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Abstract
In this paper, we present a class of new derivative-free gradient type methods for
large-scale nonlinear systems of monotone equations. The methods combine the
RMIL conjugate gradient method, the strategy of hyperplane projection and the
derivative-free line search technique. Under some appropriate assumptions, the
global convergence of the given methods is established. Numerical experiments
indicate that the proposed methods are effective.
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1 Introduction
In this paper, we consider the following nonlinear systems of monotone equations:

F(x) = 0, (1)

where F : Rn →R
n is monotone and continuous, which means F satisfies (F(x) – F(y))T ×

(x – y) ≥ 0 for all x, y ∈ R
n. Nonlinear systems of monotone equations are widely used

in economy, finance, engineering, industry and many other fields, so there are numerous
iterative algorithms for solving (1).

Recently, La Cruz [3] presented a spectral method that uses the residual vector as search
direction for solving large-scale systems of nonlinear monotone equations. Solodov and
Svaiter [12] proposed a method which combined projection, proximal point and Newton
method. According to the work of Solodov and Svaiter [12], Zhang and Zhou [17] devel-
oped a spectral gradient projection method for solving nonlinear monotone equations.

In particular, the conjugate gradient methods are widely used methods for solving large-
scale nonlinear equations because of the low memory and simplicity [8, 10]. In the last
few years, some authors proposed a series of methods for solving nonlinear monotone
equations, which combined conjugate gradient methods and projection method [12]. For
instance, Cheng [2] extended the PRP conjugate method to monotone equations. Yan et
al. [13] proposed two modified HS conjugate method. Li and Li [7] designed a class of
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derivative-free methods based on line search technique. Ahookhosh et al. [1] developed
two derivative-free conjugate gradient procedures. Papp and Rapajić [9] described some
new FR type methods. Yuan et al. [14, 15] proposed new three-terms conjugate gradient
methods. Dai et al. [4] gave a modified Perrys conjugate gradient method. Zhou et al.
[20, 21] developed a class of methods. Zhang [16] developed a residual method-based
secant condition.

For unconstrained optimization problem, Rivaie et al. [11] designed a RMIL conjugate
gradient method. Fang and Ni [6] extended the RMIL method to solve large-scale nonlin-
ear systems of equations with the ideas of nonmonotone line search. Numerical experi-
ments show that the RMIL method is practically effective.

For systems of monotone equations, we describe a class of new derivative-free gradient
type method, which is inspired by the efficiency of the RMIL method [11], and the strategy
of projection method [12].

This paper is organized as follows. In Sect. 2, we propose the algorithm. In Sect. 3, we
establish the global convergence. In Sect. 4, numerical results show the efficiency of the
proposed methods. In Sect. 5, we give some conclusions. We denote by ‖ · ‖ the Euclidean
norm.

2 Algorithm
In this section, we first consider the conjugate gradient method for the following uncon-
strained optimization problem:

min f (x), (2)

where f : Rn →R is smooth.
Quite recently, Rivaie et al. [11] developed RMIL conjugate gradient method, and the

search direction dk is given by

dk =

{
–gk if k = 0,

–gk + gT
k (gk –gk–1)
‖dk–1‖2 dk–1 if k ≥ 1,

(3)

where gk is the gradient of f .
Numerical results show that RMIL conjugate gradient method is superior and more

efficient than other conjugate gradient method.
We focus on the method for solving monotone equations (1). We have the projection

procedure in [12], by performing some line search techniques to find a point

zk = xk + αkdk , (4)

such that

(
F(zk), xk – zk

)
> 0. (5)

On the other hand, for any x∗ such that F(x∗) = 0, by the monotonicity of F , we obtain

(
F(zk), x∗ – zk

)
= –

(
F
(
x∗) – F(zk), x∗ – zk

) ≤ 0. (6)
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Equations (5) and (6) imply that the hyperplane

Hk =
{

x ∈ Rn|(F(zk), x – zk
)

= 0
}

(7)

strictly separates the zeros of systems of monotone equations (1) from xk . Therefore,
Solodov and Svaiter [12] could compute the next iterate xk+1 by projecting xk onto the
hyperplane Hk . Specifically, xk+1 is obtained by

xk+1 = xk –
F(zk)T (xk – zk)

‖F(zk)‖2 F(zk). (8)

The steplength αk of (4) is determined by a proper line search technique. Recently,
Zhang and Zhou[17], Zhou[18] presented the following derivative-free line search rule:

–F(xk + αkdk)T dk ≥ σαk
∥∥F(xk + αkdk)

∥∥‖dk‖2, (9)

where αk = max{s,ρs,ρ2s, . . .}, dk is the search direction, σ , s, ρ are constants, and σ > 0,
s > 0, 1 > ρ > 0.

Now, we extend RMIL conjugate gradient method [11] for solving nonlinear systems of
monotone equations, which combined the projection method [12] and derivative-free line
search technique [17, 18]. The steps of our algorithm are listed as follows.

Algorithm 1 (MRMIL) Step 0: Choose an initial point x0 ∈R
n. Let δ > 0, σ > 0, s > 0, ε > 0,

1 > ρ > 0, kmax > 0. Set k = 0.
Step 1: Choose the search direction dk that satisfies the following sufficient descent con-

dition:

FT
k dk ≤ –δ‖Fk‖2, (10)

and determine the initial steplength α = s.
Step 2: If

–F(xk + αdk)T dk ≥ σα
∥∥F(xk + αdk)

∥∥‖dk‖2, (11)

then set αk = α, zk = xk + αkdk and go to step 3.
Else set αk = ραk , and go to step 2.
Step 3: If ‖F(zk)‖ > ε, then compute

xk+1 = xk –
F(zk)T (xk – zk)

‖F(zk)‖2 F(zk) (12)

and go to step 4, otherwise stop.
Step 4: If ‖F(xk+1)‖ > ε and k < kmax, then set k = k + 1 and go to step 1, otherwise stop.

Let yk–1 = Fk – Fk–1, βk = FT
k yk–1

‖dk–1‖2 , 0 < γ < 1. Now, based on the direction dk of RMIL
conjugate gradient algorithm for unconstrained optimization, we are going to construct
three directions dk that satisfy the sufficient descent condition(10).
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MRMIL1 direction:

dk =

{
–Fk if k = 0,
–θkFk + βkdk–1 if k ≥ 1,

(13)

where θk = (FT
k yk–1)2

4γ ‖Fk‖2‖dk–1‖2 + 1, 0 < γ < 1. We set u =
√

2γ ‖dk–1‖2Fk , v = 1√
2γ

(FT
k yk–1)dk–1,

and use uT v ≤ 1
2 (‖u‖2 + ‖v‖2), then, for k ∈N, we have

FT
k dk = –θk‖Fk‖2 +

FT
k yk–1

‖dk–1‖2 FT
k dk–1

= –‖Fk‖2 +
FT

k yk–1‖dk–1‖2FT
k dk–1 – 1

4γ
(FT

k yk–1)2‖dk–1‖2

‖dk–1‖4

≤ (γ – 1)‖Fk‖2. (14)

The MRMIL1 method is the Algorithm1 with MRMIL1 direction which is defined by
(13).

MRMIL2 direction:

dk =

{
–Fk if k = 0,
–θkFk + βkdk–1 if k ≥ 1,

(15)

where θk = (FT
k dk–1)2‖yk–1‖2

4γ ‖Fk‖2‖dk–1‖4 + 1, 0 < γ < 1. We set u =
√

2γ ‖dk–1‖2Fk , v = 1√
2γ

(FT
k dk–1)yk–1,

and use uT v ≤ 1
2 (‖u‖2 + ‖v‖2), then, for k ∈N, we have

FT
k dk = –θk‖Fk‖2 +

FT
k yk–1

‖dk–1‖2 FT
k dk–1

= –‖Fk‖2 +
FT

k yk–1‖dk–1‖2FT
k dk–1 – 1

4γ
(FT

k dk–1)2‖yk–1‖2

‖dk–1‖4

≤ (γ – 1)‖Fk‖2. (16)

The MRMIL2 method is Algorithm 1 with the MRMIL2 direction which is defined by
(15).

MRMIL3 direction:

dk =

{
–Fk if k = 0,
–Fk + βkdk–1 – θkyk–1 if k ≥ 1,

(17)

where θk = FT
k yk–1

4γ ‖dk–1‖2 , 0 < γ < 1. We set u =
√

2γ ‖dk–1‖2Fk , v = 1√
2γ

(FT
k yk–1)dk–1, and use

uT v ≤ 1
2 (‖u‖2 + ‖v‖2), then, for k ∈N, we have

FT
k dk = –‖Fk‖2 +

FT
k yk–1

‖dk–1‖2 FT
k dk–1 – θkFT

k yk–1

= –‖Fk‖2 +
FT

k yk–1‖dk–1‖2FT
k dk–1 – 1

4γ
(FT

k yk–1)2‖dk–1‖2

‖dk–1‖4

≤ (γ – 1)‖Fk‖2. (18)
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The MRMIL3 method is Algorithm 1 with the MRMIL3 direction which is defined by
(17).

Using (13), (15) and (17), we get

∥∥FT
0 d0

∥∥ = –‖F0‖2. (19)

From (14), (16), (18) and (19), it is not difficult to show that the directions dk defined by
the MRMIL1, MRMIL2 and MRMIL3 directions satisfy the sufficient descent condition

FT
k dk ≤ –δ‖Fk‖2, ∀k ∈N∪ 0, (20)

if we let δ = 1 – γ and 0 < γ < 1.

3 Convergence analysis
In this section, so as to obtain the global convergence of MRMIL1, MRMIL2 and MRMIL3
method, we give the following assumptions.

Assumption 3.1
(1) The solution set of the systems of monotone equations F(x) = 0 is nonempty.
(2) F(x) is Lipschitz continuous on R

n, namely

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈R

n, (21)

where L is a positive constant.

Assumption 3.1 implies that

∥∥F(x)
∥∥ ≤ κ , ∀x ∈R

n, (22)

where κ is a positive constant.
Now, we get Lemma 3.1 whose proof is similar to those in [12] and is omitted.

Lemma 3.1 Suppose Assumption 3.1 is satisfied and the sequence {xk} is generated by the
Algorithm 1. For any x∗ such that F(x∗) = 0, we have

∥∥xk+1 – x∗∥∥2 + ‖xk+1 – xk‖2 ≤ ∥∥xk – x∗∥∥2.

In addition, the sequence {xk} satisfies

lim
k→∞

‖xk+1 – xk‖ = 0. (23)

Lemma 3.2 Suppose Assumption 3.1 is satisfied and the sequences {xk , dk} are generated
by the Algorithm 1 with the MRMIL1, MRMIL2 or MRMIL3 direction. Then we have

‖dk‖ ≤ κ

(
1 + Ls +

(Ls)2

4γ

)
, (24)

where κ , γ , s, L are constants, and κ > 0, 1 > γ > 0, s > 0, L > 0.
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Proof From (4) and the step 3 of Algorithm 1, we have

‖xk+1 – xk‖ =
‖F(zk)T (xk – zk)F(zk)‖

‖F(zk)‖2 ≤ ‖xk – zk‖ = αk‖dk‖. (25)

By step 1 and step 2 of Algorithm 1, we get

αk ≤ s, ∀k ∈N∪ 0. (26)
�

For k ∈N, the boundedness of dk can be divided into three cases.
Case 1 (MRMIL1 direction): The MRMIL1 direction is defined by (13). Using (21), (22),

(25) and (26), we have

‖dk‖ =
∥∥∥∥–

(
(FT

k yk–1)2

4γ ‖Fk‖2‖dk–1‖2 + 1
)

Fk +
FT

k yk–1

‖dk–1‖2 dk–1

∥∥∥∥
≤ ‖Fk‖

(
1 +

‖yk–1‖2

4γ ‖dk–1‖2 +
‖yk–1‖
‖dk–1‖

)

≤ ‖Fk‖
(

1 +
(Lαk–1)2

4γ
+ Lαk–1

)

≤ κ

(
1 + Ls +

(Ls)2

4γ

)
. (27)

Case 2 (MRMIL2 direction): Analogously, the MRMIL2 direction is defined by (15). By
(21), (22), (25) and (26), we get

‖dk‖ =
∥∥∥∥–

(
(FT

k dk–1)2‖yk–1‖2

4γ ‖Fk‖2‖dk–1‖4 + 1
)

Fk +
FT

k yk–1

‖dk–1‖2 dk–1

∥∥∥∥
≤ ‖Fk‖

(
1 +

‖yk–1‖2

4γ ‖dk–1‖2 +
‖yk–1‖
‖dk–1‖

)

≤ κ

(
1 + Ls +

(Ls)2

4γ

)
. (28)

Case 3 (MRMIL3 direction): The definition of MRMIL3 direction given by (17). (21),
(22), (25) and (26) implies

‖dk‖ =
∥∥∥∥–Fk +

FT
k yk–1

‖dk–1‖2 dk–1 –
FT

k yk–1

4γ ‖dk–1‖2 yk–1

∥∥∥∥
≤ ‖Fk‖

(
1 +

‖yk–1‖
‖dk–1‖ +

‖yk–1‖2

4γ ‖dk–1‖2

)

≤ κ

(
1 + Ls +

(Ls)2

4γ

)
. (29)

From (13), (15), (17) and (22), we get

‖d0‖ = ‖ – F0‖ ≤ κ . (30)

Combining with (27), (28) and (29), we find (24).
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Lemma 3.3 Suppose Assumption 3.1 is satisfied and the sequence {xk ,αk , dk , Fk} are gener-
ated by the Algorithm 1 with the MRMIL1, MRMIL2 or MRMIL3 direction. If there exists
a constant ε > 0, such that ‖Fk‖ ≥ ε for all k ∈N∪ 0, then we have

αk ≥ min

{
s,

(1 – γ )ε2

ρ–1κ2(L + σκρ–1(ρ + Ls + (Ls)2 + (Ls)3

4γ
))(1 + Ls + (Ls)2

4γ
)2

}
. (31)

Proof If αk �= s, by the step 2 of Algorithm 1, we know that ρ–1αk does not satisfy (11).
Then we have

–F
(
xk + ρ–1αkdk

)T dk < σρ–1αk
∥∥F

(
xk + ρ–1αkdk

)∥∥‖dk‖2. (32)

Combining with Assumption 3.1, (22) and (24), we have

∥∥F
(
xk + ρ–1αkdk

)∥∥ =
∥∥F

(
xk + ρ–1αkdk

)
– F(xk)

∥∥ +
∥∥F(xk)

∥∥
≤ Lρ–1αk‖dk‖ + κ

≤ κρ–1
(

ρ + Ls + (Ls)2 +
(Ls)3

4γ

)
. (33)

It follows from (14), (16), (18), (21), (24), (32) and (33) that

(1 – γ )‖Fk‖ ≤ –FT
k dk

=
[
F
(
xk + ρ–1αkdk

)
– F(xk)

]T dk –
[
F
(
xk + ρ–1αkdk

)]T dk

<
[
L + σ

∥∥F
(
xk + ρ–1αkdk

)∥∥]
ρ–1αk‖dk‖2

≤ ρ–1αkκ
2
(

L + σκρ–1
(

ρ + Ls + (Ls)2 +
(Ls)3

4γ

))(
1 + Ls +

(Ls)2

4γ

)2

. (34)

Then we have

αk >
(1 – γ )‖Fk‖

ρ–1κ2(L + σκρ–1(ρ + Ls + (Ls)2 + (Ls)3

4γ
))(1 + Ls + (Ls)2

4γ
)2

>
(1 – γ )ε2

ρ–1κ2(L + σκρ–1(ρ + Ls + (Ls)2 + (Ls)3

4γ
))(1 + Ls + (Ls)2

4γ
)2

. (35)

This implies (31). �

Theorem 3.4 Suppose Assumption 3.1 is satisfied and the sequences {xk ,αk , dk , Fk} are
generated by the Algorithm 1 with the MRMIL1, MRMIL2 or MRMIL3 direction. Then we
have

lim inf
k→∞

‖Fk‖ = 0. (36)

In particular, the sequence {xk} converges to x∗ and F(x∗) = 0.
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Proof If (36) does not hold, then there exists a constant ε > 0 such that

‖Fk‖ ≥ ε, ∀k ≥ 0. (37)

From (14), (16) and (18). we get

‖Fk‖‖dk‖ ≥ ‖Fkdk‖ ≥ (1 – γ )‖Fk‖2. (38)

Using (37) and (38), we have

‖dk‖ ≥ (1 – γ )‖Fk‖ ≥ (1 – γ )ε. (39)

Suppose x̃ is an arbitrary accumulation point of {xk} and K1 is an infinite index set such
that

lim
k∈K1,k→∞

xk = x̃. (40)

From (23), (25) and (40), we get

lim
k∈K1,k→∞

αk‖dk‖ = 0. (41)

On the other hand, together with the conclusion of Lemma 3.3 and (39), we obtain

αk‖dk‖ ≥ min

{
(1 – γ )εs,

(1 – γ )2ε3

ρ–1κ2(L + σκρ–1(ρ + Ls + (Ls)2 + (Ls)3

4γ
))(1 + Ls + (Ls)2

4γ
)2

}

> 0. (42)

Equations (41) and (42) are a contradiction, then the conclusion (36) is hold. From As-
sumption 3.1, Lemma 3.1 and (36), we see that the sequence {xk} converges to some accu-
mulation point x∗ such that F(x∗) = 0. �

4 Numerical experiments
In this section, we report some numerical test results for the MRMIL1 method, the MR-
MIL2 method, and the MRMIL3 method and compare with the DFPB1 method in [1]
and the M3TFR2 method in [9]. Our tests are implemented in Matlab R2011a, run on a
personal computer with 8 GB RAM and Intel CPU I5-3470.

In order to compare all methods, we employ the performance profiles [5], which are
defined by the following fraction:

ρv(τ ) =
1
|P|

∣∣∣∣
{

p ∈ P : log2

(
tp,v

min{tp,v : v ∈ V }
)

≤ τ

}∣∣∣∣,
where P is the test set, |P| is the number of problems in the test set P, V is the set of
optimization solvers, and tp,v is the CPU time (or the number of the function evaluations,
or the number of iterations) for p ∈ P and v ∈ V .
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Figure 1 Performance profiles for the number of iterations in a log2 scale

We test the following problems with different starting points and various sizes: (1) the
problems 1–7 from [2, 7, 13, 19] with sizes 1000, 5000, 10,000, 50,000; (2) the problem 8
from [7] with sizes 10,000, 20,164, 40,000;

All problems are initialized with the following eight starting points: x1
0 = 10 ·(1, 1, . . . , 1)T ,

x2
0 = –10 · (1, 1, . . . , 1)T , x3

0 = (1, 1, . . . , 1)T , x4
0 = –(1, 1, . . . , 1)T , x5

0 = 0.1 · (1, 1, . . . , 1)T , x6
0 =

(1, 1
2 , . . . , 1

n )T , x7
0 = ( 1

n , 2
n , . . . , 1)T , x8

0 = ( n–1
n , n–2

n , . . . , 0)T .
For all methods, the stopping criteria are (1) ‖F(xk)‖ ≤ ε or (2) ‖F(zk)‖ ≤ ε or (3) the

number of iterations exceeds kmax. where ε = 10–4, kmax = 105. Similar to [1, 9], we used the
same parameters for five methods: initial steplength s = ‖ Ft

k dk
(F(xk +10–8dk )–Fk )T dk /10–8 ‖, ρ = 0.7,

σ = 0.3, γ = 1
4 .

Figure 1 is for the iterations performance profiles related to five methods. As we can
see, MRMIL3 guarantees better results than M3TFR2, DFPB1, MRMIL1 and MRMIL2 as
it solves a higher percentage of problems when τ ≥ 0.2, It also can be seen that DFPB1,
MRMIL1 and MRMIL2 have similar performances, especially when τ ≥ 0.3. Furthermore,
M3TFR2 gives better results than DFPB1, MRMIL1 and MRMIL2, and the difference is
significantly small as the performance ratio τ increases.

The number of function evaluations performance profiles are reported in Figure 2. we
note that MRMIL3 performs better than the other four methods when τ ≥ 0.2. In addition,
we also observe that MRMIL1 and MRMIL2 is more efficient than DFPB1 when τ ≥ 0.3,
but more inefficient than M3TFR2.

Figure 3 shows the CPU time performance profiles. When τ ≤ 0.15, M3TFR2 and
DFBP1 uses the shortest CPU time, but MRMIL3 gives the best result when τ ≥ 0.15.

5 Conclusion
In this paper, we give a class of new derivative-free gradient type methods for large-scale
nonlinear systems of monotone equations. Under mild assumptions, we prove that the
methods possess global convergence properties. Numerical experiments show that the
proposed methods are promising, especially the MRMIL3 method, which is the most ef-
ficient one.
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Figure 2 Performance profiles for the number of function evaluations in a log2 scale

Figure 3 Performance profiles for the CPU time in a log2 scale

Appendix: Test problems
We now list the following test problems.

Problem 1. ([7], p. 1630) The function F(x) = (f1(x), f2(x), . . . , fn(x))T , where

f1(x) = 2x1 + sin(x1) – 1,

fi(x) = –2xi–1 + 2xi + sin(xi) – 1, 2 ≤ i ≤ n – 1,

fn(x) = 2xn + sin(xn) – 1.

Problem 2. ([7], p. 1630) The function F(x) = (f1(x), f2(x), . . . , fn(x))T , where

fi(x) = 2xi – sin(xi), 1 ≤ i ≤ n.
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Problem 3. ([7], p. 1631) The function F(x) = (f1(x), f2(x), . . . , fn(x))T , where

fi(x) = 2xi – sin |xi|, 1 ≤ i ≤ n.

Problem 4. ([13], p. 654) The function F(x) = (f1(x), f2(x), . . . , fn(x))T , where

f1(x) =
1
3

x3
1 +

1
2

x2
2,

fi(x) = –
1
2

x2
i +

i
3

x3
i +

1
2

x2
i+1, 2 ≤ i ≤ n – 1,

fn(x) = –
1
2

x2
n +

n
3

x3
n.

Problem 5. ([13], p. 654) The function F(x) = (f1(x), f2(x), . . . , fn(x))T , where

f1(x) = x1 – exp

(
cos

(
x1 + x2

n + 1

))
,

fi(x) = xi – exp

(
cos

(
xi–1 + xi + xi+1

n + 1

))
, 2 ≤ i ≤ n – 1,

fn(x) = xn – exp

(
cos

(
xn–1 + xn

n + 1

))
.

Problem 6. ([19], p. 2236) The function F(x) = Ax + b(x) – e, where
b(x) = (ex1 , ex2 , . . . , exn )T and e = (1, 1, . . . , 1)T are the n × 1 vectors,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 –1
–1 2 –1

. . . . . . . . .
. . . . . . –1

–1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the n × n matrix.
Problem 7. ([2], p. 19) The function F(x) = Ax – e, where e = (1, 1, . . . , 1)T is the n × 1

vector, and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
2 1
1 5

2 1
. . . . . . . . .

. . . . . . 1
1 5

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the n × n matrix.
Problem 8. ([7], p. 1631) The function F(x) = Ax + h2y – 10h2e, where h = 1

r+1 , n = r2,
x = (x1, x2, . . . , xn)T , y = (x3

1, x3
2, . . . , x3

n)T and e = (1, 1, . . . , 1)T are the n × 1
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vectors. I is the m × m identity matrix,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 –1
–1 4 –1

. . . . . . . . .
. . . . . . –1

–1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the r × r matrix, and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B –I
–I B –I

. . . . . . . . .
. . . . . . –I

–I B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the n × n matrix.
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9. Papp, Z., Rapajić, S.: FR type methods for systems of large-scale nonlinear monotone equations. Appl. Math. Comput.

269, 816–823 (2015)
10. Polak, E.: Optimization: Algorithms and Consistent Approximations. Applied Mathematical Sciences, vol. 124.

Springer, Berlin (2012)



Fang Journal of Inequalities and Applications         (2020) 2020:93 Page 13 of 13

11. Rivaie, M., Mamat, M., June, L., Mohd, I.: A new class of nonlinear conjugate gradient coefficients with global
convergence properties. Appl. Math. Comput. 218(22), 11323–11332 (2012)

12. Solodov, M., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In:
Fukushima, M., Qim, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods,
pp. 355–369. Kluwer Academic, Dordrecht (1998)

13. Yan, Q., Peng, X., Li, D.: A globally convergent derivative-free method for solving large-scale nonlinear monotone
equations. J. Comput. Appl. Math. 234(3), 649–657 (2010)

14. Yuan, G., Hu, W.: A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear
equations. J. Inequal. Appl. 2018, Article ID 113 (2018)

15. Yuan, G., Zhang, M.: A three-terms Polak–Ribiére–Polyak conjugate gradient algorithm for large-scale nonlinear
equations. J. Comput. Appl. Math. 286, 186–195 (2015)

16. Zhang, L.: A derivative-free conjugate residual method using secant condition for general large-scale nonlinear
equations. Numer. Algorithms (2019). https://doi.org/10.1007/s11075-019-00725-7

17. Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl.
Math. 196(2), 478–484 (2006)

18. Zhou, W.: Convergence properties of a quasi-Newton method and its applications. Ph.D. thesis, College of
Mathematics and Econometrics, Hunan University, Changsha, China (2006)

19. Zhou, W., Li, D.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions.
Math. Comput. 77(624), 2231–2240 (2008)

20. Zhou, W., Li, D.: On the Q-linear convergence rate of a class of methods for monotone nonlinear equations. Pac. J.
Optim. 14(4), 723–737 (2018)

21. Zhou, W., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput.
261, 1–7 (2015)

https://doi.org/10.1007/s11075-019-00725-7

	A class of new derivative-free gradient type methods for large-scale nonlinear systems of monotone equations
	Abstract
	Keywords

	Introduction
	Algorithm
	Convergence analysis
	Numerical experiments
	Conclusion
	Appendix: Test problems
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


