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1 Introduction
Let p ≥ 1 and ω denote the set of all real-valued sequences. The space �p is the set of all
real sequences x = (xk) ∈ ω such that

‖x‖�p =

( ∞∑
k=0

|xk|p
)1/p

< ∞.

Hilbert matrix The Hilbert matrix H = (hj,k) was introduced by David Hilbert in 1894 to
study a question in approximation theory. The finite and infinite Hilbert matrices are

Hn×n =

⎛
⎜⎜⎜⎜⎝

1 1/2 · · · 1/n
1/2 1/3 · · · 1/n + 1

...
... · · · ...

1/n 1/n + 1 · · · 1/2n – 1

⎞
⎟⎟⎟⎟⎠ and H =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

Hilbert matrices are frequently used both in mathematics and computational sci-
ences. In image processing, for example, Hilbert matrices are commonly used. Any two-
dimensional array of natural numbers in the range [0, n] for all n ∈ N can be viewed as a
gray-scale digital image.

Cryptography is another example of applications of the Hilbert matrix. Cryptography is
the science of using mathematics to encrypt and decrypt data. Cryptography enables you
to store sensitive information or transmit it across insecure networks so that it cannot be
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read by anyone except the intended recipient. The objectives of the proposed work are
to propose a new cryptographic method based on the special matrix called the Hilbert
matrix for authentication and confidentiality and to propose a model for confidentiality
and authentication using a combination of symmetric and public cryptosystems. In some
studies related to cryptographic methods, the Hilbert matrix is used for authentication
and confidentiality [16]. It is well known that the Hilbert matrix is very unstable [15] and
so it can be used in security systems.

In this paper we only focus on the infinite version of Hilbert matrix H = (hj,k), which is
defined by

hj,k =
1

j + k + 1
=

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ , j, k = 0, 1, . . . ,

and is a bounded operator on �p with �p-norm ‖H‖�p = Γ (1/p)Γ (1/p∗) = π csc(π/p) by
Theorem 323 in [8].

Matrix domain The matrix domain of an infinite matrix A in a sequence space X is
defined as

Ap = {x ∈ ω : Ax ∈ X},

which is also a sequence space. It is easy to see that, for an invertible matrix A, the matrix
domain Ap is a normed space with ‖x‖Ap := ‖Ax‖�p . By using matrix domains of special
triangle matrices in classical spaces, we can define more general sequence spaces than the
space �p.

More recently, the author and some other mathematicians have investigated the problem
of finding the norm of operators on several matrix domains [5, 6, 10–14, 17, 20, 21, 23].

Throughout this research, we use the notations ‖ · ‖Ap ,�p , ‖ · ‖�p ,Ap and ‖ · ‖Ap ,Bp for the
norm of operators from the matrix domain Ap into sequence space �p, for the norm of
operators from �p into the matrix domain Ap and for the norm of operators from matrix
domain Ap into the matrix domain Bp, respectively.

Motivation Although a variety of research has been done on the finite Hilbert operator,
see [1, 4, 9, 22], and a lot of properties of this matrix have been discovered (determinant,
inverse, . . . ) there exists a few information about the infinite version of Hilbert matrix,
specially in the area of finding the norm of this operator on sequence spaces. Recently the
author [18, 19] has introduced some factorizations for the infinite Hilbert matrix based on
the generalized Cesàro matrix and Cesàro and Gamma matrices of order n. Through this
study the author has tried to compute the norm of Hilbert operator on several sequence
spaces that have not been done before.

2 Norm of Hilbert operator on some sequence spaces
In this part of our study, we investigate the problem of finding the norm of well-known
Hilbert operator on some sequence spaces. The following lemma plays a key role in finding
the norm of operators between matrix domains.
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Lemma 2.1 Let U be a bounded operator on �p and Ap, Bp be two matrix domains such
that Ap � �p.

(i) If T has a factorization of the form T = UA, then T is a bounded operator from the
matrix domain Ap into �p and

‖T‖Ap ,�p = ‖U‖�p .

(ii) If BT = UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap ,Bp = ‖U‖�p .

Proof (i) Since Ap and �p are isomorphic,

‖T‖Ap ,�p = sup
x∈Ap

‖Tx‖�p

‖x‖Ap
= sup

x∈Ap

‖UAx‖�p

‖Ax‖�p
= sup

y∈�p

‖Uy‖�p

‖y‖�p
= ‖U‖�p .

(ii) Again by isomorphism between Ap and �p we have

‖T‖Ap ,Bp = sup
x∈Ap

‖Tx‖Bp

‖x‖Ap
= sup

x∈Ap

‖BTx‖�p

‖Ax‖�p

= sup
x∈Ap

‖UAx‖�p

‖Ax‖�p
= sup

y∈�p

‖Uy‖�p

‖y‖�p
= ‖U‖�p ,

which gives the desired result. �

2.1 Norm of Hilbert operator on Cesàro and Copson sequence spaces
Consider the Hausdorff matrix Hμ = (hj,k)∞j,k=0, with entries of the form

hj,k =

⎧⎨
⎩

∫ 1
0

( j
k
)
θ k(1 – θ )j–k dμ(θ ) j ≥ k,

0 j < k,

where μ is a probability measure on [0, 1]. The Hausdorff matrix contains several famous
classes of matrices like Cesàro, Gamma, Hölder and Euler matrices. Hardy’s formula ([7],
Theorem 216) states that the Hausdorff matrix is a bounded operator on �p if and only if∫ 1

0 θ
–1
p dμ(θ ) < ∞ and

∥∥Hμ
∥∥

�p
=

∫ 1

0
θ

–1
p dμ(θ ). (2.1)

Cesàro matrix By letting dμ(θ ) = n(1–θ )n–1 dθ in the definition of the Hausdorff matrix,
the Cesàro matrix of order n, Cn = (cn

j,k), is defined by

cn
j,k =

⎧⎪⎨
⎪⎩

(n+j–k–1
j–k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise,
(2.2)
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which according to Eq. (2.1) has the �p-norm

∥∥Cn∥∥
�p

=
Γ (n + 1)Γ (1/p∗)

Γ (n + 1/p∗)
, (2.3)

where p∗ is the conjugate of p i.e. 1
p + 1

p∗ = 1. Note that C1 = C is the well-known Cesàro
matrix

cj,k =

⎧⎨
⎩

1
j+1 0 ≤ k ≤ j,

0 otherwise,
=

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

which has the �p-norm ‖C‖�p = p∗.
Some more examples are

C2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
2/3 1/3 0 · · ·
3/6 2/6 1/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ and C3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
3/4 1/4 0 · · ·

6/10 3/10 1/10 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .

The Cesàro matrix domain Cn
p is the set of all sequences whose Cn-transforms are in the

space �p; that is,

Cn
p =

{
x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p

< ∞
}

,

which is a Banach space with the norm

‖x‖Cn
p =

( ∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p)1/p

.

Transposing the Cesàro matrix of order n results the Copson matrix of order n, Cnt = (cnt
j,k),

which has the entries

cnt
j,k =

⎧⎪⎨
⎪⎩

(n+k–j–1
k–j )

(n+k
k )

j ≤ k,

0 otherwise,

and the �p-norm

∥∥Cnt∥∥
�p

=
Γ (n + 1)Γ (1/p)

Γ (n + 1/p)
, (2.4)

by the Hellinger–Toeplitz theorem, which is the following.

Theorem 2.2 ([2], Proposition 7.2) Suppose that 1 < p, q < ∞. A matrix A maps �p into
�q if and only if the transposed matrix, At , maps �q∗ into �p∗ . We then have ‖A‖�p ,�q =
‖At‖�q∗ ,�p∗ .
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For a positive integer n, we define the Hilbert matrix of order n, Hn = (hn
j,k), by

hn
j,k =

1
j + k + n + 1

(j, k = 0, 1, . . .). (2.5)

Note that, for n = 0, H0 = H is the well-known Hilbert matrix. For more examples:

H1 =

⎛
⎜⎜⎜⎜⎝

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ , H2 =

⎛
⎜⎜⎜⎜⎝

1/3 1/4 1/5 · · ·
1/4 1/5 1/6 · · ·
1/5 1/6 1/7 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

For non-negative integers n, j and k, let us define the matrix Bn = (bn
j,k) by

bn
j,k =

(k + 1) · · · (k + n)
(j + k + 1) · · · (j + k + n + 1)

.

Consider that, for n = 0, B0 = H , where H is the Hilbert matrix.
Note that the matrix Bn has also the representation

bn
j,k =

(
n + k

k

)
β(j + k + 1, n + 1) (j, k = 0, 1, . . .),

where the β function is

β(m, n) =
∫ 1

0
zm–1(1 – z)n–1 dz (m, n = 1, 2, . . .).

For computing the norm of Hilbert operator on Cesàro and Copson matrix domains we
need the following lemma.

Lemma 2.3 The Hilbert matrix H and the Hilbert matrix of order n, Hn, have the following
factorizations based on the Cesàro matrix of order n:

(i) H = BnCn,
(ii) Hn = CnBn,

(iii) CnH = HnCn,
(iv) Bn is a bounded operator on �p and

∥∥Bn∥∥
�p

=
Γ (n + 1/p∗)Γ (1/p)

Γ (n + 1)
.

Proof (i) By applying the identity
∑∞

j=0
(n+j–1

j
)
zj = (1 – z)–n for |z| < 1, we deduce that

(
BnCn)

j,k =
∞∑
i=k

(
n + i

i

)
β(j + i + 1, n + 1)

(n+i–k–1
i–k

)
(n+i

i
)

=
∞∑
i=0

(
n + i – 1

i

)
β(j + i + k + 1, n + 1)
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=
∫ 1

0

∞∑
i=0

(
n + i – 1

i

)
zizj+k(1 – z)n dz

=
∫ 1

0
zj+k dz =

1
j + k + 1

= hj,k .

(ii) For convenience, let λ = (n+k
k )

(n+i
i )

. The factorization will be obtained by the following
calculations:

(
CnBn)

i,k =
i∑

j=0

(n+i–j–1
i–j

)
(n+i

i
) (

n + k
k

)
β(j + k + 1, n + 1)

= λ

{(
n + i – 1

i

)
β(k + 1, n + 1) + · · ·

+
(

n
1

)
β(i + k, n + 1) +

(
n – 1

0

)
β(i + k + 1, n + 1)

}

= λ

{(
n + i – 1

i

)
β(k + 1, n + 1) + · · ·

+
(

n + 1
2

)
β(i + k – 1, n + 1) +

(n + 1)!(i + k – 1)!
(i + k + n – 1)!(i + k + n + 1)

}

= λ

{(
n + i – 1

i

)
β(k + 1, n + 1) + · · ·

+
(

n + 2
3

)
β(i + k – 2, n + 1) +

(n + 2)!(i + k – 2)!
2!(i + k + n – 2)!(i + k + n + 1)

}

...

= λ

{(
n + i – 1

i

)
β(k + 1, n + 1) +

(n + i – 1)!(k + 1)!
(i – 1)!(k + n + 1)!(i + k + n + 1)

}

= λ

{
(n + i – 1)!k!
i!(n + k + 1)!

(n + k + 1)(n + i)
i + k + n + 1

}
=

1
i + k + n + 1

= hn
i,k .

(iii) This is obvious by parts (i) and (ii). (iv) For computing the �p-norm of Bn, we intro-
duce a family of matrices, B(w), 0 < w ≤ 1, given by

b(w)j,k =
(

j + k
k

)
wj(1 – w)n+k .

Since

∞∑
k=0

b(w)j,k = wj(1 – w)n
∞∑

k=0

(
j + 1 + k – 1

k

)
(1 – w)k

= wj(1 – w)n(1 – (1 – w)
)–(j+1) =

(1 – w)n

w

and

∞∑
j=0

b(w)j,k = (1 – w)n+k
∞∑
j=0

(
k + 1 + j – 1

j

)
wj = (1 – w)n–1,
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the row sums are all (1–w)n

w and the column sums are all (1 – w)n–1. Thus Schur’s theorem
results in

∥∥B(w)
∥∥

�p
≤ (1 – w)n– 1

p w
–1
p∗ .

On the other hand,

∫ 1

0
b(w)j,k dw =

(
j + k

k

)∫ 1

0
wj(1 – w)n+k dw

=
(

j + k
k

)
β(j + 1, n + k + 1)

=
(

n + k
k

)
β(j + k + 1, n + 1) = bn

j,k .

Now

∥∥Bn∥∥
�p

=
∥∥∥∥
∫ 1

0
B(w) dw

∥∥∥∥ ≤
∫ 1

0

∥∥B(w)
∥∥dw

≤
∫ 1

0
(1 – w)n–1/pw–1/p∗

dw = β
(
n – 1/p + 1, 1 – 1/p∗)

=
Γ (n + 1/p∗)Γ (1/p)

Γ (n + 1)
.

Also the factorization H = BnCn results ‖H‖�p ≤ ‖Bn‖�p‖Cn‖�p . Therefore

∥∥Bn∥∥
�p

≥ ‖H‖�p

‖Cn‖�p
=

Γ (n + 1/p∗)Γ (1/p)
Γ (n + 1)

,

which completes the proof. �

Remark 2.4 In parallel, the two Hilbert and Hilbert matrices of order n, H and Hn, have
the following factorizations based on the Copson matrix:

(i) H = CntBnt ,
(ii) Hn = BntCnt ,

(iii) HCnt = CntHn,
(iv) Bnt is a bounded operator on �p and

∥∥Bnt∥∥
�p

=
Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
.

Theorem 2.5 Let Hn be the Hilbert matrix of order n. Then
(i) H is a bounded operator from Cn

p into �p and

‖H‖Cn
p ,�p =

Γ (n + 1/p∗)Γ (1/p)
Γ (n + 1)

.

(ii) H is a bounded operator from Cn
p into Cn

p and

‖H‖Cn
p = π csc(π/p).
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(iii) Hn is a bounded operator from Cnt
p into �p and

∥∥Hn∥∥
Cnt

p ,�p
=

Γ (n + 1/p)Γ (1/p∗)
Γ (n + 1)

.

(iv) Hn is a bounded operator from Cnt
p into Cnt

p and

∥∥Hn∥∥
Cnt

p
= π csc(π/p).

Proof (i) According to Lemma 2.3 we have H = BnCn. Now, by applying Lemma 2.1 part
(ii) we gain the result. (ii) From Lemma 2.3 we have CnHn = HCn that by Lemma 2.1 part
(iii) the proof is obvious. �

As an application of Lemma 2.3, we are ready to generalize the inequality

‖Hx‖�p ≤ π csc(π/p)‖x‖�p ,

also known as Hilbert’s inequality.

Corollary 2.6 Let p > 1 and x ∈ �p. Then
(i)

‖Hx‖�p ≤ Γ (n + 1/p∗)Γ (1/p)
Γ (n + 1)

∥∥Cnx
∥∥

�p
,

or

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 1

∣∣∣∣∣
p

≤
(

Γ (n + 1/p∗)Γ (1/p)
Γ (n + 1)

)p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
(n+j

j
) xk

∣∣∣∣∣
p

.

In particular, for n = 0, the Hilbert inequality occurs.
(ii)

∥∥Hnx
∥∥

�p
≤ Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
∥∥Cntx

∥∥
�p

,

or

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

≤
(

Γ (n + 1/p)Γ (1/p∗)
Γ (n + 1)

)p ∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) xk

∣∣∣∣∣
p

.

In particular, for n = 0, the Hilbert inequality occurs and for n = 1 we have the
inequality

∥∥H1x
∥∥

�p
≤ π/p csc(π/p)

∥∥Ctx
∥∥

�p
,

or

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + 2

∣∣∣∣∣
p

≤ (
π/p csc(π/p)

)p
∞∑
j=0

∣∣∣∣∣
∞∑
k=j

xk

1 + k

∣∣∣∣∣
p

.
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Proof According to Lemma 2.3, H = BnCn, hence

‖Hx‖�p =
∥∥BnCnx

∥∥
�p

≤ Γ (n + 1/p∗)Γ (1/p)
Γ (n + 1)

∥∥Cnx
∥∥

�p
.

Consider that, for n = 0, C0 = I and we have the Hilbert inequality. Also by applying
Lemma 2.3, Hn = BnCn, hence we have

∥∥Hnx
∥∥

�p
=

∥∥BntCntx
∥∥

�p
≤ Γ (n + 1/p)Γ (1/p∗)

Γ (n + 1)
∥∥Cntx

∥∥
�p

.

Consider that, for n = 0, C0 = I and we have the Hilbert inequality. �

Let Hn
p be the sequence space associated with the Hilbert matrix Hn, which is

Hn
p =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p

< ∞
}

and has the norm

‖x‖Hn
p =

( ∞∑
j=0

∣∣∣∣∣
∞∑

k=0

xk

j + k + n + 1

∣∣∣∣∣
p) 1

p

.

As another application of Lemma 2.3, we have the following inclusions.

Corollary 2.7 Let p > 1. Then
(i) Cn

p ⊂ Hp,
(ii) Cnt

p ⊂ Hn
p ,

(iii) Hn
p ⊂ Hn–1

p ⊂ · · · ⊂ Hp.

2.2 Norm of Hilbert operator on the generalized Cesàro matrix domain
Suppose that N ≥ 1 is a real number. The generalized Cesàro matrix, CN = (cN

j,k),

cN
j,k =

⎧⎨
⎩

1
j+N 0 ≤ k ≤ j,

0 otherwise,

has the �p-norm ‖CN‖�p = p∗ ([3], Lemma 2.3), and the entries

cN
j,k =

⎛
⎜⎜⎜⎜⎝

1
N 0 0 · · ·
1

1+N
1

1+N 0 · · ·
1

2+N
1

2+N
1

2+N · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .
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Note that C1 is the well-known Cesàro matrix C. Some more examples are

C2 =

⎛
⎜⎜⎜⎜⎝

1/2 0 0 · · ·
1/3 1/3 0 · · ·
1/4 1/4 1/4 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ and C3 =

⎛
⎜⎜⎜⎜⎝

1/3 0 0 · · ·
1/4 1/4 0 · · ·
1/5 1/5 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

The matrix domain associated with this matrix is the set

CN
p =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣
j∑

k=0

xk

j + N

∣∣∣∣∣
p

< ∞
}

,

which has the following norm:

‖x‖CN
p

=

( ∞∑
j=0

∣∣∣∣∣
j∑

k=0

xk

j + N

∣∣∣∣∣
p) 1

p

.

Theorem 2.8 The Hilbert operator H is a bounded operator from CN
p into �p and

‖H‖CN
p ,�p

≤ πN
p∗ csc(π/p).

In particular, the Hilbert operator H is a bounded operator from Cp into �p and ‖H‖Cp ,�p =
π
p∗ csc(π/p).

Proof The author in [18] has proved that the Hilbert matrix admits a factorization of the
form H = BN CN , where BN is a bounded operator on �p and

π

p∗ csc(π/p) ≤ ∥∥BN∥∥
�p

≤ πN
p∗ csc(π/p).

Now, according to Lemma 2.1 we have the result. �

2.3 Norm of Hilbert operator on Gamma sequence spaces
By letting dμ(θ ) = nθn–1 dθ in the definition of the Hausdorff matrix, the Gamma matrix
of order n, Γ n = (γ n

j,k), is

γ n
j,k =

⎧⎪⎨
⎪⎩

(n+k–1
k )

(n+j
j )

0 ≤ k ≤ j,

0 otherwise,

which according to the Hardy formula has the norm

∥∥Γ n∥∥
�p

=
np

np – 1
. (2.6)
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Note that Γ 1 is the well-known Cesàro matrix. Some more examples are

Γ 2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/3 2/3 0 · · ·
1/6 2/6 3/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ and Γ 3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/4 3/4 0 · · ·

1/10 3/10 6/10 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .

The sequence space associated with Γ n, is the set

Γ n
p =

{
x = (xk) ∈ ω : Γ nx ∈ �p

}
=

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + k – 1

k

)
xk

∣∣∣∣∣
p

< ∞
}

,

which is called the Gamma space of order n.

Theorem 2.9 The Hilbert operator H is a bounded operator from Γ n
p into �p and

‖H‖Γ n
p ,�p = π

(
1 –

1
np

)
csc(π/p).

In particular, the Hilbert operator H is a bounded operator from Cp into �p and ‖H‖Cp ,�p =
π
p∗ csc(π/p).

Proof The author in [19] has proved that the Hilbert matrix has a factorization of the form
H = SnΓ n, where the matrix Sn has the �p-norm

∥∥Sn∥∥
�p

= π

(
1 –

1
np

)
csc(π/p).

Now, by applying part (ii) of Lemma 2.1 the proof is obvious. �

2.4 Norm of Hilbert operator on difference sequence spaces
Let n ∈ N and 
nF = (δnF

j,k ) be the forward difference operator of order n with entries

δ
nF
j,k =

⎧⎨
⎩(–1)k–j( n

k–j
)

j ≤ k ≤ n + j,

0 otherwise.

We define the sequence space �p(
nF ) as the set {x = (xk) : 
nF x ∈ �p} or

�p
(

nF

)
=

{
x = (xk) :

∞∑
j=0

∣∣∣∣∣
n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣
p

< ∞
}

,

with semi-norm, ‖ · ‖�p(
nF ), which is defined by

‖x‖�p(
nF ) =

( ∞∑
j=0

∣∣∣∣∣
n∑

k=0

(–1)k
(

n
k

)
xk+j

∣∣∣∣∣
p) 1

p

.
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Note that this function will not be a norm, since if x = (1, 1, 1, . . .) then ‖x‖�p(
nF ) = 0, while
x 
= 0. The definition of backward difference sequence space �p(
nB ) is similar to �p(
nF ),
except ‖ · ‖�p(
nB ) is a norm.

Theorem 2.10 The Hilbert matrix H , is a bounded operator from �p(
nB ) into �p(
nF )
and

‖H‖�p(
nB ),�p(
nF ) =
π

sin(π/p)
.

Proof Let A = 
nF H . By using the identity
∑n

j=0(–1)j(n
j
)
zj = (1 – z)n, we have

ai,k =
n+i∑
j=i

δ
nF
i,j hj,k =

n+i∑
j=i

(–1)j–i
(

n
j – i

)
1

j + k + 1

=
n∑

j=0

(–1)j
(

n
j

)
1

j + i + k + 1
=

n∑
j=0

(–1)j
(

n
j

)∫ 1

0
zj+i+k dz

=
∫ 1

0

n∑
j=0

(–1)j
(

n
j

)
zjzi+k dz =

∫ 1

0
zi+k(1 – z)n dz

= β(i + k + 1, n + 1).

Obviously, A is a symmetric matrix which implies that 
nF H = H
nB . Now by using
Lemma 2.1 part (ii), ‖H‖�p(
nB ),�p(
nF ) = ‖H‖�p = π csc(π/p). �
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