy. (3.7)

We fix a real positive number δ = p+q+2
4 and recall the fact that

2τ–
0 < 0 < 2δ =

p + q + 2
2

. (3.8)

Let m be a nonnegative integer satisfying δκm–1 < τ+
0 ≤ δκm. We construct an increasing

geometric sequence.

τ–
0 < t1 < t2 < · · · < tm < τ+

0 ,

given by

2t1 = 2δr, 2t2 = 2δrκ , . . . , 2tm = 2δrκm–1,

where r ∈ [1,κ] is chosen such that tm is arbitrarily close to τ+
0 .
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To simplify notations below, we use Rn = 2nR. By using (3.7) and an induction argument,
we obtain

(∫
BR×BRα+1

v–2tmκ dx dy
) 1

tmκ

≤ C
(
RQ( 1

κ –1)) 1
tm

(∫
BR1 ×BRα+1

1

v–2tm dx
) 1

tm

= CRQ( 1
tmκ – 1

tm )
(∫

BR1 ×BRα+1
1

v–2tm–1κ dx
) 1

tm–1κ

≤ CRQ( 1
tmκ – 1

t1
)
(∫

BRm ×BRα+1m

v–2t1 dx dy
) 1

t1

= CRQ( 1
tmκ – 1

δr )
(∫

BRm ×BRα+1m

v–2δr dx dy
) 1

δr
. (3.9)

For the last integral, we shall use Hölder’s inequality, (3.7) and Lemma 2.4 to obtain

∫
BRm ×BRα+1m

v–2δr dx dy ≤
(∫

BRm ×BRα+1m

v–2δκ dx dy
) r

κ
(∫

BRm ×Bα+1
Rm

1 dx dy
)1– r

κ

≤ C
(

RQ( 1
κ –1)

∫
BRm+1 ×BRα+1

m+1

v–2δ dx dy
)r

RQ(1– r
κ )

= CRQ(1–r)
(∫

BRm+1 ×BRα+1
m+1

v– p+q+2
2 dx dy

)r

≤ CRQ(1–r)Rr(Q–2–γ ) = CRQ–r(γ +2).

Consequently,

(∫
BRm ×BRα+1m

v–2δr dx
) 1

δr ≤ CR
Q
δr – γ +2

δ . (3.10)

Substituting (3.10) into the last inequality of (3.9), one has

(∫
BR×BRα+1

v–2tmκ dx
) 1

tmκ

≤ CR
Q

κtm – γ +2
δ = CR

Q
κtm – 4(γ +2)

p+q+2 . (3.11)

Since r ∈ [1,κ] is chosen such that tm is close to τ+
0 , the exponent in the right-hand side of

(3.11) is negative. Letting R → +∞, we obtain a contradiction.
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