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Abstract
In this article, two inequalities related to 2× 2 block sector partial transpose matrices
are proved, and we also present a unitarily invariant norm inequality for the Hua
matrix which is sharper than an existing result.
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1 Introduction
We denote by Mn the set of n × n complex matrices. Mn(Mk) is the set of n × n block
matrices with each block in Mk . The n×n identity matrix is denoted by In. We use ‖ · ‖ for
an arbitrary unitarily invariant norm. A positive semidefinite matrix A will be expressed
as A ≥ 0. Likewise, we write A > 0 to refer that A is a positive definite matrix. The singular
values of A, denoted by s1(A), s2(A), . . . , sn(A), are the eigenvalues of the positive semidefi-
nite matrix |A| = (A∗A)1/2, arranged in decreasing order and repeated according to multi-
plicity as s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). When A is Hermitian, we enumerate eigenvalues of
A in nonincreasing order σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). Recall that C ∈ Mm×n is (strictly)
contractive if (In > C∗C) In ≥ C∗C. The geometric mean of two positive definite matri-
ces A, B ∈ Mn, denoted by A�B, is the positive definite solution of the Riccati equation
XB–1X = A and has the explicit expression A�B = A 1

2 (A– 1
2 BA– 1

2 ) 1
2 A 1

2 . More details on the
matrix geometric mean can be found in [2, Chap. 4].

The numerical range of A ∈Mn is defined by

W (A) =
{

x∗Ax|x ∈ C
n, x∗x = 1

}
.

For basic properties of numerical range, see [5]. Also, we define a sector on the complex
plane

Sα =
{

z ∈C|Rz ≥ 0, |Iz| ≤ (Rz) tan(α)
}

, α ∈
[

0,
π

2

)
.
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Actually, the class of matrices T with W (T) ⊆ Sα and the class of T with positive definite
real part (i.e. accretive matrices) are both called sector matrices. Sector matrices have been
the subject of a number of recent papers [3, 8, 14].

A matrix H = (Hij)n
i,j=1 ∈Mn(Mk) is said to be positive partial transpose (i.e. PPT) if H is

positive semidefinite and its partial transpose Hτ = (Hji)n
j,i=1 is also positive semidefinite.

Inspired by PPT, Kuai [6] defined a new conception called sectorial partial transpose (i.e.
SPT). That is, if W (A) ⊆ Sα for A = (Aij)n

i,j=1 ∈Mn(Mk), then W (Aτ ) ⊆ Sα . Thus, it is natural
to extend the results for PPT matrices to SPT matrices.

Hiroshima [4, Theorem 1] proved the following result.

Theorem 1.1 Let H =
( A X

X∗ B

) ∈ M2(Mn) be PPT. Then

‖H‖ ≤ ‖A + B‖. (1)

As the application of Theorem 1.1, Lin and Hiroshima [10, Theorem 3.3] presented a
relation between the norm of diagonal blocks of the Hua matrix, e.g., [12] and the norm
of its off diagonal blocks.

Theorem 1.2 If the Hua matrix is given by

H :=

(
(I – A∗A)–1 (I – B∗A)–1

(I – A∗B)–1 (I – B∗B)–1

)

,

where A, B ∈Mm×n are strictly contractive, then

2
∥∥(

I – A∗B
)–1∥∥ ≤ ∥∥(

I – A∗A
)–1 +

(
I – B∗B

)–1∥∥ (2)

for any unitarily invariant norm.

Actually, it was only recently observed that H is PPT; see [1].
Lin [7] obtained a singular value inequality for PPT matrices related to a linear map.

Theorem 1.3 Let A, B, X ∈Mn. If

M =

(
A X
X∗ B

)

is PPT, then for the linear map Φ : C → C + Tr(C)I ,

sj
(
Φ(X)

) ≤ sj
(
Φ(A�B)

)
, j = 1, . . . , n.

In this paper, we extend Theorem 1.1 and Theorem 1.3 to SPT matrices and show a
stronger inequality than (2).

2 Main results
We start with some lemmas. The first three lemmas are quite standard in matrix analysis.
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Lemma 2.1 ([13, p. 63]) If H ∈Mn, then

σj(Re H) ≤ sj(H), j = 1, . . . , n. (3)

Lemma 2.2 ([11, Theorem 1]) Let H =
( A X

X∗ B

) ∈ Mm+n be positive semidefinite with A ∈
Mm, B ∈Mn. Then

2sj(X) ≤ sj(H), j = 1, . . . , min{m, n}. (4)

Lemma 2.3 ([2, p.106]) Let A, B ∈Mn be positive definite matrices. Then, for all X ∈ Mn,

X∗(A�B)X ≤ (
X∗AX

)
�
(
X∗BX

)
. (5)

The next lemma is due to Zhang [14, Lemma 3.1].

Lemma 2.4 Let A ∈Mn have W (A) ⊆ Sα for some α ∈ [0, π
2 ). Then

‖A‖ ≤ sec(α)‖Re A‖ (6)

for any unitarily invariant norm.

The following result about geometric mean has been proved by Lin and Sun [9].

Lemma 2.5 Let A, B ∈Mn be matrices with positive semidefinite real part. Then

(Re A)�(Re B) ≤ Re(A�B). (7)

Now we are ready to present our results. The first theorem is an extension of Theo-
rem 1.1.

Theorem 2.6 Let H11, H12, H21, H22 ∈Mn. If H =
( H11 H12

H21 H22

)
is SPT, then

‖H‖ ≤ sec(α)‖H11 + H22‖

for any unitarily invariant norm.

Proof Since H is a sector partial transpose matrix, then we know that

Re H =

(H11+H∗
11

2
H12+H∗

21
2

H21+H∗
12

2
H22+H∗

22
2

)

is PPT.
So by (6) we have

‖H‖ ≤ sec(α)‖Re H‖
≤ sec(α)‖Re H11 + Re H22‖

(
by (1)

)

≤ sec(α)‖H11 + H22‖. �
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Remark 2.7 When H12 = H∗
21 and α = 0, then H is PPT in Theorem 2.6. Thus, our result

is Hiroshima’s inequality (1).

Next will give a stronger inequality than Theorem 1.2.

Theorem 2.8 Let the Hua matrix be given by

H :=

(
(I – A∗A)–1 (I – B∗A)–1

(I – A∗B)–1 (I – B∗B)–1

)

,

where A, B ∈Mm×n are strictly contractive. Then

∥∥(
I – A∗B

)–1∥∥ ≤ ∥∥(
I – A∗A

)–1
�
(
I – B∗B

)–1∥∥

for any unitarily invariant norm.

Proof Since H is PPT, then

(
(I – A∗A)–1 (I – B∗A)–1

(I – A∗B)–1 (I – B∗B)–1

)

,

(
(I – A∗A)–1 (I – A∗B)–1

(I – B∗A)–1 (I – B∗B)–1

)

are both positive semidefinite matrices.
Hence,

(
I – B∗B

)–1 ≥ (
I – A∗B

)–1(I – A∗A
)(

I – B∗A
)–1

and

(
I – B∗B

)–1 ≥ (
I – B∗A

)–1(I – A∗A
)(

I – A∗B
)–1. (8)

Clearly, by unitary similarity transformation,

(
(I – B∗B)–1 (I – A∗B)–1

(I – B∗A)–1 (I – A∗A)–1

)

is also positive semidefinite.
Therefore,

(
I – A∗A

)–1 ≥ (
I – B∗A

)–1(I – B∗B
)(

I – A∗B
)–1. (9)

Thus,

(
I – B∗B

)–1
�
(
I – A∗A

)–1

–
(
I – B∗A

)–1((I – A∗A
)–1

�
(
I – B∗B

)–1)–1(I – A∗B
)–1

≥ (
I – B∗B

)–1
�
(
I – A∗A

)–1

–
((

I – B∗A
)–1(I – A∗A

)(
I – A∗B

)–1)
�
((

I – B∗A
)–1(I – B∗B

)(
I – A∗B

)–1)



Yang et al. Journal of Inequalities and Applications         (2020) 2020:90 Page 5 of 6

(
by (5) and monotonicity

)

≥ (
I – B∗B

)–1
�
(
I – A∗A

)–1 –
(
I – B∗B

)–1
�
(
I – A∗A

)–1 (
by (8) and (9)

)

= 0.

In a similar way, we can prove

(
I – B∗B

)–1
�
(
I – A∗A

)–1

–
(
I – A∗B

)–1((I – A∗A
)–1

�
(
I – B∗B

)–1)–1(I – B∗A
)–1 ≥ 0.

So

K :=

(
(I – A∗A)–1�(I – B∗B)–1 (I – A∗B)–1

(I – B∗A)–1 (I – B∗B)–1�(I – A∗A)–1

)

is PPT.
Therefore,

2
∥∥(

I – A∗B
)–1∥∥ ≤ ‖K‖ (

by (4)
)

≤ ∥∥((
I – A∗A

)–1
�
(
I – B∗B

)–1) +
((

I – B∗B
)–1

�
(
I – A∗A

)–1)∥∥

(
by (1)

)

= 2
∥∥(

I – B∗B
)–1

�
(
I – A∗A

)–1∥∥. �

Remark 2.9 Obviously, our result is sharper than (2).

Finally, we present an extension of Theorem 1.3.

Theorem 2.10 Let A, B, X, Y ∈Mn. If M =
( A X

Y∗ B

)
is SPT, then

sj

(
Φ

(
X + Y

2

))
≤ sj

(
Φ(A�B)

)
, (10)

where Φ : C → C + Tr(C)I .

Proof Since M is SPT, then

Re M =

(
Re A (X + Y )/2

(X + Y )∗/2 Re B

)

and

Re
(
Mτ

)
=

(
Re A (X + Y )∗/2

(X + Y )/2 Re B

)

= (Re M)τ

are both positive semidefinite matrices. Thus, Re M is PPT.



Yang et al. Journal of Inequalities and Applications         (2020) 2020:90 Page 6 of 6

By Theorem 1.3, we have

sj

(
Φ

(
X + Y

2

))
≤ sj

(
Φ

(
(Re A)�(Re B)

))
.

Compute

sj

(
Φ

(
X + Y

2

))
≤ sj

(
Φ(Re A�Re B)

)

≤ sj
(
Φ

(
Re(A�B)

)) (
by (7)

)

= sj
(
Re

(
Φ(A�B)

))

≤ sj
(
Φ(A�B)

) (
by (3)

)
. �

Remark 2.11 If M is PPT, then (10) becomes Lin’s result in Theorem 1.3.
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