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Abstract
In this paper, we discuss the positive solutions of beam equations with the
nonlinearities including the slope and bending moment under nonlocal boundary
conditions involving Stieltjes integrals. We pose some inequality conditions on
nonlinearities and the spectral radius conditions on associated linear operators. These
conditions mean that the nonlinearities have superlinear or sublinear growth. The
existence of positive solutions is obtained by fixed point index on cones in C2[0, 1],
and some examples are given for beam equations subject to mixed integral and
multi-point boundary conditions with sign-changing coefficients.
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1 Introduction and preliminaries
In this paper, we discuss the existence of positive solutions to fourth-order boundary value
problems (BVPs):

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = β1[u], u′(1) = β2[u],

u′′(0) + β3[u] = 0, u′′(1) + β4[u] = 0,

(1.1)

and

⎧
⎨

⎩

–u(4)(t) = g(t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = α1[u], u′(0) = α2[u], u′′(0) = α3[u], u′′(1) = α4[u],
(1.2)

where βi[u], αi[u] (i = 1, 2, 3, 4) are given by

βi[u] =
∫ 1

0
u(t) dBi(t) and αi[u] =

∫ 1

0
u(t) dAi(t)
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involving Stieltjes integrals with Bi, Ai of bounded variation. They model the deflection
of beam equations with the nonlinearities including the slope u′ and bending moment u′′.
The boundary conditions of Stieltjes integrals imply that the mechanism at the end points
depends on the feedback along parts of the beam to control the displacement.

By monotone iteration method, the cantilever beam equation containing the slope term

u(4)(t) = f
(
t, u(t), u′(t)

)

was considered by Alves et al. [1] and Yao [18] separately under the boundary conditions

u(0) = u′(0) = 0, u′′′(1) = g
(
u(1)

)
, u′(1) = 0 or u′′(1) = 0,

where g is a continuous function, and

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Respectively based on fixed point index method and global bifurcation technique, Li [10]
and Ma [12] were devoted to the beam equations involving the bending moment with the
hinged ends

⎧
⎨

⎩

u(4)(t) = f (t, u(t), u′′(t)), t ∈ (0, 1),

u(0) = u′′(0) = u(1) = u′′(1) = 0.

Li [11] was concerned with the cantilever beam equation

⎧
⎨

⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f : [0, 1] × R
3
+ × R– → R+ is continuous. The existence of positive solutions is ob-

tained if the superlinear or sublinear growth conditions are satisfied for the nonlinearity.
However, the boundary conditions in [1, 10–12, 18] are all local. Webb et al. [17] consid-
ered the existence of positive solutions for the beam equation

u(4)(t) = g(t)f
(
t, u(t)

)
, a.e. t ∈ (0, 1)

respectively subject to nonlocal boundary conditions such as

u(0) = 0, u(1) = α[u], u′(0) = 0, u′(1) = 0,

u(0) = 0, u(1) = 0, u′(0) = 0, u′(1) + α[u] = 0,

u(0) = 0, u′′(0) = 0, u(1) = α[u], u′′(1) = 0,

and

u(0) = 0, u(1) = 0, u′′(0) = 0, u′′(1) + α[u] = 0.



Fan et al. Journal of Inequalities and Applications        (2020) 2020:109 Page 3 of 24

In these conditions α[u] =
∫ 1

0 u(s) dA(s) is given by Stieltjes integral. Infante and Pietramala
[6] studied the existence of positive solutions for cantilever beam equation

⎧
⎨

⎩

u(4)(t) = g(t)f (t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0, u′′′(1) + k0 + B(α[u]) = 0,

where k0 is a nonnegative constant, α[u] is Stieltjes integral, and B is a nonnegative con-
tinuous function. The nonlinearity f in [6, 17] is not affected by the slope and bending
moment, and the authors used the method of fixed point index on cone. We also refer to
some other articles, for instance, [2, 5, 7, 9, 14, 19].

Recently, the authors in [13] investigated the existence of positive solutions to the fol-
lowing problems:

⎧
⎨

⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u′(0) + β1[u] = 0, u′′(0) + β2[u] = 0, u(1) = β3[u], u′′′(1) = 0,
(1.3)

and
⎧
⎨

⎩

–u(4)(t) = g(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = α1[u], u′(0) = α2[u], u′′(0) = α3[u], u′′′(1) = 0,
(1.4)

where βi[u], αi[u] (i = 1, 2, 3) are linear functionals involving Stieltjes integrals of signed
measures, and the nonlinearities f , g satisfy the Nagumo condition, which restricts f and
g on u′′′ to quadric growth for the superlinear case, as in Li [11].

If the nonlinearities in (1.3) and (1.4) are independent of u′′′, the restriction of quadric
growth can certainly be rid of. However, the boundary conditions in (1.1) and (1.2) are
different from those in (1.3) and (1.4). Especially the third derivatives with respect to t of
their Green’s functions corresponding to (1.1) and (1.2) may be sign-changing while they
are not corresponding to (1.3) and (1.4), which plays an important part when estimating
the norms in [13]. When BVPs are converted to integral equations, a general method due
to Webb and Infante [16] is applied to use the theory of fixed point index on cones in
C2[0, 1]. Some examples are given for beam equations subject to mixed integral and multi-
point boundary conditions with sign-changing coefficients. We also cite [15] in which a
different approach is applied to the existence of positive solutions for the problem

⎧
⎨

⎩

u(4)(t) = h(t)f (t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = β1[u], u′′(0) + β2[u] = 0, u′′(1) + β3[u] = 0,

where f : [0, 1] ×R+ ×R×R– →R+ is continuous, h ∈ L1(0, 1), and βi[u] is Stieltjes inte-
gral (i = 1, 2, 3).

If the nonempty subset P in Banach space X satisfies the following conditions: (i) it is
a closed convex set, (ii) λx ∈ P for any λ > 0, x ∈ P, and (iii) ±x ∈ P ⇔ x = 0 (0 stands for
the zero element in X), then P is said to be a cone in X. A cone P is called reproducing if
X = P – P. It is well known that if P is a solid cone, i.e., the interior point set P̊ �= ∅, P is
reproducing. Now we state some properties of fixed point index (see [3, 4]).
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Lemma 1.1 Let Ω be a bounded open subset of Banach space X with 0 ∈ Ω and P be a
cone in X. If S : P ∩Ω → P is a completely continuous operator and μSu �= u for u ∈ P ∩ ∂Ω

and μ ∈ [0, 1], then the fixed point index i(S, P ∩ Ω , P) = 1.

Lemma 1.2 Let Ω be a bounded open subset of Banach space X and P be a cone in X. If
S : P ∩ Ω → P is a completely continuous operator and there exists v0 ∈ P \ {0} such that
u – Su �= νv0 for u ∈ P ∩ ∂Ω and ν ≥ 0, then the fixed point index i(S, P ∩ Ω , P) = 0.

Lemma 1.3 (Krein–Rutman) Let P be a reproducing cone in Banach space X and L : X →
X be a completely continuous linear operator with L(P) ⊂ P. If the spectral radius r(L) > 0,
then there exists ϕ ∈ P \ {0} such that Lϕ = r(L)ϕ.

Lemma 1.4 ([8]) Let P be a cone in Banach space X and L : X → X be a completely continu-
ous linear operator with L(P) ⊂ P. If there exist v0 ∈ P \ {0} and λ0 > 0 such that Lv0 ≥ λ0v0

in the sense of partial ordering induced by P, then there exist u0 ∈ P \ {0} and λ1 ≥ λ0 such
that Lu0 = λ1u0.

Throughout this paper, denote the Banach space that consists of all second-order con-
tinuously differentiable functions on [0, 1] by X = C2[0, 1] and the norm by ‖u‖C2 =
max{‖u‖C ,‖u′‖C ,‖u′′‖C}.

2 Inequalities of Green’s function and positive solutions for (1.1)
For BVP (1.1) we make the assumption:

(C1) f : [0, 1] ×R
2
+ ×R– → R+ is continuous, here R+ = [0,∞) and R– = (–∞, 0].

Similar to Webb and Infante [16], BVP (1.1) can be converted to integral equation in
C2[0, 1]

u(t) = (Su)(t) =:
∫ 1

0
kS(t, s)f

(
s, u(s), u′(s), u′′(s)

)
ds, (2.1)

where

kS(t, s) =
〈(

I – [B]
)–1K(s),γ (t)

〉
+ k0(t, s) =

4∑

i=1

κi(s)γi(t) + k0(t, s), (2.2)

〈(I – [B])–1K(s),γ (t)〉 is the inner product in R
4,

Ki(s) =
∫ 1

0
k0(t, s) dBi(t) (i = 1, 2, 3, 4),

γ1(t) = 1, γ2(t) = t, γ3(t) =
1
6

t
(
t2 – 3t + 3

)
, γ4(t) =

1
6

t
(
3 – t2),

κi(s) is the ith component of (I – [B])–1K(s),

k0(t, s) =

⎧
⎨

⎩

1
6 t(1 – s)(3s – t2), 0 ≤ t ≤ s ≤ 1,
1
6 s(t3 – 3t2 + 3t – s2), 0 ≤ s ≤ t ≤ 1.

We put forward the following hypotheses:
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(C2) Bi is of bounded variation and Ki(s) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3, 4);
(C3) The 4 × 4 matrix [B] is positive and its (i, j)th entry is βi[γj], i.e., it has nonnegative

entries. In addition, its spectrum radius r([B]) < 1.

Remark The integral operator S in (2.1) and the corresponding Green’s function kS(t, s) in
(2.2) are obtained completely following the method in Webb and Infante [16, pp. 241–243]
though f is independent of the derivatives of u there.

Lemma 2.1 If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2, 3, 4) and, for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ kS(t, s) ≤ Φ0(s), (2.3)

where

Φ0(s) =
4∑

i=1

κi(s) +
1
6

s(1 – s)(1 + s), c0(t) =
1
6

t
(
t2 – 3t + 3

)
,

and

c1(t)Φ1(s) ≤ ∂kS(t, s)
∂t

≤ Φ1(s), c2(t)Φ2(s) ≤ –
∂2kS(t, s)

∂t2 ≤ Φ2(s), (2.4)

where

Φ1(s) =
4∑

i=2

κi(s) +
1
2

s(1 – s), c1(t) =
1
2
(
1 – t2),

Φ2(s) =
4∑

i=3

κi(s) + s(1 – s), c2(t) = min{t, 1 – t}.

Proof For s ∈ [0, 1], κi(s) ≥ 0 (i = 1, 2, 3, 4) are due to [16, proof of Theorem 2.4] since both
(I – [B])–1 and K(s) are nonnegative.

According to the following two inequalities:

1
6

t
(
t2 – 3t + 3

)
4∑

i=1

κi(s) ≤
4∑

i=1

κi(s)γi(t) ≤
4∑

i=1

κi(s),

1
6

t
(
t2 – 3t + 3

)1
6

s(1 – s)(1 + s)

≤ 1
2

t
(
3 – t2)1

6
s(1 – s)(1 + s)

≤ k0(t, s) ≤ 1
6

s(1 – s)(1 + s),

we have, for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ kS(t, s) =
4∑

i=1

κi(s)γi(t) + k0(t, s) ≤ Φ0(s).
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Moreover, the next two inequalities

1
2

(1 – t)2
4∑

i=2

κi(s) ≤
4∑

i=1

κi(s)γ ′
i (t) ≤

4∑

i=2

κi(s),

1
2

(1 – t)2 1
2

s(2 – s) ≤ (1 – t)2 1
2

s(2 – s) ≤ ∂k0(t, s)
∂t

≤ 1
2

s(1 – s)

imply, for t, s ∈ [0, 1],

c1(t)Φ1(s) ≤ ∂kS(t, s)
∂t

=
4∑

i=1

κi(s)γ ′
i (t) +

∂k0(t, s)
∂t

≤ Φ1(s).

Finally from the two inequalities

min{t, 1 – t}
4∑

i=3

κi(s) ≤ –
4∑

i=1

κi(s)γ ′′
i (t)

= (1 – t)κ3(s) + tκ4(s) ≤
4∑

i=3

κi(s),

min{t, 1 – t}s(1 – s) ≤ –
∂2k0(t, s)

∂t2 ≤ s(1 – s),

it follows that

c2(t)Φ2(s) ≤ –
∂2kS(t, s)

∂t2 = –
4∑

i=1

κi(s)γ ′′
i (t) –

∂2k0(t, s)
∂t2 ≤ Φ2(s)

for t, s ∈ [0, 1]. �

Define the subsets in C2[0, 1] as follows:

P =
{

u ∈ C2[0, 1] : u(t) ≥ 0, u′(t) ≥ 0, u′′(t) ≤ 0,∀t ∈ [0, 1]
}

, (2.5)

K =
{

u ∈ P : u(t) ≥ c0(t)‖u‖C , u′(t) ≥ c1(t)
∥
∥u′∥∥

C ,

– u′′(t) ≥ c2(t)
∥
∥u′′∥∥

C ,∀t ∈ [0, 1];βi[u] ≥ 0 (i = 1, 2, 3, 4)
}

. (2.6)

Clearly both P and K are cones, and it is easy to check that P is a solid cone. Denote the
cone ordering induced by P, u � v for u, v ∈ X if and only if v – u ∈ P and equivalently
v � u.

Now we define linear operators in C2[0, 1]:

(Liu)(t) =
∫ 1

0
kS(t, s)

(
aiu(s) + biu′(s) – ciu′′(s)

)
ds (i = 1, 2), (2.7)

(L3u)(t) = a1

∫ 1

0
kS(t, s)u(s) ds, (2.8)

where ai, bi, ci (i = 1, 2) are nonnegative constants.
Similar to [16], we have the following Lemma 2.2 by Lemma 2.1.
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Lemma 2.2 If (C1)–(C3) hold, then S : P → K and Li : C2[0, 1] → C2[0, 1] are completely
continuous operators with Li(P) ⊂ K (i = 1, 2, 3).

Theorem 2.1 Under hypotheses (C1)–(C3) suppose that
(F1) there exist constants a2, b2, c2 ≥ 0 and r > 0 such that

f (t, x1, x2, x3) ≤ a2x1 + b2x2 – c2x3 (2.9)

for all (t, x1, x2, x3) ∈ [0, 1] × [0, r]2 × [–r, 0]; moreover, the spectral radius r(L2) < 1,
where L2 is defined by (2.7),

(F2) there exist positive constants a1, b1, c1, C0 satisfying

min

{
a1

6

∫ 1

0
c0(s)Φ0(s) ds,

b1

2

∫ 1

0
c1(s)Φ1(s) ds,

c1

2

∫ 1

0

(
κ3(s) + κ4(s)

)
c2(s) ds

}

> 1 (2.10)

such that

f (t, x1, x2, x3) ≥ a1x1 + b1x2 – c1x3 – C0 (2.11)

for all (t, x1, x2, x3) ∈ [0, 1] ×R
2
+ ×R–.

Then BVP (1.1) has one positive solution in K .

Proof (i) First we prove that μSu �= u for u ∈ K ∩ ∂Ωr and μ ∈ [0, 1], where Ωr = {u ∈
C2[0, 1] : ‖u‖C2 < r}.

In fact, if there exist u1 ∈ K ∩ ∂Ωr and μ0 ∈ [0, 1] such that u1 = μ0Su1, then we deduce
from

0 ≤ u1(t), u′
1(t) ≤ r, 0 ≤ –u′′

1(t) ≤ r, ∀t ∈ [0, 1]

and (2.9) that, for t ∈ [0, 1],

u1(t) ≤ (L2u1)(t), u′
1(t) ≤ (L2u1)′(t), u′′

1(t) ≥ (L2u1)′′(t),

thus (I – L2)u1 � 0. Because of the spectral radius r(L2) < 1, we know that I – L2 has a
bounded inverse operator (I – L2)–1 : P → P and u1 � (I – L2)–10 = 0, which contradicts
u1 ∈ K ∩ ∂Ωr .

Therefore, i(S, K ∩ Ωr , K) = 1 follows from Lemma 1.1.
(ii) In this step we construct a homotopy and find a subset ΩR in order to compute the

fixed point index later.
Let M be

max

{ 6C0
∫ 1

0 Φ0(s) ds
a1

∫ 1
0 c0(s)Φ0(s) ds – 6

,
2C0

∫ 1
0 Φ1(s) ds

b1
∫ 1

0 c1(s)Φ1(s) ds – 2
,

C0
∫ 1

0 (κ3(s) + κ4(s)) ds
c1

∫ 1
0 (κ3(s) + κ4(s))c2(s) ds – 2

}

. (2.12)
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Obviously, M > 0 if we notice that

C0

∫ 1

0

(
κ3(s) + κ4(s)

)
ds > 0

since c1
2

∫ 1
0 (κ3(s) + κ4(s))c2(s) ds > 1 by (2.10).

For u ∈ K , define the homotopy H(λ, u) = Su + λv, where

v(t) = C0

∫ 1

0
kS(t, s) ds,

then v ∈ K and H : [0, 1] × K → K is completely continuous.
Let R > max{r, M} and we will show that

H(λ, u) �= u, ∀u ∈ K ∩ ∂ΩR,λ ∈ [0, 1], (2.13)

where ΩR = {u ∈ C2[0, 1] : ‖u‖C2 < R}.
If it does not hold, there exist u2 ∈ K ∩ ∂ΩR and λ0 ∈ [0, 1] such that

H(λ0, u2) = u2, (2.14)

thus (2.11) and Lemma 2.1 yield that

‖u2‖C = u2(1)

=
∫ 1

0
kS(1, s)f

(
s, u2(s), u′

2(s), u′′
2(s)

)
ds + λ0C0

∫ 1

0
kS(1, s) ds

≥
∫ 1

0
kS(1, s)

[
a1u2(s) + b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥
∫ 1

0
kS(1, s)

[
a1u2(s) – C0

]
ds

≥ a1

6

∫ 1

0
Φ0(s)u2(s) ds – C0

∫ 1

0
Φ0(s) ds

≥ a1

6
‖u2‖C

∫ 1

0
c0(s)Φ0(s) ds – C0

∫ 1

0
Φ0(s) ds, (2.15)

∥
∥u′

2
∥
∥

C = u′
2(0)

=
∫ 1

0

∂kS(0, s)
∂t

f
(
s, u2(s), u′

2(s), u′′
2(s)

)
ds + λ0C0

∫ 1

0

∂kS(0, s)
∂t

ds

≥
∫ 1

0

∂kS(0, s)
∂t

[
a1u2(s) + b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥
∫ 1

0

∂kS(0, s)
∂t

[
b1u′

2(s) – C0
]

ds

≥ b1

2

∫ 1

0
Φ1(s)u′

2(s) ds – C0

∫ 1

0
Φ1(s) ds

≥ b1

2
∥
∥u′

2
∥
∥

C

∫ 1

0
c1(s)Φ1(s) ds – C0

∫ 1

0
Φ1(s) ds. (2.16)
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Since u(4)
2 (t) = f (t, u2(t), u′

2(t), u′′
2(t)) + λ0C0 ≥ 0 for t ∈ [0, 1], we know that if 0 ≤ u′′′(0) ≤

u′′′(1), then

∥
∥u′′∥∥

C = –u′′
2(0) ≥ –

1
2
(
u′′

2(0) + u′′
2(1)

)
;

if u′′′(0) ≤ u′′′(1) ≤ 0, then

∥
∥u′′∥∥

C = –u′′
2(1) ≥ –

1
2
(
u′′

2(0) + u′′
2(1)

)
;

if u′′′(0) ≤ 0 ≤ u′′′(1), then there exists ξ ∈ [0, 1] such that

∥
∥u′′

2
∥
∥

C = –u′′
2(ξ ) ≥ –

1
2
(
u′′

2(0) + u′′
2(1)

)
.

Therefore the proof of Lemma 2.1 leads to

∥
∥u′′

2
∥
∥

C ≥ –
1
2
(
u′′

2(0) + u′′
2(1)

)

= –
1
2

∫ 1

0

(
∂2kS(0, s)

∂t2 +
∂2kS(1, s)

∂t2

)
[
f
(
s, u2(s), u′

2(s), u′′
2(s)

)
+ λ0C0

]
ds

=
1
2

∫ 1

0

(
κ3(s) + κ4(s)

)[
f
(
s, u2(s), u′

2(s), u′′
2(s)

)
+ λ0C0

]
ds

≥ 1
2

∫ 1

0

(
κ3(s) + κ4(s)

)[
a1u2(s) + b1u′

2(s) – c1u′′
2(s) – C0 + λ0C0

]
ds

≥ 1
2

∫ 1

0

(
κ3(s) + κ4(s)

)[
–c1u′′

2(s) – C0
]

ds

≥ c1

2
∥
∥u′′

2
∥
∥

C

∫ 1

0

(
κ3(s) + κ4(s)

)
c2(s) ds –

C0

2

∫ 1

0

(
κ3(s) + κ4(s)

)
ds,

which implies by (2.12), (2.15), and (2.16) that

‖u2‖C ≤ M,
∥
∥u′

2
∥
∥

C ≤ M,
∥
∥u′′

2
∥
∥

C ≤ M,

a contradiction to ‖u2‖C2 = R > M.
From (2.13) it follows that

i(S, K ∩ ΩR, K) = i
(
H(0, ·), K ∩ ΩR, K

)
= i

(
H(1, ·), K ∩ ΩR, K

)
(2.17)

by the homotopy invariance property of fixed point index.
(iii) Now we search for an appropriate element in K for the sake of the next step. For the

function c0(t) = 1
6 t(t2 – 3t + 3), we have from (2.8) and Lemma 2.1 that

(L3c0)(t) = a1

∫ 1

0
kS(t, s)c0(s) ds ≥

(

a1

∫ 1

0
c0(s)Φ0(s) ds

)

c0(t).

From (2.10) it follows that a1
∫ 1

0 c0(s)Φ0(s) ds > 6. Since L3 is a completely continuous linear
operator in C[0, 1], we consider the nonnegative cone C+[0, 1] = {u ∈ C[0, 1] : u(t) ≥ 0,∀t ∈
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[0, 1]} in Lemma 1.4. There exist λ1 > 6 and ϕ0 ∈ C+[0, 1]\{0} such that ϕ0 = λ–1
1 L3ϕ0. Ob-

viously ϕ0 ∈ P can be directly verified, and thus ϕ0 ∈ K by Lemma 2.2.
(iv) Now we prove that u – H(1, u) �= νϕ0 for u ∈ K ∩ ∂ΩR and ν ≥ 0, where ϕ0 is as in

step (iii), and hence

i
(
H(1, ·), K ∩ ΩR, K

)
= 0 (2.18)

holds by Lemma 1.2.
If there exist u0 ∈ K ∩ ∂ΩR and ν0 ≥ 0 such that u0 – H(1, u0) = ν0ϕ0. Clearly ν0 > 0 by

(2.13), and thus

u0(t) =
(
H(1, u0)

)
(t) + ν0ϕ0(t) ≥ ν0ϕ0(t)

for t ∈ [0, 1]. Set

ν∗ = sup
{
ν > 0 : u0(t) ≥ νϕ0(t),∀t ∈ [0, 1]

}
,

then ν0 ≤ ν∗ < +∞ and u0(t) ≥ ν∗ϕ0(t) for t ∈ [0, 1]. From (2.11) we have that, for t ∈ [0, 1],

u0(t) =
(
H(1, u0)

)
(t) + ν0ϕ0(t) ≥ (L3u0)(t) + ν0ϕ0(t)

≥ ν∗(L3ϕ0)(t) + ν0ϕ0(t) = λ1ν
∗ϕ0(t) + ν0ϕ0(t).

Since λ1 > 6, we have λ1ν
∗ + ν0 > ν∗, which contradicts the definition of ν∗.

(vi) From (2.17) and (2.18) it follows that i(S, K ∩ ΩR, K) = 0 and

i
(
S, K ∩ (ΩR \ Ωr), K

)
= i(S, K ∩ ΩR, K) – i(S, K ∩ Ωr , K) = –1.

Hence S has one fixed solution, i.e., BVP (1.1) has one positive solution in K . �

Theorem 2.2 Under hypotheses (C1)–(C3) suppose that
(F3) there exist constants a1, b1, c1, C0 ≥ 0 such that

f (t, x1, x2, x3) ≤ a1x1 + b1x2 – c1x3 + C0 (2.19)

for all (t, x1, x2, x3) ∈ [0, 1] ×R
2
+ ×R–, moreover the spectral radius r(L1) < 1;

(F4) there exist constants a2, b2, c2 ≥ 0 and r > 0 such that

f (t, x1, x2, x3) ≥ a2x1 + b2x2 – c2x3 (2.20)

for all (t, x1, x2, x3) ∈ [0, 1] × [0, r]2 × [–r, 0], moreover the spectral radius r(L2) ≥ 1;
where Li : C2[0, 1] → C2[0, 1] (i = 1, 2) are defined by (2.7).

Then BVP (1.1) has one positive solution in K .

Proof Let W = {u ∈ K : there exists a μ ∈ [0, 1] with u = μSu} where S and K are respec-
tively defined in (2.1) and (2.6).
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We first assert that W is a bounded set. In fact, if u ∈ W , then u = μSu for some μ ∈ [0, 1].
From (2.7) and (2.19) we have that

u(t) = μ(Su)(t) = μ

∫ 1

0
kS(t, s)f

(
s, u(s), u′(s), u′′(s)

)
ds

≤
∫ 1

0
kS(t, s)

[
a1u(s) + b1u′(s) – c1u′′(s) + C0

]
ds

= (L1u)(t) + C0

∫ 1

0
kS(t, s) ds

and

(
(I – L1)u

)
(t) ≤ C0

∫ 1

0
kS(t, s) ds =: v(t), t ∈ [0, 1].

Obviously v ∈ P and it is easy to see from (2.19) that, for t ∈ [0, 1],

u′(t) ≤ (L1u)′(t) + v′(t), u′′(t) ≥ (L1u)′′(t) + v′′(t),

thus (I – L1)u � v. Because of the spectral radius r(L1) < 1, we know that I – L1 has a
bounded inverse operator (I – L1)–1, which can be written as

(I – L1)–1 = I + L1 + L2
1 + · · · + Ln

1 + · · · .

Since L1(P) ⊂ K ⊂ P by Lemma 2.2, we have (I – L1)–1(P) ⊂ P, which implies the inequality
u � (I – L1)–1v. Therefore, for t ∈ [0, 1],

0 ≤ u(t) ≤ (
(I – L1)–1v

)
(t), 0 ≤ u′(t) ≤ (

(I – L1)–1v
)′(t),

0 ≥ u′′(t) ≥ (
(I – L1)–1v

)′′(t),

and hence ‖u‖C2 ≤ ‖(I – L1)–1v‖C2 , i.e., W is bounded.
Now select R > max{r, sup W }, then μSu �= u for u ∈ K ∩ ∂ΩR and μ ∈ [0, 1], and i(S, K ∩

ΩR, K) = 1 follows from Lemma 1.1.
Since L2 : P → K ⊂ P and r(L2) ≥ 1, it follows from Lemma 1.3 that there exists ϕ0 ∈

P \ {0} such that L2ϕ0 = r(L2)ϕ0. Furthermore, ϕ0 = (r(L2))–1L2ϕ0 ∈ K .
We may suppose that S has no fixed points in K ∩ ∂Ωr and will show that u – Su �= νϕ0

for u ∈ K ∩ ∂Ωr and ν ≥ 0.
Otherwise, there exist u0 ∈ K ∩ ∂Ωr and ν0 ≥ 0 such that u0 – Su0 = ν0ϕ0, and it is clear

that ν0 > 0. Since u0 ∈ K ∩ ∂Ωr , we have

0 ≤ u0(t), u′
0(t) ≤ r, –r ≤ u′′

0(t) ≤ 0, ∀t ∈ [0, 1].

It follows from (2.2), (2.7), and (2.20) that ∀t ∈ [0, 1],

(Su0)(t) ≥ (L2u0)(t), (Su0)′(t) ≥ (L2u0)′(t), (Su0)′′(t) ≤ (L2u0)′′(t),
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which imply that

u0 = ν0ϕ0 + Su0 � ν0ϕ0 + L2u0 � ν0ϕ0. (2.21)

Set ν∗ = sup{ν > 0 : u0 � νϕ0}, then ν0 ≤ ν∗ < +∞ and u0 � ν∗ϕ0. Thus it follows from
(2.21) that

u0 � ν0ϕ0 + L2u0 � ν0ϕ0 + ν∗L2ϕ0 = ν0ϕ0 + ν∗r(L2)ϕ0.

But r(L2) ≥ 1, so u0 � (ν0 +ν∗)ϕ0, which is a contradiction to the definition of ν∗. Therefore
u – Su �= νϕ0 for u ∈ K ∩ ∂Ωr and ν ≥ 0.

From Lemma 1.2 it follows that i(S, K ∩ Ωr , K) = 0.
Making use of the properties of fixed point index, we have that

i
(
S, K ∩ (ΩR \ Ωr), K

)
= i(S, K ∩ ΩR, K) – i(S, K ∩ Ωr , K) = 1,

and hence S has one fixed point in K . Therefore, BVP (1.1) has one positive solution in K . �

As an example, we consider the fourth-order boundary problem under mixed multi-
point and integral boundary conditions with sign-changing coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = 1
4 u( 1

4 ) – 1
12 u( 3

4 ), u′(1) =
∫ 1

0 u(t)(t – 1
8 ) dt,

u′′(0) + 1
2 u( 1

2 ) – 1
4 u( 3

4 ) = 0, u′′(1) + 1
2 u( 1

4 ) – 1
4 u( 1

2 ) = 0,

(2.22)

thus β1[u] = 1
4 u( 1

4 ) – 1
12 u( 3

4 ), β2[u] =
∫ 1

0 u(t)(t – 1
8 ) dt, β3[u] = 1

2 u( 1
2 ) – 1

4 u( 3
4 ), and β4[u] =

1
2 u( 1

4 ) – 1
4 u( 1

2 ). We estimate some coefficients, and Matlab is used in some places.

K1(s) =
∫ 1

0
k0(t, s) dB1(t) =

1
4

k0

(
1
4

, s
)

–
1

12
k0

(
3
4

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

– 1
36 s3 + 1

96 s, 0 ≤ s ≤ 1
4 ,

1
72 s3 – 1

32 s2 + 7
384 s – 1

1536 , 1
4 < s ≤ 3

4 ,

– 1
192 s + 1

192 , 3
4 < s ≤ 1,

and hence 0 ≤K1(s) < 0.0026;

K2(s) =
∫ 1

0
k0(t, s)

(

t –
1
8

)

dt =
1

120
s5 –

1
192

s4 –
1

16
s3 +

57
960

s (0 ≤ s ≤ 1),

and hence 0 ≤K2(s) < 0.0223;

K3(s) =
∫ 1

0
k0(t, s) dB3(t) =

1
2

k0

(
1
2

, s
)

–
1
4

k0

(
3
4

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

– 1
24 s3 + 49

1536 s, 0 ≤ s ≤ 1
2 ,

1
24 s3 – 1

8 s2 + 145
1536 s – 1

96 , 1
2 < s ≤ 3

4 ,

– 1
32 s2 + 37

1536 s + 11
1536 , 3

4 < s ≤ 1,
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and hence 0 ≤K3(s) < 0.0108;

K4(s) =
∫ 1

0
k0(t, s) dB4(t) =

1
2

k0

(
1
4

, s
)

–
1
4

k0

(
1
2

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

– 1
24 s3 + 3

256 s, 0 ≤ s ≤ 1
4 ,

1
24 s3 – 1

16 s2 + 7
256 s – 1

768 , 1
4 < s ≤ 1

2 ,

– 1
256 s + 1

256 , 1
2 < s ≤ 1,

and hence 0 ≤K4(s) < 0.0025.
The 4 × 4 matrix

[B] =

⎛

⎜
⎜
⎜
⎝

β1[γ1] β1[γ2] β1[γ3] β1[γ4]
β2[γ1] β2[γ2] β2[γ3] β2[γ4]
β3[γ1] β3[γ2] β3[γ3] β3[γ4]
β4[γ1] β4[γ2] β4[γ3] β4[γ4]

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
6 0 1

96
1

192
3
8

13
48

19
320

103
960

1
4

1
16

49
1536

59
1536

1
4 0 3

256
1

256

⎞

⎟
⎟
⎟
⎠

and its spectrum radius r([B]) ≈ 0.2976 < 1. Those mean that (C2) and (C3) are satisfied.
Now we take stock of some constants in Theorem 2.1 and Theorem 2.2.

(
I – [B]

)–1 <

⎛

⎜
⎜
⎜
⎝

1.2066 0.0012 0.0132 0.0070
0.6958 1.3796 0.0941 0.1559
0.3688 0.0895 1.0431 0.0519
0.3073 0.0014 0.0157 1.0064

⎞

⎟
⎟
⎟
⎠

and

(
I – [B]

)–1K(s) <

⎛

⎜
⎜
⎜
⎝

0.0033
0.0340
0.0143
0.0035

⎞

⎟
⎟
⎟
⎠

,

thus kS(t, s) < 0.0033 + 0.0340t + 0.0143 × 1
6 t(t2 – 3t + 3) + 0.0035× 1

6 t(3 – t2) + k0(t, s) <
0.1051. So, for u ∈ C2[0, 1] and t ∈ [0, 1],

∣
∣(Liu)(t)

∣
∣ ≤ 0.1051

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.1051(ai + bi + ci)‖u‖C2 (i = 1, 2),

here Li (i = 1, 2) are defined in (2.7). Since all the terms are nonnegative in the first deriva-
tive of kS(t, s) with respect to t and they are non-positive in the second derivative of kS(t, s),
we also have that, for u ∈ C2[0, 1] and t ∈ [0, 1],

∣
∣(Liu)′(t)

∣
∣ ≤ 0.1680

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.1680(ai + bi + ci)‖u‖C2 (i = 1, 2),
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∣
∣(Liu)′′(t)

∣
∣ ≤ 0.2590

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.2590(ai + bi + ci)‖u‖C2 (i = 1, 2).

Therefore the radius r(Li) ≤ ‖Li‖ ≤ 0.2590(ai + bi + ci) < 1 if

ai + bi + ci < 0.2590–1 (i = 1, 2). (2.23)

On the other hand, we have from Lemma 2.1 and Lemma 2.2 that, for u ∈ K \ {0} and
t ∈ [0, 1],

(L2u)(t) ≥
∫ 1

0
kS(t, s)a2u(s) ds ≥ a2c0(t)

∫ 1

0
Φ0(s)u(s) ds

≥ a2c0(t)
∫ 1

0
Φ0(s)c0(s)‖u‖C ds = a2c0(t)‖u‖C

∫ 1

0
c0(s)Φ0(s) ds

and

∥
∥(L2u)

∥
∥

C = (L2u)(1) ≥ 1
6

a2‖u‖C

∫ 1

0
c0(s)Φ0(s) ds,

hence

(
L2

2u
)
(t) ≥ a2

∫ 1

0
kS(t, s)(L2u)(s) ds

≥ a2c0(t)
∫ 1

0
Φ0(s)(L2u)(s) ds ≥ a2c0(t)

∫ 1

0
Φ0(s)c0(s)

∥
∥(L2u)

∥
∥

C ds

≥ 1
6

a2
2c0(t)‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)2

and

∥
∥
(
L2

2u
)∥
∥

C =
(
L2

2u
)
(1) ≥ 1

36
a2

2‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)2

.

By induction,

∥
∥
(
Ln

2u
)∥
∥

C =
(
Ln

2u
)
(1) ≥

(
a2

6

)n

‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)n

.

As a result, it follows that, for u ∈ K \ {0},

∥
∥Ln

2
∥
∥‖u‖C2 ≥ ∥

∥Ln
2u

∥
∥

C2 ≥ ∥
∥Ln

2u
∥
∥

C ≥
(

a2

6

)n

‖u‖C

(∫ 1

0
c0(s)Φ0(s) ds

)n

,

and according to Gelfand’s formula, the spectral radius

r(L2) = lim
n→∞

∥
∥Ln

2
∥
∥1/n

≥ a2

6

(∫ 1

0
c0(s)Φ0(s) ds

)

lim
n→∞

( ‖u‖C

‖u‖C2

)1/n

=
a2

6

(∫ 1

0
c0(s)Φ0(s) ds

)

,
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which implies that r(L2) ≥ 1 when

a2 ≥ 30240
29

=
6

∫ 1
0

1
6 s(1 – s)(1 + s) × 1

6 s(s2 – 3s + 3) ds

≥ 6
∫ 1

0 c0(s)Φ0(s) ds
. (2.24)

Example 2.1 If

f (t, x1, x2, x3) =
x5

1 + x5
2 – x5

3
1 + x2

1 + x2
2 + x2

3
,

then BVP (2.22) has a positive solution.

Proof Take a2 = b2 = c2 = 1, r < 1, it is easy to check that (2.9) and (2.23) for i = 2 are
satisfied. Now take a1 = 1043, b1 = 69, c1 = 903, it is clear that

a1

6

∫ 1

0
c0(s)Φ0(s) ds =

a1

36

∫ 1

0
s
(
s2 – 3s + 3

)
Φ0(s) ds

>
a1

36

∫ 1

0
s
(
s2 – 3s + 3

)1
6

s(1 – s)(1 + s) ds

>
30240

29
× 1

216

∫ 1

0
s2(s2 – 3s + 3

)
(1 – s)(1 + s) ds = 1,

b1

2

∫ 1

0
c1(s)Φ1(s) ds =

b1

4

∫ 1

0

(
1 – s2)Φ1(s) ds

>
b1

4

∫ 1

0

(
1 – s2)1

2
s(1 – s) ds

>
480

7
× 1

8

∫ 1

0

(
1 – s2)s(1 – s) ds = 1.

We also have

(
I – [B]

)–1 >

⎛

⎜
⎜
⎜
⎝

1.2064 0.0010 0.0130 0.0068
0.6956 1.3794 0.0939 0.1557
0.3686 0.0893 1.0429 0.0517
0.3071 0.0012 0.0155 1.0062

⎞

⎟
⎟
⎟
⎠

(2.25)

and

∫ 1

0
K(s)s(1 – s) ds >

⎛

⎜
⎜
⎜
⎝

31.1 × 10–5

288.9 × 10–5

137.5 × 10–5

27.4 × 10–5

⎞

⎟
⎟
⎟
⎠

. (2.26)

It follows from Lemma 2.1, (2.25), and (2.26) that

c1

2

∫ 1

0

(
κ3(s) + κ4(s)

)
c2(s) ds ≥ c1

2

∫ 1

0

(
κ3(s) + κ4(s)

)
s(1 – s) ds > 1
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since κ3(s) and κ4(s) are the third and the fourth components in (I –[B])–1K(s) respectively,
so (2.10) is valid. It can be seen that (2.11) is satisfied for C0 large enough. Then BVP (2.22)
has a positive solution by Theorem 2.1. �

Example 2.2 If f (t, x1, x2, x3) = 3√x1 – 3√x3, then BVP (2.22) has a positive solution.

Proof Take a1 = 1/2, b1 = 0, c1 = 1/3, C0 = 2 and a2 = 1043, b2 = 0, c2 = 1, r = 1/33685.
Obviously, (2.23) for i = 1 and (2.24) are satisfied, meanwhile conditions (2.19) and (2.20)
are fulfilled. Then BVP (2.22) has a positive solution by Theorem 2.2. �

3 Inequalities of Green’s function and positive solutions for (1.2)
For BVP (1.2) we make the assumption:

(C′
1) g : [0, 1] ×R

3
+ →R+ is continuous.

Similar to Webb and Infante [16], BVP (1.2) can be converted to the integral equation
in C2[0, 1]:

u(t) = (̃Su)(t) =:
∫ 1

0
k̃S(t, s)g

(
s, u(s), u′(s), u′′(s)

)
ds, (3.1)

where

k̃S(t, s) =
〈(

I – [A]
)–1K̃(s), δ(t)

〉
+ k̃0(t, s) =

4∑

i=1

κ̃i(s)δi(t) + k̃0(t, s),

〈(I – [A])–1K̃(s), δ(t)〉 is the inner product in R
4,

K̃i(s) :=
∫ 1

0
k̃0(t, s) dAi(t) (i = 1, 2, 3, 4),

δ1(t) = 1, δ2(t) = t, δ3(t) =
1
6

t2(3 – t), δ4(t) =
1
6

t3,

κ̃i(s) is the ith component of (I – [A])–1K̃(s),

k̃0(t, s) =

⎧
⎨

⎩

1
6 t3(1 – s), 0 ≤ t ≤ s ≤ 1,
1
6 s(3t2 – 3ts + s2 – t3), 0 ≤ s ≤ t ≤ 1.

We put forward the following hypotheses:
(C′

2) Ai is of bounded variation and K̃i(s) ≥ 0, ∀s ∈ [0, 1] (i = 1, 2, 3, 4);
(C′

3) The 4 × 4 matrix [A] is positive whose (i, j)th entry is αi[δj] and whose spectrum
radius r([A]) < 1.

Lemma 3.1 If (C′
2) and (C′

3) hold, then κ̃i(s) ≥ 0 (i = 1, 2, 3, 4) and, for t, s ∈ [0, 1],

c̃0(t)Φ̃0(s) ≤ k̃S(t, s) ≤ Φ̃0(s), (3.2)

where

Φ̃0(s) =
4∑

i=1

κ̃i(s) +
1
6

s(1 – s)(2 – s), c̃0(t) =
1
6

t3,
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and

c̃1(t)Φ̃1(s) ≤ ∂ k̃S(t, s)
∂t

≤ Φ̃1(s), c̃2(t)Φ̃2(s) ≤ ∂ 2̃kS(t, s)
∂t2 ≤ Φ̃2(s), (3.3)

where

Φ̃1(s) =
4∑

i=2

κ̃i(s) +
1
2

s(1 – s), c̃1(t) =
1
2

t2,

Φ̃2(s) =
4∑

i=3

κ̃i(s) + s(1 – s), c̃2(t) = min{t, 1 – t}.

Proof For s ∈ [0, 1], κ̃i(s) ≥ 0 (i = 1, 2, 3, 4) are due to [16, proof of Theorem 2.4] since both
(I – [A])–1 and K̃(s) are nonnegative.

According to the following two inequalities:

1
6

t3
4∑

i=1

κ̃i(s) ≤
4∑

i=1

κ̃i(s)δi(t) ≤
4∑

i=1

κ̃i(s),

1
6

t3 1
6

s(1 – s)(2 – s) ≤ t3 1
6

s(1 – s)(2 – s) ≤ k̃0(t, s) ≤ 1
6

s(1 – s)(2 – s),

we have, for t, s ∈ [0, 1],

c̃0(t)Φ̃0(s) ≤ k̃S(t, s) =
4∑

i=1

κ̃i(s)δi(t) + k̃0(t, s) ≤ Φ̃0(s).

Moreover, the next two inequalities

1
2

t2
4∑

i=2

κ̃i(s) ≤
4∑

i=1

κ̃i(s)δ′
i(t) ≤

4∑

i=2

κ̃i(s),

1
2

t2 1
2

s(1 – s) ≤ t2 1
2

s(1 – s) ≤ ∂ k̃0(t, s)
∂t

≤ 1
2

s(1 – s)

imply, for t, s ∈ [0, 1],

c̃1(t)Φ̃1(s) ≤ ∂ k̃S(t, s)
∂t

=
4∑

i=1

κ̃i(s)δ′
i(t) +

∂ k̃0(t, s)
∂t

≤ Φ̃1(s).

Finally, from the two inequalities

min{t, 1 – t}
4∑

i=3

κi(s) ≤
4∑

i=1

κ̃i(s)δ′′
i (t) = (1 – t)κ3(s) + tκ4(s) ≤

4∑

i=3

κ̃i(s),

min{t, 1 – t}s(1 – s) ≤ ∂ 2̃k0(t, s)
∂t2 ≤ s(1 – s),

it follows that

c̃2(t)Φ̃2(s) ≤ ∂ 2̃kS(t, s)
∂t2 =

4∑

i=1

κ̃i(s)δ′′
i (t) +

∂ 2̃k0(t, s)
∂t2 ≤ Φ̃2(s)

for t, s ∈ [0, 1]. �
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Define the subsets in C2[0, 1] as follows:

P̃ =
{

u ∈ C2[0, 1] : u(t) ≥ 0, u′(t) ≥ 0, u′′(t) ≥ 0,∀t ∈ [0, 1]
}

, (3.4)

K̃ =
{

u ∈ P̃ : u(t) ≥ c0(t)‖u‖C , u′(t) ≥ c1(t)
∥
∥u′∥∥

C ,

u′′(t) ≥ c2(t)
∥
∥u′′∥∥

C ,∀t ∈ [0, 1];αi[u] ≥ 0 (i = 1, 2, 3, 4)
}

. (3.5)

Clearly both P̃ and K̃ are cones, and it is easy to check that P̃ is a solid cone.
Now we define linear operators in C2[0, 1]:

(̃Liu)(t) =
∫ 1

0
k̃S(t, s)

(
ãiu(s) + b̃iu′(s) + c̃iu′′(s)

)
ds (i = 1, 2), (3.6)

(̃L3u)(t) = ã1

∫ 1

0
k̃S(t, s)u(s) ds,

where ãi, b̃i, c̃i (i = 1, 2) are nonnegative constants.
Similar to [16], we have the following Lemma 3.2 by Lemma 3.1.

Lemma 3.2 If (C′
1)–(C′

3) hold, then S̃ : P̃ → K̃ and L̃i : C2[0, 1] → C2[0, 1] are completely
continuous operators with L̃i (̃P) ⊂ K̃ (i = 1, 2, 3), where S̃, P̃, K̃ are defined separately in
(3.1), (3.4), and (3.5).

Theorem 3.1 Under hypotheses (C′
1)–(C′

3) suppose that
(̃F1) there exist constants ã2, b̃2, c̃2 ≥ 0, and r̃ > 0 such that

g(t, x1, x2, x3) ≤ ã2x1 + b̃2x2 + c̃2x3 (3.7)

for all (t, x1, x2, x3) ∈ [0, 1] × [0, r̃]3, moreover the spectral radius r(̃L2) < 1, where L̃2

is defined by (3.6),
[(̃F2) there exist positive constants ã1, b̃1, c̃1, C̃0 satisfying

min

{
ã1

6

∫ 1

0
c̃0(s)Φ̃0(s) ds,

b̃1

2

∫ 1

0
c̃1(s)Φ̃1(s) ds,

c̃1

2

∫ 1

0

(
κ̃3(s) + κ̃4(s)

)
c2(s) ds

}

> 1 (3.8)

such that

g(t, x1, x2, x3) ≥ ã1x1 + b̃1x2 + c̃1x3 – C̃0 (3.9)

for all (t, x1, x2, x3) ∈ [0, 1] ×R
3
+.

Then BVP (1.2) has one positive solution in K̃ .

Proof Let

M = max

{ 6C̃0
∫ 1

0 Φ̃0(s) ds
ã1

∫ 1
0 c̃0(s)Φ̃0(s) ds – 6

,
2C̃0

∫ 1
0 Φ̃1(s) ds

b̃1
∫ 1

0 c̃1(s)Φ̃1(s) ds – 2
,
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C̃0
∫ 1

0 (̃κ3(s) + κ̃4(s)) ds
c1

∫ 1
0 (̃κ3(s) + κ̃4(s))̃c2(s) ds – 2

}

and the rest is similar to the proof of Theorem 2.1 in which c̃0(t) = 1
2 t3 for step (iv). �

Theorem 3.2 Under hypotheses (C′
1)–(C′

3), suppose that
(̃F3) there exist constants ã1, b̃1, c̃1, C̃0 ≥ 0 such that

g(t, x1, x2, x3) ≤ ã1x1 + b̃1x2 + c̃1x3 + C̃0 (3.10)

for all (t, x1, x2, x3) ∈ [0, 1] ×R
3
+, moreover the spectral radius r(̃L1) < 1;

(̃F4) there exist constants ã2, b̃2, c̃2 ≥ 0, and r̃ > 0 such that

g(t, x1, x2, x3) ≥ ã2x1 + b̃2x2 + c̃2x3 (3.11)

for all (t, x1, x2, x3) ∈ [0, 1] × [0, r̃]3, moreover the spectral radius r(̃L2) ≥ 1; where
L̃i : C2[0, 1] → C2[0, 1] (i = 1, 2) are defined by (3.6).

Then BVP (1.2) has one positive solution in K̃ .

Proof Denote the cone ordering induced by P̃, u � v for u, v ∈ X if and only if v – u ∈ P̃
and equivalently v � u. The rest is similar to the proof of Theorem 2.2. �

As an example, we consider fourth-order boundary problem under mixed multi-point
and integral boundary conditions with sign-changing coefficients:

⎧
⎪⎪⎨

⎪⎪⎩

–u(4)(t) = f (t, u(t), u′(t), u′′(t)), t ∈ [0, 1],

u(0) = 1
2 u( 1

4 ) – 1
60 u( 3

4 ), u′(0) =
∫ 1

0 u(t)(t – 1
8 ) dt,

u′′(0) = 1
2 u( 1

2 ) – 1
16 u( 3

4 ), u′′(1) = 1
2 u( 1

4 ) – 1
40 u( 1

2 ),

(3.12)

thus α1[u] = 1
2 u( 1

4 ) – 1
60 u( 3

4 ), α2[u] =
∫ 1

0 u(t)(t – 1
8 ) dt, α3[u] = 1

2 u( 1
2 ) – 1

16 u( 3
4 ), and α4[u] =

1
2 u( 1

4 ) – 1
40 u( 1

2 ). We estimate some coefficients, and Matlab is also used.

K̃1(s) =
∫ 1

0
k̃0(t, s) dA1(t) =

1
2

k̃0

(
1
4

, s
)

–
1

60
k̃0

(
3
4

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

29
360 s3 – 9

160 s2 + 83
7680 s, 0 ≤ s ≤ 1

4 ,

– 1
360 s3 + 1

160 s2 – 37
7680 s + 1

768 , 1
4 < s ≤ 3

4 ,

– 1
7680 s + 1

7680 , 3
4 < s ≤ 1,

and hence 0 ≤ K̃1(s) < 0.0007;

K̃2(s) =
∫ 1

0
k̃0(t, s)

(

t –
1
8

)

dt

= –
1

120
s5 +

1
192

s4 +
1

16
s3 –

13
96

s2 +
73

960
s (0 ≤ s ≤ 1),
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and hence 0 ≤ K̃2(s) < 0.0129;

K̃3(s) =
∫ 1

0
k̃0(t, s) dA3(t) =

1
2

k̃0

(
1
2

, s
)

–
1

16
k̃0

(
3
4

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

7
96 s3 – 13

128 s2 + 239
6144 s, 0 ≤ s ≤ 1

2 ,

– 1
96 s3 + 3

128 s2 – 145
6144 s + 1

96 , 1
2 < s ≤ 3

4 ,

– 37
6144 s + 37

6144 , 3
4 < s ≤ 1,

and hence 0 ≤ K̃3(s) < 0.0046;

K̃4(s) =
∫ 1

0
k̃0(t, s) dB4(t) =

1
2

k̃0

(
1
4

, s
)

–
1

40
k̃0

(
1
2

, s
)

=

⎧
⎪⎪⎨

⎪⎪⎩

19
240 s3 – 9

160 s + 3
256 s, 0 ≤ s ≤ 1

4 ,

– 1
240 s3 + 1

160 s2 – 1
256 s + 1

768 , 1
4 < s ≤ 1

2 ,

– 1
1280 s + 1

1280 , 1
2 < s ≤ 1,

and hence 0 ≤ K̃4(s) < 0.0008.
The 4 × 4 matrix

[A] =

⎛

⎜
⎜
⎜
⎝

α1[δ1] α1[δ2] α1[δ3] α1[δ4]
α2[δ1] α2[δ2] α2[δ3] α2[δ4]
α3[δ1] α3[δ2] α3[δ3] α3[δ4]
α4[δ1] α4[δ2] α4[δ3] α4[δ4]

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

29
60

9
80

83
7680

1
7680

3
8

13
48

73
960

9
320

7
16

13
64

239
6144

37
6144

19
40

9
80

3
256

1
1280

⎞

⎟
⎟
⎟
⎠

and its spectrum radius r([A]) ≈ 0.6444 < 1. Those mean that (C′
2) and (C′

3) are satisfied.
Now we take stock of some constants in Theorem 3.1 and Theorem 3.2.

(
I – [A]

)–1 <

⎛

⎜
⎜
⎜
⎝

2.2565 0.3651 0.0545 0.0110
1.3460 1.6266 0.1445 0.0469
1.3195 0.5123 1.0962 0.0213
1.2398 0.3627 0.0551 1.0116

⎞

⎟
⎟
⎟
⎠

and

(
I – [A]

)–1K̃(s) <

⎛

⎜
⎜
⎜
⎝

0.0065
0.0226
0.0126
0.0066

⎞

⎟
⎟
⎟
⎠

,

thus k̃S(t, s) < 0.0065 + 0.0226t + 0.0126 × 1
6 t2(3 – t) + 0.0066 × 1

6 t3 + k̃0(t, s) < 0.0987. So,
for u ∈ C2[0, 1] and t ∈ [0, 1],

∣
∣(̃Liu)(t)

∣
∣ ≤ 0.0987

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.0987(ai + bi + ci)‖u‖C2 (i = 1, 2),
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here L̃i (i = 1, 2) are defined in (3.6). Since all the terms are nonnegative in the first and
second derivatives of kS(t, s) with respect to t, we also have that, for u ∈ C2[0, 1] and t ∈
[0, 1],

∣
∣(̃Liu)′(t)

∣
∣ ≤ 0.1573

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.1573(ai + bi + ci)‖u‖C2 (i = 1, 2),

∣
∣(̃Liu)′′(t)

∣
∣ ≤ 0.2597

∫ 1

0

(
ai

∣
∣u(s)

∣
∣ + bi

∣
∣u′(s)

∣
∣ + ci

∣
∣u′′(s)

∣
∣
)

ds

≤ 0.2597(ai + bi + ci)‖u‖C2 (i = 1, 2).

Therefore the radius r(̃Li) ≤ ‖Li‖ ≤ 0.2597(ai + bi + ci) < 1 if

ai + bi + ci < 0.2597–1 (i = 1, 2). (3.13)

On the other hand, we have from Lemma 3.1 and Lemma 3.2 that, for u ∈ K̃ \ {0} and
t ∈ [0, 1],

(̃L2u)(t) ≥
∫ 1

0
k̃S(t, s)̃a2u(s) ds ≥ ã2̃c0(t)

∫ 1

0
Φ̃0(s)u(s) ds

≥ ã2̃c0(t)
∫ 1

0
Φ̃0(s)̃c0(s)‖u‖C ds = ã2̃c0(t)‖u‖C

∫ 1

0
c̃0(s)Φ̃0(s) ds

and

∥
∥(̃L2u)

∥
∥

C = (̃L2u)(1) ≥ 1
6

ã2‖u‖C

∫ 1

0
c̃0(s)Φ̃0(s) ds,

hence

(
L̃2

2u
)
(t) ≥ ã2

∫ 1

0
k̃S(t, s)(̃L2u)(s) ds ≥ ã2̃c0(t)

∫ 1

0
Φ̃0(s)(̃L2u)(s) ds

≥ ã2̃c0(t)
∫ 1

0
Φ̃0(s)̃c0(s)

∥
∥(̃L2u)

∥
∥

C ds ≥ 1
6

ã2
2̃c0(t)‖u‖C

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)2

and

∥
∥
(
L̃2

2u
)∥
∥

C =
(
L̃2

2u
)
(1) ≥ 1

36
ã2

2‖u‖C

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)2

.

By induction,

∥
∥
(
L̃n

2u
)∥
∥

C =
(
L̃n

2u
)
(1) ≥

(
ã2

6

)n

‖u‖C

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)n

.

As a result, it follows that, for u ∈ K̃ \ {0},

∥
∥̃Ln

2
∥
∥‖u‖C2 ≥ ∥

∥̃Ln
2u

∥
∥

C2 ≥ ∥
∥̃Ln

2u
∥
∥

C ≥
(

ã2

6

)n

‖u‖C

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)n

,



Fan et al. Journal of Inequalities and Applications        (2020) 2020:109 Page 22 of 24

and according to Gelfand’s formula, the spectral radius

r(̃L2) = lim
n→∞

∥
∥̃Ln

2
∥
∥1/n

≥ ã2

6

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)

lim
n→∞

( ‖u‖C

‖u‖C3

)1/n

=
ã2

6

(∫ 1

0
c̃0(s)Φ̃0(s) ds

)

,

which implies that r(̃L2) ≥ 1 when

ã2 ≥ 5040 =
6

∫ 1
0

1
6 s3 × 1

6 s(1 – s)(2 – s) ds
≥ 6

∫ 1
0 c̃0(s)Φ̃0(s) ds

. (3.14)

Example 3.1 If

g(t, x1, x2, x3) =
3
2 x5

1 + x5
2 + x5

3

1 + x2
1 + x2

2 + x2
3

,

then BVP (3.12) has a positive solution.

Proof Take ã2 = 3/2, b̃2 = c̃2 = 1, r < 1, it is easy to check that (3.10) and (3.13) for i = 2 are
satisfied. Now take ã1 = 5040, b̃1 = 160, c̃1 = 990, it is clear that

ã1

6

∫ 1

0
c̃0(s)Φ̃0(s) ds =

ã1

36

∫ 1

0
s3Φ̃0(s) ds

>
ã1

36

∫ 1

0

1
6

s4(1 – s)(2 – s) ds

= 5040 × 1
36

∫ 1

0

1
6

s4(1 – s)(2 – s) ds = 1,

b̃1

2

∫ 1

0
c̃1(s)Φ̃1(s) ds =

b̃1

4

∫ 1

0
s2Φ̃1(s) ds

>
b̃1

4

∫ 1

0

1
2

s3(1 – s) ds = 160 × 1
4

∫ 1

0

1
2

s3(1 – s) ds = 1.

We also have

(
I – [A]

)–1 >

⎛

⎜
⎜
⎜
⎝

2.2563 0.3649 0.0543 0.0108
1.3458 1.6264 0.1443 0.0467
1.3193 0.5121 1.0960 0.0211
1.2396 0.3625 0.0549 1.0114

⎞

⎟
⎟
⎟
⎠

(3.15)

and

∫ 1

0
K̃(s)s(1 – s) ds >

⎛

⎜
⎜
⎜
⎝

3.2 × 10–5

150 × 10–5

48.6 × 10–5

6.7 × 10–5

⎞

⎟
⎟
⎟
⎠

. (3.16)
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It follows from Lemma 3.1, (3.15), and (3.16) that

c̃1

2

∫ 1

0

(
κ̃3(s) + κ̃4(s)

)
c2(s) ds ≥ c̃1

2

∫ 1

0

(
κ̃3(s) + κ̃4(s)

)
s(1 – s) ds > 1

since κ̃3(s) and κ̃4(s) are the third and the fourth components in (I –[A])–1K̃(s) respectively,
so (3.8) is valid. It can be seen that (3.9) is satisfied for C̃0 large enough. Then BVP (3.12)
has a positive solution by Theorem 3.1. �

Example 3.2 If g(t, x1, x2, x3) = √x1 + √x4, then BVP (3.12) has a positive solution.

Proof Take ã1 = c̃1 = 1, b̃1 = 0, C̃0 = 1/2 and ã2 = 5040, b̃2 = 0, c̃2 = 1, r̃ = 3.9 × 10–8. Obvi-
ously, (3.13) for i = 1 and (3.14) are satisfied, meanwhile conditions (3.10) and (3.11) are
fulfilled. Then BVP (3.12) has a positive solution by Theorem 3.2. �
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