Pecari¢ and Peri¢ Journal of Inequalities and Applications (2020) 2020:108 ® Journal of Inequalities and Applications
https://doi.org/10.1186/513660-020-02369-x a SpringerOpen Journal

RESEARCH Open Access

Check for
updates

Refinements of the integral form of Jensen’s
and the Lah-Ribaric¢ inequalities and
applications for Csiszar divergence

J. Petari¢' and J. Peri¢?”

“Correspondence: jperic@pmfst.hr

’Department of Mathematics, Abstract

Faculty of Science, University of In thi . fi fthe i I f) o l dth
split, Split, Croatia n this paper, we give refinements of the integral form of Jensen's inequality and the
Full list of author information is Lah-Ribari¢ inequality. Using these results, we obtain a refinement of the Holder
available at the end of the article inequality and a refinement of some inequalities for integral power means and

quasiarithmetic means. We also give applications in information theory, namely, we
give some interesting estimates for the integral Csiszar divergence and its important
particular cases.

MSC: 26D15; 94A15

Keywords: Jensen's inequality; Lah—Ribari¢ inequality; Hermite—Hadamard
inequality; Holder inequality; Csiszar divergence; Integral form

1 Introduction
Let I be an interval in R, and let f: / — R a convex function. If x = (x1,...,%,) is any n-
tuple in I” and p = (p1,...,p,) a nonnegative n-tuple such that P, = >, p; > 0, then the

well-known Jensen inequality

f Pinixi < Pinif(xi) (1.1)
" =1 =1

holds (see [6] or, e.g., [16, p. 43]). If f is strictly convex, then (1.1) is strict unless x; = ¢ for
allie{j:p;>0}.

Jensen’s inequality is probably the most important inequality: it has many applications
in mathematics and statistics, and some other well-known inequalities are its particular
cases (such as Cauchy’s inequality, Holder’s inequality, A—-G—H inequality, etc.).

One of many generalizations of the Jensen inequality is its integral form (see [1, 7], or,
e.g., [8]).

Theorem 1.1 (Integral form of Jensen’s inequality) Letg: [a,b] — R be an integrable func-

tion, and let p: [a,b] — R be a nonnegative function. If f is a convex function given on an
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interval I that includes the image of g, then

1 [t 1
f<% / p(t)g(t)dt)s% / p0)f (g(0) dt, (12)

where

P(t):/ px) dx.

Our first main result is a refinement of inequality (1.2).
Strongly related to Jensen’s inequality is the Lah—Ribari¢ inequality (see [11] or, e.g., [13
p- 9]). Its integral form is given in the following theorem.

Theorem 1.2 (Integral form of the Lah—Ribari¢ inequality) Let g: [a,b] — R be an inte-
grable function such that m < g(t) < M for t € [a,b], m <M, and let p: [a,b] — R be a
nonnegative function. If f is a convex function given on an interval I such that [m, M] C I,
then

b _ o —
s || POre@)de = 3= gom 4 £ s, 13)

where P is given as before, and

_ [ pog)at
£ D)

Our second main result is a refinement of inequality (1.3).

Another famous inequality established for the class of convex functions is the Hermite—
Hadamard inequality. This double inequality, which was first discovered by Hermite in
1881, is stated as follows (see, e.g., [16, p. 137]). Let f be a convex function on [a,b] C R,
where a < b. Then

a+h 1 b f(a) +£(b)
f(T) = m/ﬂ Sfx)dx < 5 (1.4)

This result was later incorrectly attributed to Hadamard, who apparently was not aware
of Hermite’s discovery, and today, when relating to (1.4), we use both names.

This result can be improved by applying (1.4) on each subinterval [a, %~ atb] [#, b], and
the following result is obtained (see [14, p. 37]):

f(d;b)_lfb—/f(x)dx<L<f(a)+f(b (15)

where /= 1(f(322) + f(2230)) and L = J(f(252) + L2L©)),
The following improvement of (1.5) is given in [2].

Theorem 1.3 Let f: I — R be a convex function on I. Then for all ) € [0,1] and a,b € I,
we have

b
f(“;b) I = / F)dx < L) sw, (1.6)
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where

I(A) = Af(W) +(1 —)»)f<(1 +A)b ; (1 —)\,)a)

and
L) = %(f()»b +(1- A)a) +Af(a) + (1 - A)f(b)).

Inequality (1.6) for A = % gives inequality (1.5). Further improvement was given in [3].

Theorem 1.4 Let I C R be an interval, and let f: I — R be a convex function. Let
@: [a,b] — I be such thatf o @ is also convex, wherea <b. Thenforn e N, Ao =0, Ayy1 =1,

and arbitrary 0 <Xiy <--- < i, <1, we have

b b
f(bia/a qﬁ(x)dx)fl(kl,...,kn)fﬁ/afo(b(x)dx (1.7)
< LGy <12 2@ ;foqj(b), (1.8)
where
n 1 (I=Agy1)a+rpi1b

l(}‘l:”-:)‘n) = (}‘k+l _)\k)f<

k=0

S D(x dx)
Mer1 = )b = @) Jaongarah )

and

L0 b = Xn:()»ku B kk)fo D((1 = Ag)a + Axb) +];o D((1 = Agy1)a + )\k,rlb)'

k=0

Applying the previous theorem to @ (x) = x and # = 1, we get inequality (1.6).
We also give a refinement of the Hermite—Hadamard inequality. In the last section, we
give some interesting estimates for the integral Csiszar divergence and for its important

particular cases.

2 New refinements

Our first result is a refinement of the integral form of the Jensen inequality (1.2).

Theorem 2.1 Let g be an integrable function defined on an interval [a,b], and let
ag,d1,...,0y-1,0, be such that a = ag < ay < --- <ay_1 <a, =b. If f is a convex function
given on an interval I that includes the image of g, then

1 [ 1 ([ e POg(8) dt
f(HBﬁ’mwmﬁ)iﬁﬁgxxH””ﬁy(ijMM)

1 b
SREAMW@mﬂ @.1)
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where p: [a,b] — R is a nonnegative function, and

P(t):/ p(x) dx.

Proof Let ag,ay,...,a,-1,a, be such thata =ayg <a; <--- <a,_1 <a, =b. Then we have

(using Jensen’s inequality)

1 (? 1
f(% / p(t)g(t)dt): (P— > / | p(t)g(t)dt)
1 <& [ pOg() dt
- 1) dt i-1
(P(b) ~ (/ P10 ) o pe)dt )
1 < Jol p(t)g(®)dt
0] 1<f’” 04 )/( [ plode )

which is the left-hand side of (2.1).
Now we will use inequality (1.2) on each subinterval [a;_;,4;]:

1 < ai a
WZ([; P ) (f”’ p(o)dt /ailp(t)g(t)dt>

=1

1
< P(b) Z(/ (t)dt>m/al lp(tf(g(t)dt

which is the right-hand side of (2.1). O

The next result is a refinement of the integral form of the Lah—Ribari¢ inequality (1.3).

We need the following lemma.

Lemma 2.2 If f is a convex function on an interval I, then for a,b,u,c,d € I such that

a<b<u<c<d,b<c, wehave

Cc

—-u d-u —-a
_bf(b)+ - f(C)_d el (a)+ —/@.

Proof We can write

and since f is convex,

d-b b-a
f(b)Smf(ﬂ)+ﬂf(d),
d-c c—a
f(C)_d afﬂ)+d af(d)

Page 4 of 16
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Now we have

C:uf(b)+u:bf(c)
uld-»b b- bld-c c—a
< S| o @ |
d-u u
ar AR -

Theorem 2.3 Let g be an integrable function defined on an interval [a,b], and let
ag,d1,...,0y-1,a, be such that a =ag < ay < -+ < ay1 <a, =b and m; < g(t) < M; for
telai,al,m<M;,i=1,...,n, m=miNep, nm;, and M = max;eq,. o M;. If f is a con-

vex function given on an interml I that includes the image of g, then

1 b
%/ p(6)f (g(v)) dt

n

M;-g
_P(b)z [ ) +

f (m) + f (M), (2.2)
—-m

=< M —
where p: [a,b] — R is nonnegative function,
t
PO - [ poa,
and g,g;, p; are defined as

&= P(b) ’ &= fa, PO dt l—/allp(t)dt.

Proof We will use (1.3) on each subinterval [a;_1,a;]:
1 b
P0) / p)f (g(0))dt

1 o /“i
=— ) (g(2)) dt
P(b); » )f (g(®)
., M, Jai PO dt Jal, g dr

_ L / “ 0)dt Y i p0ar Fom) + Jul plo)de mjf(M‘)
T Pb) aHp M; — m; l M;—m; vl

which is the left-hand side of inequality (2.2).

Usingm <m; < g <M; <M,m < M,m; < M;, and Lemma 2.2, we get

n

M; gl
b) sz[ i) +

iM ~ d “ dt—p;
1 Z[p Jab p(6)g(®) tf(m)+ [ ployg(e)dt pmf(M)]

gi—m; f(Mz):|
i—m;

_P(b) M-m M-m

Page 5of 16
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M= 1 ), p(Dg(t)dt
1 |:Z 1P > 1flll7 g )

- % M-m
A p(g(t)de - ;
+ Zz-l giilp(j)j( ) Zz 1Di f(M)i|
- m
_ [Ppgde 1L pog(e)ar
S < C) N L
=i, St M),

which is the right-hand side of (2.2).

Remark 2.4 1f we set p(t) = 1 in Theorem 2.1, then we get (1.7) in the form

1 o g(t)dt
f(b /g(t)dt)<—2(al ai- 1)f(f' i )

1
=< m/; f(g(t))dt

In particular, for g(£) = ¢, this gives

a+b 1 < a1 +a; 1 b
(% )sfa;wi—au)f( S <5 [rom

which is a refinement of the left-hand side of (1.6).
Analogously, from Theorem 2.3 we have (for p(t) = 1)

1 b
m/ fg®)de
Ve pwfams g
<— i~ i —= i —= M;
< g )| =)« e )|
[z et dt [2ewde
R = -}
- M- M-m

and for g(¢) = t,m; = a;_1, M; = a;, we get

b
ﬁ / f@)dt
< Zw, o) ) s~ a)|
R flai-1) +f(a;)
= b—a ;(fli —%-1)%
<f(ﬂ)+f(b)’
- 2

which is a refinement of the right-hand side of (1.6).

Using our main result, we give a refinement of the Holder inequality (more about the

Holder inequality see [16]).

Page 6 of 16
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Corollary 2.5 Let p,q € R be such that }7 + é =1. Let w,g1, and g, be nonnegative functions
defined on [a, b] such that wg}, wgi, wgi1g, € L'([a, b]).
(i) Ifp>1, then

b
/ W)@ (D) dt

b 1
< ([ wogtar)
n a; 1-p a; p 117
x (Z( / w(t)gd (t)dt) ( / | w(t)gl(t)gz(t)dt) )

=1 i -

b i !
5( / w(t)gf(t)dt) ( / w(t)gz(t)dt) )

(i) fp<1,p#0, then

b H 1
( f w(t)g) (t) dt) ( / w(t)gl(t) dt)
< Z(/ g% (£) dt) (fﬂi w(t)gd(t) dt)q

b
=< / w(t)g1(t)g,(¢) dt.

_q
Proof For the case p > 1, we use Theorem 2.1 with p(£) = w(t)gi(¢), g(¢) = gl(t)g2 ? and the
function f(x) = x”, which is convex for x > 0,p > 1. From (2.1) we get

(; fbw(t) 1(8)g1 () X dt)
g de Ja 2SR

L ([ [ WO (0g (0 de

= rmaod o mostoa) (P T )
1 b q

= W / w(t)gh (1) (g1(0)g,” (1)) d.

2

p

Using g — 1% = 1, multiplying by f: w(t)gi(t) dt, and taking the power 1%, we have

b 1%_1 b
( / w()g! (0 dt) ( / w(t)gla)gz(t)dt)

n a; 1-p a; V4 117
(Z( [ wogtoa) ([ w(t)gmt)gz(t)dt))

i=1

: }
5( / w(t)gf(t)dt) .

IA

Page 7 of 16



Pecari¢ and Peri¢ Journal of Inequalities and Applications (2020) 2020:108 Page 8 of 16

Now multiplying by ( f w(t)gl(t) dt)e, 1, we get

b
/ WO (g0 dt

n

b i i 1-p a; p 1%
< ([ wotoar)’ (Z( [ woga) ([ w(t)gl(t)gz(t)dt))

=1 Y40 -

b : b ;
5( / w(t)g?(t)dt) < / w(t)gf(t)dt) .

For 0 < p < 1, we use Theorem 2.1 with p(t) = w(t)g?(¢), g(t) = g} (£)g,(¢), and the func-
1
tion f(x) = x#, which is convex for x > 0,0 < p < 1. From (2.1) we get

1 b %’
(W/ wHgl () (g dt)
2

1 "o ora St wogs Ogh (g, de\ »
= f w(t)g](t) dt 21:(/ w(tg: (@) d >( Jor wt)gs () dt )
1

b 1
< (0)gd (1) (e (1), )7 d
Frodod / 10087 d

Now using g — = 1 and multiplying by f (t)gd(¢) dt, we have

b ; :
< / w(t)gf(t)dt) < / w(t)gz(t)dt)
<Z</ O t)dt) (/ w(t)gf(t)dt)p

b
< [ Wi og0dr
If p < 0, then 0 < g < 1, and we have the same result by symmetry. O

Let p and g be positive integrable functions defined on [4, b]. Then the integral power
means of order r € R are defined as follows:

(T Ja PRE @7, 770,
M,(g;p;a,b) = e

(fa x)logg(x dx)’ =0
12 p)dx

Let x = (x1,...,%,) and w = (wy,...,w,) be positive n-tuples. The weighted power mean
(of the n-tuple x with weight w) of order r € R is defined as

1 1
(s Tha v 40

1 n 1
Z}_’l Wi Zi:l Wilogxi
e~i=1"i

M, (x;w) =
= (]_[;11 x:vl) Z?:l Wi N V= 0,

In this paper, it is more suitable to use the notation M, (x; w;; 1, ).
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Using our main result, we obtain following inequalities for integral power means.

Corollary 2.6 Let p and g be positive integrable functions defined on [a,b), and let
ag,A1s...,0,-1,0, be such that a =ag < a; <---<a,_1 <a,=b. Let s,t € R be such that
s<t. Then

M(g; p;a,b) EM:<Ms(g;p;ai_1,ai); / " p) dx;l,_n>
aj-1
< M(g;p;a.b), (2.3)
My(g; p; a,b) > M (Mt(g;p;a,-_l,ai); /ai plx) dx;l,_n)
a;-1
> M,(g; p;a.b). (2.4)
Proof We use Theorem 2.1 with f(x) = x5 for x > 0,s,t € R,s,t #0,s < t (convex on

(0, +00)). From (2.1) we get

1 b f 1 n a; 1 a; ¢
(% /a P dx) = % ;(/ﬂi_lp(x) dx) <m /a,-_l px)g(x) dx)
1 [ .
< 5 | Pt

Substituting ¢ with g* and taking the power %, we get the result.
Similarly, we use Theorem 2.1 with f(x) = xt forx>0,5,t €R,s,¢ #0,s < t (concave on

(0, +00)). From (2.1) we get

1 b % 1 n a; 1 a; %
(%./a pleE) dx) = P(b) ;(/“i—l pk) dx) <m L.i 117(9C)g(96) dx)

1 [P
> P0) /a plx)gt(x) dx.

Substituting g with g* and takingthe power %, we get the result.
The cases ¢ = 0 and s = 0 follow from inequalities (2.3) and (2.4) by simple limiting pro-

cess. O

Means of the type

Mt(Ms(g;p;ﬂi—l,ﬂi);/ lp(x)dx;l,_l’l>

aj-1

can be regarded as mixed means.
Let p be positive integrable function defined on [4, b], and let g be any integrable func-
tion defined on [a, b]. Then for a strictly monotone continuous function /# with domain

belonging to the image of g, the quasiarithmetic mean is defined as follows:

1 b
_ h dx ).
- / () x)

My (g;p;a,b =h1(
n(g;p;a,b) f:p(x)d
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Using our main result, we obtain following inequalities for quasiarithmetic means.

Corollary 2.7 Let p be positive integrable function defined on [a, b), let g be an integrable
function defined on [a, b, and let ay, a1, ...,a,-1,a, be such thata =ag<a; <---<dy_1 <
ay = b. Also, assume that h is a strictly monotone continuous function with domain belong-
ing to the image of g. I f o h™! is a convex function, then

n

f (Mg p;a,b)) < % Z(f i px) dx)f(Mh(g;p; a;1,a;)

i=1

1 b
= % /a P(x)f(g(x)) dx
Proof We use Theorem 2.1 withf — fohlandg— hog. 0

3 Applications in information theory
In this section, we give some interesting estimates for the integral Csiszar divergence and
for its important particular cases (see, e.g., [4, 5, 9, 10, 12, 15]).

Definition 3.1 (Csiszar divergence) Let f: I — R be a function defined on some positive
interval I, and let p, q: [a,b] — R* be two probability density functions such that p t) el
for t € [a, b]. The Csiszér divergence is defined as

b
Calp,q) = / q(ﬂf(%) dt

Theorem 3.2 Let f: [ — R be a convex function defined on a positive interval I, let
P, q: la,b] — R* be probability density functlons such that p e I for t € [a,b], and let
ag, a1y ...,0,1,0, be suchthata=ag<a;<---<a,_1<a, = b Then

" ai f;ﬂl p(t)dt
f() < ;(/;H q(t) dt)./(m) <Cilp,q).

Proof Using Theorem 2.1 with p - gand g — i—;, we obtain the result.

d fal 1Pt
a,l q(t)dt
i=1,...,n O

The condition Z ( € [ for ¢t € [a,b] obviously implies that 1 € I an ‘eI for

Theorem 3.3 Let f: I — R be a convex function defined on a positive interval 1, let
P, q: la,b] — R* be probability density functions such that p e I for t € [a,b], and let

13
g, A1y ...,0y-1,0, be such that a =ay < a1 < -+ < ay_1<a, = b Let m; < pt) < M; for

telai1,a;l,m<Myi=1,...,n, m=min;., nm,,andM max;-1,.,, M;. Then
Ca(p,q)
M, - j;l’_ | p(o)dt f;’;'l pdt o,
Jab | q)at Jab, q(t)d
< t)dt [ el S . ‘7 M:
Z(/ a(® )[ T ) + ()

- 1-m
< M_mf(m)+mf(M)~



Pecari¢ and Peri¢ Journal of Inequalities and Applications (2020) 2020:108 Page 11 0of 16

Proof Using Theorem 2.3 with p — g and g — %’, we obtain the result. O

Definition 3.4 (Shannon entropy) Let p: [4,b] — R* be a probability density function.
The Shannon entropy is defined as

b
SE(p) = / (t)logp(t) dt.

Corollary 3.5 Let q: [a,b] — R* be a probability density function, and let ay,ay, ...,
n_1,a, besuchthata=ay<ay <---<a,_1<a,=b. Then

n a; aj td
—log(b—a) < Z(/ q(t) dt) lo (fal 1_616(1 )1 t) < -SE(g).

i=1

Proof Using Theorem 3.2 with f(t) = —logt, t € R*, and p(¢) = ﬁ, t € [a, b], we obtain
the result. O

Corollary 3.6 Let q: [a,b] — R* be a probability density function, let ag,a1,...,d,-1,a,
besuchthata=ag<a; <---<a,_1<a, =b,and let m; < ﬁ < M; fort € a;,_1,a;), m; <

M;,i=1,...,n,m=ming.y,_,m; and M = max,_,_,M; Then

.....

—SE(q) + log(b — a)

aj ﬂ aji—aj_
441 _Mi m; — i—4i 1

(b-a) [5 | qlt (b-a) a1 | a(®)dt
< t) dt i1 log m; i1 log M;
> ([ o) [ o s L ]
1-M m—-1
=< logm + log M.
M-m —m

Proof Using Theorem 3.3 with f(t) = —logt, t € R*, and p(¢) = ﬁ, t € [a, b], we obtain
the result. O

Definition 3.7 (Kullback-Leibler divergence) Let p,q: [a,b] — R* be two probability
density functions. The Kullback-Leibler divergence is defined as

b
KLa(p, q) = / (t)log(pg ;)dt.

Corollary 3.8 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
Ay 1,0, besuchthata=ay<a1<---<a,_1<a,=b. Then

0< Z(/ p(t) dt> 1og(§““78) <KL4(p, q).

Proof Using Theorem 3.2 with f(¢) = tlogt, t € R*, we obtain the result. O

Corollary 3.9 Let p,q: [a,b] — R* be probability density functions, let ag, a1, ..., dy_1,a,
besuch thata=ag< a1 <---<ay_1<a,=Db, and let m; < ﬁ <M, fort € lai_1,ai], m; <



Pecari¢ and Peri¢ Journal of Inequalities and Applications (2020) 2020:108

M;,i=1,...,n,m=ming.y,_,m; and M = max,_,_,M; Then

KL4(p, q)
M, Jiap0d ATCL .
b fala@ar f wqwadr
- —-m
< mlogm + MlogM.
- —-m
Proof Using Theorem 3.3 with f(¢) = tlogt, t € R*, we obtain the result. g

Definition 3.10 (Variational distance) Let p,q: [a,b] — R* be two probability density
functions. The variational distance is defined by

b
Vil = [ 1pt0)- a(0] .

The following corollary can be also proved elementarily using the triangle inequality for
integrals.

Corollary 3.11 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
a,_1,a, beasuchthata=ag<a,<-+-<a,.1<a,=b. Then

<Vulp, 9.

pt)dt - / ; q(t)dt

- i-1

Proof Using Theorem 3.2 with f(¢) = |t — 1|, ¢ € R*, we obtain the result. (|

Corollary 3.12 Letp,q: [a,b] — R* be probability density functions, letag,ay,...,an-1,a,
besuchthata=ag<a1<---<ay_1<a,=Db, andletm,f‘” <M, fort € lai_1,a;], m; <

M;,i=1,...,n, m=min.,, ,m; and M = max,.,,_,M;. Then

b
/ |p(6) - q(0)| dt

<Z[Mf AOd Lo, pOL

Mi—ml

.....

f dt m’fall
Mi—ml
_2AM-1A-m)
- M-m

IM—ﬂ

Proof Using Theorem 3.3 with f(¢) = |[¢ — 1|, t € R*, and m < 1 < M, we obtain get the
result. O

Definition 3.13 (Jeffrey’s distance) Let p,q: [a,b] — R* be two probability density func-
tions. The Jeffrey distance is defined as

h@@-/&ﬂ)qmﬂ%<iodt

Page 12 of 16
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Corollary 3.14 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
Ay 1,0, besuchthata=ay<a1<---<a,_1<a,=b. Then

a; f;‘lp(t) dt
0< Z(/ p(t)dt - /ail q(t)dt) log(f o t)dt)
<Jip, 9.

Proof Using Theorem 3.2 with f(£) = (¢ — 1) log¢, t € R*, we obtain the result. O

Corollary 3.15 Letp,q: [a,b] — R* be probubilitydensityfunctions, letag,ay,...,an-1,a,
besuchthata=ag<ai < - <a,.1<d,=b, andletm,fp <M; fort € la;1,a;], m; <
M;i=1,...,n,m=min.,, ,m; and M = max,.;, ,M,. Then

,,,,,

]d(pr q)
q(t )dt - f % p()dt
[ S
M; —m;
pOde—m; [} q(t)dt
+ f f (M; - l)logMi]
M; —m;

M-1)(1- M

WD) M
M—-m
Proof Using Theorem 3.3 with f(¢) = (¢ — 1) log¢, ¢ € R*, we obtain the result. O

Definition 3.16 (Bhattacharyya coefficient) Let p,q: [a,b] — R* be two probability den-
sity functions. The Bhattacharyya distance is defined as

b
Ba(p,q) = / Vp(t)q(t)dt.

Corollary 3.17 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
ay_1,0, besuchthata=ay<a;<---<a,_1<a,=>b. Then

1> ! p(t)dt ) q(t)dt = Bu(p, q).
S o [ oo

Proof Using Theorem 3.2 with f(t) = —/t, t € R*, we obtain the result. g

Corollary 3.18 Letp,q: [a,b] — R* be probability density functions, letag,ai,...,a,-1,a,
besuchthata=ag<a,<---<ay_1<a,=Db, cmdletm,fp <M; fort € a,_1,a;], m; <
M;i=1,...,n,m=min;, ,m;and M =max,_;, ,M,. Then

.....

Ba(p,q)
o oqt)ydt— [ p(e)dt S p@)dt—m [} q(t)dt
; i= i /M
>121:|: Ml_ml M-'- Mi_mz l:|
, 1+ vmM 1+«/mM

%

o+
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Proof Using Theorem 3.3 with f(£) = —v/t, t € R*, we obtain the result. O

Definition 3.19 (Hellinger distance) Let p,q: [a,b] — R* be two probability density
functions. The Hellinger distance is defined as

b
Hy(prq) = f (V2 (@) - /) de

Corollary 3.20 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
An_1,a, besuchthata=ag<ay <---<ay_1<a,=b. Then

" a; aj 2
0< (\/ p(t)dt—\/ q(t)dt> <H,p,q).

Proof Using Theorem 3.2 with f(¢) = (v/£ - 1), t € R*, we obtain the result. O

Corollary 3.21 Letp,q: [a,b] — R* be probability densityfunctions, letag,a1,...,an-1,a,

besuchthata=ag<a1<---<dy_1<a,=Db, andletmlfp <M, fort € la;1,a;], m; <

t
M;,i=1,...,n,m=miney,_,m;, and M = max,.1, , M;. Then

,,,,,

Ha(p,q)
Ydt— [“ p(t)d.
<Z[ q(jwtmf N0 i1

f p(tdt m,fﬂ
M; — m;
<2(m—1)(1—ﬁ)
B Jm+JM

- 1)2]

Proof Using Theorem 3.3 with f(¢) = (v/£ — 1)%, t € R*, we obtain the result. 0

Definition 3.22 (Triangular discrimination) Letp,q: [a,b] — R* be two probability den-
sity functions. The triangular discrimination between p and ¢ is defined as

* (p(t) - q(8)) gt

Led= |~ ovaw

Corollary 3.23 Let p,q: [a,b] — R* be probability density functions, and let ay,ay, ...,
Gn_1,a, besuchthata=ay<a) <---<a,_1<a,=b. Then

(t)dt - t)dt
o< Z Lp@dt- [ X >
TS [ pde+ faiil q(t ydt

T4, q)-

Proof Using Theorem 3.2 with f(£) = t , t € R*, we obtain the result. O

1

Corollary 3.24 Letp,q: [a,b] — R* be probability density functions, letag,aq,..., 04 1,y
besuchthata=ag< a1 <+ <ay_1<a,=Db,and let m; < p <Mforte lai-1,a;], m; <
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M;,i=1,...,n, m=miny,_,m; and M = max,.,, ,M;. Then

Talp,q)

oq@de— [ p(6)dt (m; - 1)

_Z|: Ml'—mi mi+1

. Jub p@&ydt—m; [ q(6)dt (a1, - 1)2}
M, —m; M;+1
_2M-1)(1-m)
(M +)(m+1)°

Proof Using Theorem 3.3 with f(¢) = Vs R*, we obtain the result. O

t+1 ’
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