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Abstract
Recently, Dolgy–Jang introduced the poly-Genocchi polynomials and numbers
arising from the modified polyexponential function. In this paper, we study the
degenerate poly-Genocchi polynomials and numbers constructed from the modified
degenerate polyexponential function. We derive explicit expressions for those
polynomials and numbers. Also, we obtain identities involving those polynomials and
numbers and some other special numbers and polynomials. In addition, we
investigate the higher-order degenerate Genocchi polynomials and find identities
involving those polynomials and the higher-order Changhee polynomials.
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1 Introduction
In [2], Carlitz initiated a study of degenerate versions of some special polynomials and
numbers, namely the degenerate Bernoulli and Euler polynomials and numbers. We have
witnessed in recent years that much research has been done for various degenerate ver-
sions of many special polynomials and numbers. These include the degenerate Stirling
numbers of the first and second kinds, degenerate Bernoulli numbers of the second
kind, degenerate Bell numbers and polynomials, degenerate complete Bell polynomi-
als and numbers, degenerate central factorial numbers of the second kind, degenerate
Bernstein polynomials, degenerate random variables, and so on (see [6, 7, 11–15, 17–
19, 21, 22, 25, 26] and the references therein).

The aim of this paper is to introduce a degenerate version of the poly-Genocchi polyno-
mials and numbers, so-called degenerate poly-Genocchi polynomials and numbers, con-
structing from the modified degenerate polyexponential function. We derive some explicit
expressions and identities for those numbers and polynomials.

This paper is organized as follows. In Sect. 1, we recall some necessary stuffs that are
needed throughout this paper. These include the degenerate exponential functions, the
degenerate Genocchi polynomials, the degenerate Euler polynomials, and the degenerate
Stirling numbers of the first and second kinds. In Sect. 2, we introduce the degenerate
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poly-Genocchi polynomials by making use of the modified degenerate polyexponential
function. We express those polynomials in terms of the degenerate Genocchi polynomials
and the degenerate Stirling numbers of the first kind and also of the degenerate Euler poly-
nomials and the Stirling numbers of the first kind. We represent the generating function
of the degenerate poly-Genocchi numbers by iterated integrals from which we obtain an
expression of those numbers in terms of the degenerate Bernoulli numbers of the second
kind. We show that a zeta function connected with the degenerate poly-Genocchi num-
bers and originally defined for Re(s) > 0 can be continued to an entire function. Also, we
determine its special values at nonpositive integers. We obtain identities relating the de-
generate Genocchi numbers and Changhee numbers. In addition, we get identities involv-
ing the higher-order degenerate Genocchi polynomials and the higher-order Changhee
polynomials. Finally, we conclude this paper in Sect. 3.

In 1905, Hardy considered the polyexponential function given by

e(x, a|s) =
∞∑

n=0

xn

(n + a)sn!
,

(
Re(a) > 0

)
(see [14]). (1)

Recently, Kim–Kim introduced the modified polyexponential function as

Eik(x) =
∞∑

n=1

xn

(n – 1)!nk (k ∈ Z) (see [9]). (2)

As was noted in [14], it is immediate to see from (1) and (2) that we have

xe(x, 1|k) = Eik(x).

The Euler polynomials are defined by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [1–33]). (3)

When x = 0, En = En(0) are called the Euler numbers.
As is well known, the Genocchi polynomials of order α are defined by

(
2t

et + 1

)α

ext =
∞∑

n=0

Ĝ(α)
n (x)

tn

n!
(see [1, 4, 5, 18, 33]). (4)

When α = 1, Gn = Ĝ(1)
n (0) are called the Genocchi numbers.

The reader may refer to [31] as an important work focusing on the Genocchi polynomi-
als and their relations with different areas.

As was observed in [7], it is easy to see from (3) and (4) that we have

Gn+1

n + 1
= En (n ≥ 0), G0 = 0. (5)
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In [3], Dolgy–Jang introduced poly-Genocchi polynomials arising from polyexponential
function as

2Eik(log(1 + t))
et + 1

ext =
∞∑

n=0

G(k)
n (x)

tn

n!
. (6)

When x = 0, G(k)
n = G(k)

n (0) are called the poly-Genocchi numbers. Note that Gn(x) =
G(1)

n (x) = Ĝ(1)
n (x), (n ≥ 0), are the Genocchi polynomials.

In [2], Carlitz considered the degenerate Bernoulli polynomials given by

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ =

∞∑

n=0

βn,λ(x)
tn

n!
. (7)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
Note that limλ→0 βn,λ(x) = Bn(x) (n ≥ 0), where Bn(x) are the ordinary Bernoulli polyno-

mials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(see [1–33]). (8)

The degenerate exponential functions are defined as

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t) = (1 + λt)
1
λ (see [11, 15, 16]). (9)

Here we note that

ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
(see [16]), (10)

where (x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ) (n ≥ 1).
Let logλ(t) = 1

λ
(tλ – 1) be the compositional inverse function of eλ(t) such that

eλ

(
logλ(t)

)
= logλ

(
eλ(t)

)
= t.

In [26], Lim considered the degenerate Genocchi polynomials of order r(r ∈ N), which
are given by

(
2t

eλ(t) + 1

)r

ex
λ(t) =

∞∑

n=0

Ĝ(r)
n,λ(x)

tn

n!
. (11)

Note here that Ĝ(r)
0,λ(x) = Ĝ(r)

1,λ(x) = · · · = Ĝ(r)
r–1,λ(x) = 0. When x = 0, Ĝ(r)

n,λ = Ĝ(r)
n,λ(0) are called

the degenerate Genocchi numbers of order r.
In particular, for r = 1, the degenerate Genocchi polynomials are given by

2t
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

Ĝn,λ(x)
tn

n!
. (12)

When x = 0, Ĝn,λ = Ĝn,λ(0) are called the degenerate Genocchi numbers.
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In [2], Carlitz introduced the degenerate Euler polynomials given by

2
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

En,λ(x)
tn

n!
. (13)

When x = 0, En,λ = En,λ(0) are called the degenerate Euler numbers.
As was noted in [7], it is immediate to see from (12) and (13) that we have

Ĝ0,λ(x) = 0,En,λ(x) =
Ĝn+1,λ(x)

n + 1
(n ≥ 0). (14)

In [14], the degenerate polyexponential functions are defined by

eλ(x, δ|k) =
∞∑

n=0

(1)n,λ

n!(n + δ)k xn, (15)

where k ∈N∪ {0}, and δ ∈ C, with Re(δ) > 0.
The degenerate Stirling numbers of the first kind are defined by (see [17])

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0). (16)

Note here that limλ→0 S1,λ(n, l) = S1(n, l), where S1(n, l) are the Stirling numbers of the
first kind given by

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
(k ≥ 0) (see [1–33]).

The degenerate Stirling numbers of the second kind are given by (see [11])

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (17)

Observe here that limλ→0 S2,λ(n, l) = S2(n, l), where S2(n, l) are the Stirling numbers of
the second kind given by

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(k ≥ 0) (see [1–33]).

Roman [30] defined the Bernoulli polynomials of the second kind by

t
log(1 + t)

(1 + t)x =
∞∑

n=0

bn(x)
tn

n!
. (18)

It is well known that bn(x) = B(n)
n (x + 1), (n ≥ 0), where B(r)

n (x) are the Bernoulli polynomials
of order r defined by

(
t

et – 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n!
.
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In [12], the degenerate Bernoulli polynomials of the second kind are defined by

t
logλ(1 + t)

(1 + t)x =
∞∑

n=0

bn,λ(x)
tn

n!
. (19)

Note that limλ→0 bn,λ(x) = bn(x), (n ≥ 0).
As is well known, the Changhee polynomials of order r are defined by

(
2

2 + t

)r

(1 + t)x =
∞∑

n=0

Ch(r)
n (x)

tn

n!
(see [7, 10, 28]). (20)

When x = 0, Ch(r)
n = Ch(r)

n (0) are called the Changhee numbers of order r.
In particular, for r = 1, the Changhee numbers are given by

2
t + 2

=
∞∑

n=0

Chn
tn

n!
. (21)

2 Degenerate poly-Genocchi numbers and polynomials
In this section, we consider the modified degenerate polyexponential function given by

Eik,λ(x) =
∞∑

n=1

(1)n,λ

(n – 1)!nk xn (λ ∈R). (22)

Note that Ei1,λ(x) =
∑∞

n=1(1)n,λ
xn

n! = eλ(x) – 1.
In view of (7), we consider the degenerate poly-Genocchi polynomials given by

2Eik,λ(logλ(1 + t))
eλ(t) + 1

ex
λ(t) =

∞∑

n=0

G(k)
n,λ(x)

tn

n!
. (23)

When x = 0, G(k)
n,λ = G(k)

n,λ(0) are called the degenerate poly-Genocchi numbers.
From (6) and (23), we note that

lim
λ→0

G(k)
n,λ(x) = G(k)

n, (x) (n ≥ 0).

By (22) and (16), we get

Eik,λ
(
logλ(1 + t)

)
=

∞∑

n=1

(1)n,λ(logλ(1 + t))n

(n – 1)!nk

=
∞∑

n=1

(1)n,λ

nk–1
1
n!

(
logλ(1 + t)

)n

=
∞∑

n=1

(1)n,λ

nk–1

∞∑

m=n
S1,λ(m, n)

tm

m!

=
∞∑

m=1

( m∑

n=1

(1)n,λ

nk–1 S1,λ(m, n)

)
tm

m!
. (24)
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Thus, by (24), we have

2Eik,λ(logλ(1 + t))
eλ(t) + 1

ex
λ(t) =

2t
eλ(t) + 1

ex
λ(t)

1
t

Eik,λ
(
logλ(1 + t)

)

=
∞∑

l=0

Gl,λ(x)
tl

l!

∞∑

m=0

1
m + 1

m+1∑

j=1

(1)j,λ

jk–1 S1,λ(m + 1, j)
tm

m!

=
∞∑

n=0

( n∑

m=0

(n
m
)

m + 1

m+1∑

j=1

(1)j,λ

jk–1 S1,λ(m + 1, j)Gn–m,λ(x)

)
tn

n!
. (25)

Therefore, by (23) and (25), we obtain the following theorem.

Theorem 1 For n ≥ 0, we have

G(k)
n,λ(x) =

n∑

m=0

(n
m
)

m + 1

m+1∑

j=1

(1)j,λ

jk–1 S1,λ(m + 1, j)Gn–m,λ(x). (26)

From (13), we note that

2Eik,λ(logλ(1 + t))
eλ(t) + 1

ex
λ(t) =

2
eλ(t) + 1

ex
λ(t)Eik,λ

(
logλ(1 + t)

)

=
∞∑

l=0

El,λ(x)
tl

l!

∞∑

m=1

m∑

j=1

(1)j,λ

jk–1 S1,λ(m, j)
tm

m!

=
∞∑

n=1

( n∑

m=1

(
n
m

) m∑

j=1

(1)j,λ

jk–1 S1,λ(m, j)En–m,λ(x)

)
tn

n!
. (27)

Therefore, by (23) and (27), we obtain the following theorem.

Theorem 2 G(k)
0,λ(x) = 0, and, for n ∈N, we have

G(k)
n,λ(x) =

n∑

m=1

(
n
m

) m∑

j=1

(1)j,λ

jk–1 S1,λ(m, j)En–m,λ(x). (28)

From (22), we note that

d
dx

Eik,λ(x) =
d

dx

∞∑

n=1

(1)n,λxn

(n – 1)!nk =
1
x

∞∑

n=1

(1)n,λxn

(n – 1)!nk–1 =
1
x

Eik–1,λ(x). (29)

Thus, by (29), we get

Eik,λ(x) =
∫ x

0

1
t

Eik–1,λ(t) dt

=
∫ x

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k–2)-times

1
t

Ei1,λ(t) dt dt · · · dt
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=
∫ x

0

1
t

∫ t

0
· · · 1

t

∫ t

0︸ ︷︷ ︸
(k–2)-times

eλ(t) – 1
t

dt dt · · · dt, (30)

where k is a positive integer with k ≥ 2.
From (23) and (30), we note that

∞∑

n=0

G(k)
n,λ

tn

n!
=

2
eλ(t) + 1

Eik,λ
(
logλ(1 + t)

)

=
2

eλ(t) + 1

∫ t

0

(1 + t)λ–1

logλ(1 + t)

∫ t

0
· · · (1 + t)λ–1

logλ(1 + t)

∫ t

0︸ ︷︷ ︸
(k–2)-times

t(1 + t)λ–1

logλ(1 + t)
dt · · · dt, (31)

where k is a positive integer with k ≥ 2.
Thus, by (31), we get

∞∑

n=0

G(2)
n,λ

tn

n!
=

2
eλ(t) + 1

∫ t

0

t
logλ(1 + t)

(1 + t)λ–1 dt

=
2t

eλ(t) + 1

∞∑

m=0

bm,λ(λ – 1)
m + 1

tm

m!

=
∞∑

l=0

Gl,λ
tl

l!

∞∑

m=0

bm,λ(λ – 1)
m + 1

tm

m!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
Gl,λ

bn–l,λ(λ – 1)
n – l + 1

)
tn

n!
. (32)

Therefore, by comparing the coefficients on both sides of (32), we obtain the following
theorem.

Theorem 3 G(2)
0,λ = 0, and, for n ≥ 1, we have

G(2)
n,λ =

n∑

l=0

(
n
l

)
Gl,λ

bn–l,λ(λ – 1)
n – l + 1

. (33)

Indeed, by (31), we get the following theorem.

Theorem 4 We have the following identity:

G(k)
n,λ =

n∑

l=0

(
n
l

)
Gn–l,λ

×
∑

l1+···+lk–1=l

(
l

l1, . . . , lk–1

)
bl1 (λ – 1)

l1 + 1
bl2 (λ – 1)
l1 + l2 + 1

· · · blk–1 (λ – 1)
l1 + · · · + lk–1 + 1

, (34)

where n is a positive integer.



Kim et al. Journal of Inequalities and Applications        (2020) 2020:110 Page 8 of 13

Let k ≥ 1 be an integer. For s ∈C, we consider the function ζk,λ(s) given by

ζk,λ(s) =
1

Γ (s)

∫ ∞

0

ts–1

eλ(t) + 1
Eik,λ

(
logλ(1 + t)

)
dt

=
1

Γ (s)

∫ 1

0

ts–1

eλ(t) + 1
Eik,λ

(
logλ(1 + t)

)
dt

+
1

Γ (s)

∫ ∞

1

ts–1

eλ(t) + 1
Eik,λ

(
logλ(1 + t)

)
dt. (35)

The second integral converges absolutely for any s ∈ C and hence the second term on
the right hand side vanishes at nonpositive integers. That is,

lim
s→–m

∣∣∣∣
1

Γ (s)

∫ ∞

1

ts–1

eλ(t) + 1
Eik,λ

(
logλ(1 + t)

)
dt

∣∣∣∣ ≤ 1
Γ (–m)

M = 0. (36)

On the other hand, for Re(s) > 0, the first integral in (35) can be written as

1
Γ (s)

∞∑

l=0

G(k)
l,λ

l!
1

s + l
,

which defines an entire function of s.
Thus, we may conclude that ζk,λ(s) can be continued to an entire function of s.
By (35) and (36), we get

ζk,λ(–m) = lim
s→–m

1
Γ (s)

∫ 1

0

ts–1

eλ(t) + 1
Eik,λ

(
logλ(1 + t)

)
dt

= lim
s→–m

1
Γ (s)

∞∑

l=0

G(k)
l,λ

s + l
1
l!

= · · · + 0 + lim
s→–m

1
Γ (s)

1
s + m

G(k)
m,λ

m!
+ 0 + · · · .

Now, by using the well-known Euler reflection formula, we have

ζk,λ(–m) = lim
s→–m

( Γ (1–s) sin(πs)
π

)
s + m

G(k)
m,λ

m!

= (–1)mG(k)
m,λ.

By replacing t by logλ(1 + t) in (12), we get

2
2 + t

logλ(1 + t) =
∞∑

m=1

Gm,λ
1

m!
(
logλ(1 + t)

)m.

Thus, we have

2
2 + t

=
∞∑

m=0

Gm+1,λ

m + 1
1

m!
(
logλ(1 + t)

)m
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=
∞∑

m=0

Gm+1,λ

m + 1

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

Gm+1,λ

m + 1
S1,λ(n, m)

)
tn

n!
. (37)

Therefore, by (21) and (37), we obtain the following theorem.

Theorem 5 For n ≥ 0, we have

Chn =
n∑

m=0

Gm+1,λ

m + 1
S1,λ(n, m).

Remark 6 We note here that Theorem 5 is identical to Theorem 2.5 with x = 0 in [10] if
we let λ → 0. Namely, we get

Chn =
n∑

m=0

EmS1(n, m) (n ≥ 0).

By replacing t by eλ(t) – 1 in (21), we get

2
eλ(t) + 1

=
∞∑

m=0

Chm
1

m!
(
eλ(t) – 1

)m

=
∞∑

m=0

Chm

∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

ChmS2,λ(n, m)

)
tn

n!
.

Thus, we have

∞∑

n=1

Gn,λ
tn

n!
=

2t
eλ(t) + 1

=
∞∑

n=0

( n∑

m=0

ChmS2,λ(n, m)

)
tn+1

n!

=
∞∑

n=1

(
n

n–1∑

m=0

ChmS2,λ(n – 1, m)

)
tn

n!
. (38)

Therefore, by comparing the coefficients on both sides of (38), we obtain the following
theorem.

Theorem 7 For n ≥ 1, we have

Gn,λ

n
=

n–1∑

m=0

ChmS2,λ(n – 1, m).
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Remark 8 We note here that Theorem 7 reduces to Theorem 2.4 in [10] if we let λ → 0.
Namely, we have

En =
n∑

m=0

ChmS2(n, m) (n ≥ 0).

By replacing t by logλ(1 + t) in (11), we get

r!
(

2
2 + t

)r

(1 + t)x 1
r!

(
logλ(1 + t)

)r =
∞∑

m=0

Ĝ(r)
m,λ(x)

1
m!

(
logλ(1 + t)

)m

=
∞∑

m=0

Ĝ(r)
m,λ(x)

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=r

( n∑

m=r
Ĝ(r)

m,λ(x)S1,λ(n, m)

)
tn

n!
. (39)

On the other hand,

r!
(

2
2 + t

)r

(1 + t)x 1
r!

(
logλ(1 + t)

)r = r!
∞∑

l=0

Ch(r)
l (x)

tl

l!

∞∑

m=r
S1,λ(m, r)

tm

m!

= r!
∞∑

n=r

n∑

m=r

(
n
m

)
Ch(r)

n–m(x)S1,λ(m, r)
tn

n!
. (40)

Therefore, by (39) and (40), we obtain the following theorem.

Theorem 9 For r ≥ 1, and n ≥ r, we have

n∑

m=r
Ĝ(r)

m,λ(x)S1,λ(n, m) = r!
n∑

m=r

(
n
m

)
Ch(r)

n–m(x)S1,λ(m, r).

From (20), we can derive the following equation:

1
tr

(
2t

eλ(t) + 1

)r

ex
λ(t) =

∞∑

m=0

Ch(r)
m (x)

1
m!

(
eλ(t) – 1

)m

=
∞∑

m=0

Ch(r)
m (x)

∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

Ch(r)
m (x)S2,λ(n, m)

)
tn

n!
. (41)

On the other hand,

1
tr

(
2t

eλ(t) + 1

)r

ex
λ(t) =

1
tr

∞∑

n=r
Ĝ(r)

n,λ(x)
tn

n!

=
1
r!

∞∑

n=0

Ĝ(r)
n+r,λ(x)
(n+r

n
) tn

n!
. (42)
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Therefore, by (41) and (42), we obtain the following theorem.

Theorem 10 For n ≥ 0, and r ≥ 1, we have

Ĝ(r)
n+r,λ(x) = r!

(
n + r

n

) n∑

m=0

Ch(r)
m (x)S2,λ(n, m).

Remark 11 We note here that Theorem 10 reduces to Theorem 2.4 in [10] if we let λ → 0,
and let r = 1, x = 0. Namely, we get

En =
Gn+1

n + 1
=

n∑

m=0

ChmS2(n, m) (n ≥ 0).

3 Conclusion
In this paper, the degenerate poly-Genocchi polynomials were introduced by means of
the modified degenerate polyexponential function. Those polynomials were represented
in terms of the degenerate Genocchi polynomials and the degenerate Stirling numbers of
the first kind and also of the degenerate Euler polynomials and the Stirling numbers of
the first kind. For the degenerate poly-Genocchi numbers, the generating function was
expressed by iterated integrals. It was shown that a zeta function connected with the de-
generate poly-Genocchi numbers and originally defined for Re(s) > 0 can be continued
to an entire function. Also, its special values at nonpositive integers were determined.
Some identities, relating the degenerate Genocchi numbers and Changhee numbers, were
obtained. In addition, certain identities, involving the higher-order degenerate Genocchi
polynomials and the higher-order Changhee polynomials, were deduced.

The study of degenerate versions has applications to differential equations, identities of
symmetry and probability theory as well as to number theory and combinatorics. Indeed,
infinitely many families of linear and non-linear ordinary differential equations, satisfied
by the generating functions of some degenerate special polynomials, were found with the
purpose of discovering some new combinatorial identities for those polynomials (see [8]).
As to identities of symmetry, for various degenerate versions of many special polynomi-
als, abundant identities of symmetry have been investigated by using p-adic integrals (see
[13]). For probability theory, by using the generating functions of the moments of cer-
tain random variables some identities connecting some special numbers and moments of
random variables were derived (see [19]). As another potential applications in probabil-
ity, we let the reader refer to [23] where there exists a new family of special numbers and
polynomials of higher-order with their generating functions in the spirit of probabilistic
distributions and approach to negative hypergeometric distribution.

As one of our future projects, we would like to continue to study degenerate versions
of certain special polynomials and numbers and their applications to physics, science and
engineering as well as mathematics.
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