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Abstract
This paper deals with the finite-approximate controllability for a class of fractional
stochastic evolution equations with nonlocal initial conditions in a Hilbert space. We
establish sufficient conditions for the finite-approximate controllability of the control
system when the compactness conditions or Lipschitz conditions for the nonlocal
term and uniform boundedness conditions for the nonlinear term are not required.
The discussion is based on the fixed point theorem, approximation techniques and
diagonal argument. In the end, an example is presented to illustrate the abstract
theory. Our result improves and extends some relevant results in this area.
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1 Introduction
In this paper, we shall be concerned with the finite-approximate controllability (see Def-
inition 2.8 in Sect. 2) for following fractional evolution equations with nonlocal initial
conditions of the form

⎧
⎨

⎩

cDα
t x(t) + Ax(t) = f (t, x(t)) + σ (t, x(t)) dW (t)

dt + Bu(t), t ∈ [0, b],

x(0) = g(x),
(1.1)

where cDα
t is the Caputo fractional derivative of order 1

2 < α ≤ 1, and

g(x) =
∫ b

0
h
(
s, x(s)

)
ds. (1.2)

Let H, K be two separable Hilbert spaces and the state x(·) takes its values in H. Also
A : D(A) ⊂ H → H is a closed linear operator and –A is the infinitesimal generator of a
C0-semigroup T(t) (t ≥ 0) on H. For convenience, we will use the same notation ‖ · ‖ to
denote the norms inH andK, and 〈·, ·〉 to denote the inner product ofH andKwithout any
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confusion. We are also employing the same notation ‖ · ‖ for the norm of L(K,H), which
denotes the space of all bounded linear operators from K into H. Suppose that {W (t) : t ≥
0} is a K-valued Brownian motion or Wiener process with a finite trace nuclear covariance
operator Q ≥ 0 defined on a filtered complete probability space (Ω ,F , {Ft}t≥0, P). The
control function u(·) belongs to the space L2

F (J ,U), a Banach space of admissible control
functions, for a separable Hilbert space U, B : U → H is a bounded linear operator, while
f , σ and h are appropriate functions to be given later.

It is well known that nonlocal problems have better properties in applications than the
classical ones, so differential equations with nonlocal initial conditions have been studied
by many authors, see [1–13] and the references therein. However, in order to establish the
main results, the assumption of compactness or Lipschitz condition on the nonlocal term
plays an important role in these articles. But this restriction is too strong and is not usually
satisfied in practical applications.

Recently, Liang, Liu, and Xiao [14] investigated the existence of mild solutions for a class
of nonlocal Cauchy problem under the hypothesis that the nonlocal term g satisfies the
condition

(H) For any u, w ∈ C([0, b]; E), there exists a constant δ ∈ (0, b) such that u(t) = w(t)
(t ∈ [δ, b]) implies g(u) = g(w).

Note that assumption (H) is for the case when the values of the solution x(t) for t near
zero do not affect g(x). With the help of assumption (H), the authors relaxed the compact-
ness and Lipschitz continuity on the nonlocal item g .

On the other hand, controllability for various linear and nonlinear dynamical systems
have been considered in many publications by using different approaches due to its ap-
plications in many fields of science and engineering, see [15–32]. It should be empha-
sized that there are many different notions of controllability for dynamical systems, for
example, approximate controllability, exact controllability, null controllability, and so on.
There have been many papers on the approximate controllability for semilinear evolution
systems in abstract spaces, see [16–21, 32] and the references therein. Several authors
have studied exact controllability for differential control systems, see [22–25] and the ref-
erences therein. It is worth mentioning that [15] studied simultaneous approximate and
finite-dimensional exact controllability (finite-approximate controllability) of the follow-
ing control system:

⎧
⎨

⎩

cDα
t x(t) = Ax(t) = f (t, x(t)) + Bu(t), t ∈ [0, b],

x(0) = x0 + g(x),
(1.3)

where f : [0, T]×X → X, g : C([0, T], X) → X, and X is a Hilbert space. In this paper, finite-
approximate controllability means that system (1.3) is approximately controllable in X as
well as exactly controllable in a finite dimensional subspace E ⊂ X. The author obtained
sufficient conditions for the finite-approximate controllability of system (1.3) when the
nonlocal term g satisfies Lipschitz-type conditions and the nonlinear term f satisfies a
growth condition.

In recent years, stochastic differential equations have attracted great interest due to their
successful applications to problems in mechanics, electricity, economics, physics, and sev-
eral fields in engineering. For details, see [33–39] and the references therein. In particu-
lar, some researchers investigated controllability of stochastic dynamical control systems
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in infinite-dimensional spaces, see [26–31]. However, there are few works that have re-
ported about the study of controllability problems for stochastic evolution equations with
nonlocal conditions, see [30, 31], and the authors suppose that the nonlocal item g is a
completely continuous map in these papers.

Inspired by the above discussions, especially [15], in this work, we will study the
finite-approximate controllability for (1.1). The first novelty of this article is the finite-
approximate controllability which is a stronger version of the controllability concept. Up
to now, no one has studied the finite-approximate controllability for a stochastic system,
this paper fills this gap in the literature. The second novelty of this article is that the non-
local term g(x) defined by (1.2) depends on all values of x on the whole interval [0, b], so
the methods used in [14] are not valid for the present paper. By using stochastic anal-
ysis, approximation techniques, diagonal argument, and Schauder fixed-point theorem,
the finite-approximate controllability results are established under weaker conditions in
which g(x) is not necessarily Lipschitz continuous or has some compactness property.
More precisely, the nonlocal term g(x) depends on all the values of x in the whole interval
[0, b], is only continuous and satisfies some weak growth condition. The third novelty of
this article is that in almost all the articles on the topic of approximate controllability, for
example, see [16–21, 28–31], the authors always require the nonlinear term f be uniformly
bounded. In the present work we delete this restriction, and only need the nonlinear term
which satisfies some natural growth conditions. So the theorems obtained here extend and
complement those obtained in [16–21, 28–31]. In addition, as a special case, the methods
used in the present paper can be applied to study the finite-approximate controllability of
deterministic systems with nonlocal conditions by suitably introducing the abstract space
and norm. The corresponding results that appear are also new.

We organize the paper in the following way: In Sect. 2, we introduce some useful def-
initions and preliminary results to be used in this paper. In Sect. 3, we state and prove
finite-approximate controllability results for fractional stochastic evolution equation with
nonlocal conditions. Finally, in Sect. 4, an example is provided to illustrate the applications
of the obtained results.

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this article.

Let (Ω ,F , {Ft}t≥0, P) be a filtered complete probability space satisfying the usual con-
ditions, which means that the filtration is a right-continuous increasing family and F0

contains all P-null sets. Let {ek , k ∈ N} be a complete orthonormal basis of K. We de-
note by {W (t) : t ≥ 0} a cylindrical K-valued Brownian motion or Wiener process defined
on the probability space (Ω ,F , {Ft}t≥0, P) with a finite trace nuclear covariance operator
Q ≥ 0, and we let Tr(Q) =

∑∞
k=1 λk = λ < ∞, which implies that Qek = λkek , k ∈ N. Let

{Wk(t), k ∈N} be a sequence of one-dimensional standard Wiener processes mutually in-
dependent on (Ω ,F , {Ft}t≥0, P) such that

W (t) =
∞∑

k=1

√
λkWk(t)ek , t ≥ 0.

Furthermore, we assume that Ft = σ {W (s), 0 ≤ s ≤ t} is the σ -algebra generated by W and
Fb = F .
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Let L0
2 = L2(Q 1

2 K,H) denote the space of all Hilbert–Schmidt operators from Q 1
2 K

into H with the inner product 〈φ,ϕ〉 = Tr(φQϕ∗). It also turns out to be a separable
Hilbert space. The collection of all Fb-measurable, square-integrable H-valued ran-
dom variables, denoted L2(Ω ,H), is a Banach space equipped with the norm ‖x‖L2 =
(E‖x(ω)‖2) 1

2 , where E denotes the expectation with respect to the measure P. Let
C([0, b], L2(Ω ,H)) be the Banach space of all continuous mappings from [0, b] to L2(Ω ,H)
satisfying supt∈[0,b](E‖x(t)‖2) < ∞. We use H([0, b], L2(Ω ,H)) to denote the space of all
Ft-adapted measurable processes x ∈ C([0, b], L2(Ω ,H)) endowed with the norm ‖x‖H =
(supt∈[0,b] E‖x(t)‖2) 1

2 . The theory of stochastic integrals in Hilbert space can be found in
[37, 39].

In the rest of the manuscript, we suppose that A generates a compact C0-semigroup
T(t) (t ≥ 0) of uniformly bounded linear operators in H. That is, there exists a pos-
itive constant M ≥ 1 such that ‖T(t)‖ ≤ M for all t ≥ 0. For any constant r > 0, let
Br = {x ∈ H([0, b], L2(Ω ,H)) : ‖x‖2

H ≤ r}. Evidently, Br is a bounded closed convex set in
H([0, b], L2(Ω ,H)).

By [40, Proposition 2.8], we have the following result which will be used throughout this
paper.

Lemma 2.1 If h : [0, b] ×H → L(K,H) is continuous and x ∈ C([0, b], L2(Ω ,H)), then

E

∥
∥
∥
∥

∫

[0,b]
h
(
t, x(t)

)
dW (t)

∥
∥
∥
∥

2

≤ Tr(Q)
∫

[0,b]
E

∥
∥h

(
t, x(t)

)∥
∥2 dt.

Definition 2.2 ([41]) The Riemann–Liouville fractional integral of order α > 0 of a func-
tion y : (0, +∞) →R is given by

Iα
0 y(t) =

1
Γ (α)

∫ t

0
(t – s)α–1y(s) ds

provided the right-hand side is pointwise defined on (0, +∞).

Definition 2.3 ([41]) The Riemann–Liouville fractional derivative of order α > 0 of a
function y : [0, +∞) →R is given by

Dα
0 y(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.4 ([41]) The Caputo fractional derivative of order α > 0 of a function y :
[0, +∞) →R is given by

cDα
0 y(t) = Dα

0

[

y(t) –
n–1∑

k=0

tk

k!
y(k)(0)

]

,

where n = [α] + 1, provided that the right-hand side is pointwise defined on (0, +∞).
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Remark 2.5
(i) If y(t) ∈ Cn[0, +∞), then

cDα
0 y(t) =

1
Γ (n – α)

∫ t

0

y(n)(s)
(t – s)α–n+1 ds = In–α

0 y(n)(t).

(ii) If y(t) is an abstract function with values in E, then the integrals which appear in
Definition 2.2, 2.3 and 2.4 are taken in Bochner’s sense.

(iii) The Caputo derivative of a constant is equal to zero.

For x ∈ H, we define two operators Tα(t) (t ≥ 0) and Sα(t) (t ≥ 0) as follows:

Tα(t)x =
∫ ∞

0
ζα(θ )T

(
tαθ

)
x dθ , Sα(t)x = α

∫ ∞

0
θζα(θ )T

(
tαθ

)
x dθ , (2.1)

where

ζα(θ ) =
1
α

θ–1–1/αρα

(
θ–1/α)

,

ρα(θ ) =
1
π

∞∑

k=0

(–1)n–1θ–αn–1 Γ (nα + 1)
n!

sin(nπα), θ ∈ (0,∞).

Here ζα(θ ) is a probability density function defined on (0, +∞), that is,

ζα(θ ) ≥ 0, θ ∈ (0,∞),
∫ ∞

0
ζα(θ ) dθ = 1,

∫ ∞

0
θζα(θ ) dθ =

1
Γ (1 + α)

. (2.2)

The following properties of the operators Tα(t) (t ≥ 0) and Sα(t) (t ≥ 0), which can be
found in [6, 7], will be needed in our arguments.

Lemma 2.6 The operators Tα(t) (t ≥ 0) and Sα(t) (t ≥ 0) satisfy the following properties:
(i) For any fixed t ≥ 0, Tα(t) and Sα(t) are linear and bounded operators in H, i.e., for

any x ∈H,

∥
∥Tα(t)x

∥
∥ ≤ M‖x‖,

∥
∥Sα(t)x

∥
∥ ≤ M

Γ (α)
‖x‖. (2.3)

(ii) For every x ∈H, t → Tα(t)x and t → Sα(t)x are continuous functions from [0,∞)
into H.

(iii) The operators Tα(t) (t ≥ 0) and Sα(t) (t ≥ 0) are strongly continuous.
(iv) If the semigroup T(t) is compact, then Tα(t) and Sα(t) are also compact operators in

H for t > 0, and hence they are norm-continuous.

In this paper, we adopt the following definition of the mild solution of (1.1).

Definition 2.7 For any given u ∈ L2
F ([0, b],U), a stochastic process x is said to be a mild

solution of (1.1) on [0, b] if x ∈H([0, b], L2(Ω ,H)) and
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(i) x(t) is measurable and adapted to Ft ;
(ii) x(t) satisfies the following integral equation:

x(t) = Tα(t)g(x) +
∫ t

0
(t – s)α–1Sα(t – s)

[
f
(
s, x(s)

)
+ Bu(s)

]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)σ

(
s, x(s)

)
dW (s).

Let E be a finite-dimensional subspace of L2(Ω ,H) and denote by πE the orthogonal
projection from L2(Ω ,H) onto E. Let x(b; u) be the state value of system (1.1) at terminal
time b corresponding to control u. The set R(b) = {x(b; u) : u ∈ L2

F (J ,U)} is called the
reachable set of (1.1) at the terminal time b.

Definition 2.8
(a) The fractional stochastic control system (1.1) is called approximately controllable on

the interval [0, b] if R(b) = L2(Ω ,H).
(b) For xb ∈ L2(Ω ,H) and ε > 0, the fractional stochastic control system (1.1) is called

finitely-approximately controllable on the interval [0, b] if there exists a control
uε ∈ L2

F (J ,U) such that the corresponding solution x(b; uε) of (1.1), satisfies the
conditions

E
∥
∥x(b; uε) – xb

∥
∥2 < ε, (2.4)

πEx(b; uε) = πExb. (2.5)

This means that the control uε can be chosen such that x(b; uε) satisfies (2.4) and simul-
taneously a finite number of constraints, that is, condition (2.5).

To prove the main result, we need the following restrictions:
(H1) The function f : [0, b] ×H→ H is Carathéodory continuous, in addition, there

exist a function ξf ∈ L([0, b],R+) and a nondecreasing continuous function
Ψf : R+ →R

+ such that

E
∥
∥f (t, x)

∥
∥2 ≤ ξf (t)Ψf

(
E‖x‖2), a.e. t ∈ [0, b],∀x ∈H.

(H2) The function σ : [0, b] ×H → L0
2 is Carathéodory continuous, in addition, there

exist a function ξσ ∈ L
1
q ([0, b],R+) for constant q ∈ (0, 2α – 1) and a nondecreasing

continuous function Ψσ : R+ →R
+ such that

E
∥
∥σ (t, x)

∥
∥2

L0
2
≤ ξσ (t)Ψσ

(
E‖x‖2), a.e. t ∈ [0, b],∀x ∈H.

(H3) g : H →H is continuous and h : [0, b] ×H →H is Carathéodory continuous, in
addition, there exist function ξh ∈ L([0, b],R+) and a nondecreasing continuous
function Ψh : R+ →R

+ such that

E
∥
∥h(t, x)

∥
∥2 ≤ ξh(t)Ψh

(
E‖x‖2), a.e. t ∈ [0, b],∀x ∈H.
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(H4) The linear fractional differential system

x(t) = Tα(t)x0 +
∫ t

0
(t – s)α–1Sα(t – s)Bu(s) ds (2.6)

is approximately controllable in [0, b].
It is known that system (2.6) approximately controllable on [0, b] if and only if the condition
B∗S∗

α(b – s)φ = 0, 0 ≤ s ≤ b implies that φ = 0.
For any ε > 0, φ ∈H and x ∈H([0, b], L2(Ω ,H)), we define an important functional

Jε(φ, x) =
1
2

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ
∥
∥2 ds

+ ε
(
E

∥
∥(I – πE)φ

∥
∥2) 1

2 – E
〈
φ, p(x)

〉
, (2.7)

where

p(x) = xb –
(

Tα(b)g(x) +
∫ b

0
(b – s)α–1Sα(b – s)f

(
s, x(s)

)
ds

+
∫ b

0
(b – s)α–1Sα(b – s)σ

(
s, x(s)

)
dW (s)

)

.

Lemma 2.9 Suppose that Assumptions (H1)–(H3) are satisfied. Then the following condi-
tions hold:

(i) p is continuous in Br ;
(ii) {p(x) : x ∈ Br} is relatively compact in H.

Proof Let xn → x in Br , then we have

f
(
t, xn(t)

) → f
(
t, x(t)

)
, σ

(
t, xn(t)

) → σ
(
t, x(t)

)
, g(xn) → g(x) (n → ∞).

Moreover, for any t ∈ [0, b], using Hölder inequality and Lebesgue dominated convergence
theorem, we can get

E

∥
∥
∥
∥

∫ b

0
(b – s)α–1Sα(b – s)

[
f
(
s, xn(s)

)
– f

(
s, x(s)

)]
ds

∥
∥
∥
∥

2

≤
(

M
Γ (α)

)2 ∫ b

0
(b – s)2α–2 ds

∫ b

0
E

∥
∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥2 ds

≤ b2α–1

2α – 1

(
M

Γ (α)

)2 ∫ b

0
E

∥
∥f

(
s, xn(s)

)
– f

(
s, x(s)

)∥
∥2 ds

→ 0 (n → ∞). (2.8)
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On the other hand, from Lemma 2.1, Hölder inequality and Lebesgue dominated conver-
gence theorem, we obtain

E

∥
∥
∥
∥

∫ b

0
(b – s)α–1Sα(b – s)

[
σ
(
s, xn(s)

)
– σ

(
s, x(s)

)]
dW (s)

∥
∥
∥
∥

2

≤ Tr(Q)
(

M
Γ (α)

)2 ∫ b

0
(b – s)2α–2

E
∥
∥σ

(
s, xn(s)

)
– σ

(
s, x(s)

)∥
∥2 ds

→ 0 (n → ∞). (2.9)

Meanwhile, by (H3), we see that

E
∥
∥Tα(b)

(
g(xn) – g(x)

)∥
∥2 ≤ M2

E
∥
∥g(xn) – g(x)

∥
∥2 → 0 (n → ∞). (2.10)

According to the inequality obtained above, we obtain the following relation:

E
∥
∥p(xn) – p(x)

∥
∥2 ≤ 3E

∥
∥Tα(b)

(
g(xn) – g(x)

)∥
∥2

+ 3E
∥
∥
∥
∥

∫ b

0
(b – s)α–1Sα(b – s)

[
f
(
s, xn(s)

)
– f

(
s, x(s)

)]
ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ b

0
(b – s)α–1Sα(b – s)

[
σ
(
s, xn(s)

)
– σ

(
s, x(s)

)]
dW (s)

∥
∥
∥
∥

2

→ 0 (n → ∞).

Therefore, p is continuous in Br .
Next, we prove (ii). For all ε ∈ (0, b) and all ν > 0, define an operator Fε,ν on Br by the

formula

(
Fε,νx

)
(b)

= α

∫ b–ε

0

∫ ∞

ν

θζα(θ )(b – s)α–1T
(
(b – s)αθ

)
f
(
s, x(s)

)
dθ ds

+ α

∫ b–ε

0

∫ ∞

ν

θζα(θ )(t – s)α–1T
(
(b – s)αθ

)
σ
(
s, x(s)

)
dθ dW (s)

= T
(
εαν

)
α

∫ b–ε

0

∫ ∞

ν

θζα(θ )(b – s)α–1T
(
(b – s)αθ – εαν

)
f
(
s, x(s)

)
dθ ds

+ T
(
εαν

)
α

∫ b–ε

0

∫ ∞

ν

θζα(θ )(b – s)α–1T
(
(b – s)αθ – εαν

)
σ
(
s, x(s)

)
dθ dW (s).

Then the set {(Fε,νx)(b) : x ∈ Br} is relatively compact in H because T(εαν) is compact. We
denote

(F1x)(b) = α

∫ b

0

∫ ∞

0
θζα(θ )(b – s)α–1T

(
(b – s)αθ

)
f
(
s, x(s)

)
dθ ds

+ α

∫ b

0

∫ ∞

0
θζα(θ )(b – s)α–1T

(
(b – s)αθ

)
σ
(
s, x(s)

)
dθ dW (s)
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for any x ∈ Br . Applying (H1)–(H3), Lemmas 2.1 and 2.6, and Hölder inequality, we have

E
∥
∥(F1x)(b) –

(
Fε,νx

)
(b)

∥
∥2

≤ 4E
∥
∥
∥
∥α

∫ b

0

∫ ν

0
θζα(θ )(b – s)α–1T

(
(b – s)αθ

)
f
(
s, x(s)

)
dθ ds

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥α

∫ t

b–ε

∫ ∞

ν

θζα(θ )(b – s)α–1T
(
(t – s)αθ

)
f
(
s, x(s)

)
dθ ds

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥α

∫ b

0

∫ ν

0
θζα(θ )(b – s)α–1T

(
(b – s)αθ

)
σ
(
s, x(s)

)
dθ dW (s)

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥α

∫ b

b–ε

∫ ∞

ν

θζα(θ )(b – s)α–1T
(
(b – s)αθ

)
σ
(
s, x(s)

)
dθ dW (s)

∥
∥
∥
∥

2

≤ 4M2α2
∫ b

0
(b – s)2α–2 ds

∫ b

0
E

∥
∥f

(
s, x(s)

)∥
∥2 ds

(∫ ν

0
θζα(θ ) dθ

)2

+
4M2α2

Γ 2(1 + α)

∫ b

b–ε

(b – s)2α–2 ds
∫ b

b–ε

E
∥
∥f

(
s, x(s)

)∥
∥2 ds

+ 4 Tr(Q)M2α2
∫ b

0
(b – s)2α–2

E
∥
∥σ

(
s, x(s)

)∥
∥2

L0
2

ds
(∫ ν

0
θζα(θ ) dθ

)2

+
4 Tr(Q)M2α2

Γ 2(1 + α)

∫ b

t–ε

(b – s)2α–2
E

∥
∥σ

(
s, x(s)

)∥
∥2

L0
2

ds

≤ 4M2α2b2α–1Ψf (R)‖ξf ‖L[0,b]

2α – 1

(∫ ν

0
θζα(θ ) dθ

)2

+
4M2α2Ψf (R)‖ξf ‖L[0,b]

Γ 2(1 + α)
ε2α–1

2α – 1

+ 4 Tr(Q)M2α2Ψσ (R)
(

1 – q
2α – 1 – q

)1–q

‖ξσ ‖
L

1
q

(∫ ν

0
θζα(θ ) dθ

)2

+
4 Tr(Q)M2α2Ψσ (R)

Γ 2(1 + α)

(
1 – q

2α – 1 – q

)1–q

‖ξσ ‖
L

1
q
ε2α–1–q

→ 0 (ε,ν → 0).

Therefore, there are relatively compact sets arbitrarily close to the set {(F1x)(b) : x ∈ Br}
in H. Hence the set {(F1x)(b) : x ∈ Br} is relatively compact in H. Combining this fact with
the compactness of Tα(b), it follows that {p(x) : x ∈ Br} is relatively compact in H.

This completes the proof of Lemma 2.9. �

Lemma 2.10 Suppose that Assumptions (H1)–(H4) are satisfied. Then the functional Jε
satisfies the following properties:

(i) For x ∈H([0, b], L2(Ω ,H)), the map φ → Jε(φ, x) is continuous and strictly convex;
(ii) For any r > 0,

lim

(E‖φ‖2)
1
2 →∞

inf
x∈Br

Jε(φ, x)
(E‖φ‖2) 1

2
≥ ε. (2.11)
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Proof (i) From the definition of Jε(φ, x), it is easy to see that φ → Jε(φ, x) is continuous and
strictly convex.

(ii) If (ii) does not hold, there exist sequences {xn} ⊂ H([0, b], L2(Ω ,H)) and {φn} ⊂ H

with (E‖φn‖2) 1
2 → ∞ such that

lim
n→∞

Jε(φn, xn)
(E‖φn‖2) 1

2
< ε. (2.12)

By Lemma 2.9, the set {p(xn) : xn ∈ Br} is relatively compact in H. Hence there is a subse-
quence, still denoted by p(xn), that strongly converges to, say, p0 in H.

We normalize φn as φ̃n = φn

(E‖φn‖2)
1
2

. Evidently, ‖φ̃n‖L2 = 1, so we can extract a subse-

quence (still denoted by φ̃n), which weakly converges to an element φ̃ in H. By the com-
pactness of T(t), we infer that B∗S∗

α(b – s)φ̃n strongly converges to B∗S∗
α(b – s)φ̃. By (2.7),

we obtain

Jε(φn, xn)
(E‖φn‖2) 1

2
=

(E‖φn‖2) 1
2

2

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ̃n
∥
∥2 ds

+ ε
(
E

∥
∥(I – πE)φ̃n

∥
∥2) 1

2 – E
〈
φ̃n, p(xn)

〉
,

Observe that (2.12) and Fatou lemma implies that

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ̃
∥
∥2 ds

≤ lim
n→∞

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ̃n
∥
∥2 ds = 0.

By (H4), we get φ̃ = 0, that is, φ̃n weakly converges to 0 in H. As E is finite-dimensional,
the orthogonal projection πE is compact. Moreover, we have

lim
n→∞

(
E

∥
∥(I – πE)φ̃n

∥
∥2) 1

2 = 1.

Therefore,

ε > lim
n→∞

Jε(φn, xn)
(E‖φn‖2) 1

2
≥ lim

n→∞

[
ε
(
E

∥
∥(I – πE)φ̃n

∥
∥2) 1

2 – E
〈
φ̃n, p(xn)

〉]
= ε,

which contradicts (2.12). So (ii) holds.
This completes the proof of Lemma 2.10. �

Inequality (2.11) means that the functional Jε(·, x) : H → R is coercive. Thus, for any
x ∈ H([0, b], L2(Ω ,H)), the functional Jε(·, x) admits a unique critical point φ̂ε . We define
a mapping Φε : H([0, b], L2(Ω ,H)) →H by Φε(x) = φ̂ε . Next, we estimate some properties
of mapping Φε .

Lemma 2.11 If Assumptions (H1)–(H4) are satisfied, then the following conclusions hold:
(i) For any x ∈ Br , there exists a constant Lε > 0 such that E‖Φε(x)‖2 ≤ Lε ;
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(ii) For any xn, x ∈ Br satisfying xn → x in H([0, b], L2(Ω ,H)), it holds that

lim
n→∞E

∥
∥Φε(xn) – Φε(x)

∥
∥2 = 0.

Proof (i) By Lemma 2.10, there exists Lε > 0 such that

inf
x∈Br

Jε(φ, x)
(E‖φ‖2) 1

2
≥ ε

2
, E‖φ‖2 > Lε . (2.13)

On the other hand, by the definition of Φε ,

Jε
(
Φε(x), x

) ≤ Jε(0, x) = 0, x ∈ Br . (2.14)

Therefore, by (2.13) and (2.14), we obtain that

E
∥
∥Φε(x)

∥
∥2 ≤ Lε , x ∈ Br . (2.15)

(ii) Set φ̂ε,n = Φε(xn) and φ̂ε = Φε(x). By (i), we know that {φ̂ε,n} is bounded, thus we
suppose that φ̂ε,n weakly converges to φ̃ε in H. According to the definition of Jε , Fatou
lemma and the optimality of both φ̂ε,n = Φε(xn) and φ̂ε = Φε(x), we have

Jε(φ̂ε , x) ≤ Jε(φ̃ε , x) ≤ lim
n→∞

Jε(φ̂ε,n, xn) ≤ lim
n→∞ Jε(φ̂ε,n, xn)

≤ lim
n→∞ Jε(φ̂ε , xn) = Jε(φ̂ε , x).

Thus, Jε(φ̂ε , x) = Jε(φ̃ε , x), that is, φ̃ε is also a minimum of Jε(·, x). By the uniqueness of the
minimum of Jε(·, x), we get φ̂ε = φ̃ε . Moreover, we have

lim
n→∞ Jε(φ̂ε,n, xn) = Jε(φ̂ε , x),

lim
n→∞

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ̂ε,n
∥
∥2 ds

=
∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)φ̂ε

∥
∥2 ds,

lim
n→∞E

〈
φ̂ε,n, p(xn)

〉
= E

〈
φ̂ε , p(x)

〉
,

(
E

∥
∥(I – πE)φ̂ε

∥
∥2) 1

2 ≤ lim
n→∞

(
E

∥
∥(I – πE)φ̂ε,n

∥
∥2) 1

2 .

From these relations, we easily see that

lim
n→∞

(
E

∥
∥(I – πE)φ̂ε,n

∥
∥2) 1

2 =
(
E

∥
∥(I – πE)φ̂ε

∥
∥2) 1

2 . (2.16)

Since H is a Hilbert space, by (2.16) and since φ̂ε,n ⇀ φ̂ε weakly in H, we have

lim
n→∞E

∥
∥Φε(xn) – Φε(x)

∥
∥2 = 0.

This completes the proof of Lemma 2.11. �



Ding and Li Journal of Inequalities and Applications         (2020) 2020:95 Page 12 of 24

Now, we introduce a control uε(t, x) by

uε(t, x) = B∗S∗
α(b – t)Φε(x).

From Lemma 2.11, we can get the following obvious result:

Lemma 2.12 If Assumptions (H1)–(H4) are satisfied, then for any x ∈ Br , the following
conclusions hold:

(i) E‖uε(t, x)‖2 ≤ Lu;
(ii) uε(t, x) is continuous in Br , where Lu = ‖B‖2( M

Γ (α) )2Lε .

To discuss the finite-controllability for system (1.1), we need the following lemmas in
this paper.

Lemma 2.13 Assume that –A generates a compact C0-semigroup T(t) (t ≥ 0) of uniformly
bounded operators in a Hilbert space H. Let Assumptions (H1)–(H4) hold. Suppose, in
addition, that the following condition is satisfied:

(H5) There is a constant δ ∈ (0, b) such that for any t ∈ [0, b],

f
(
t, x1(t)

)
= f

(
t, x2(t)

)
, σ

(
t, x1(t)

)
= σ

(
t, x2(t)

)
, h

(
t, x1(t)

)
= h

(
t, x2(t)

)
,

where x1, x2 ∈H([0, b], L2(Ω ,H)) with x1(t) = x2(t) (t ∈ [δ, b]).
Then the nonlocal problem (1.1) has at least one mild solution in BR provided that there
exists a positive constant R such that

3M2bΨh(R)‖ξh‖L[0,b] + 3c0
(
2Ψf (R)‖ξf ‖L[0,b] + 2b‖B‖2Lu

)

+ 3c1 Tr(Q)Ψσ (R)‖ξσ‖
L

1
q

≤ R. (2.17)

where

c0 =
(

M
Γ (α)

)2 b2α–1

2α – 1
, c1 =

(
M

Γ (α)

)2( 1 – q
2α – 1 – q

)1–q

b2α–1–q.

Proof For any r > 0, define

Br(δ) =
{

x ∈H
(
[δ, b], L2(Ω ,H)

)
: E

∥
∥x(t)

∥
∥2 ≤ r,∀t ∈ [δ, b]

}
.

It is easily seen that for each x ∈ Br(δ), there exists a function y ∈ Br satisfying x(t) = y(t),
t ∈ [δ, b]. Define the following mappings on Br(δ) by

(
f ∗x

)
(t) = f

(
t, y(t)

)
, t ∈ [0, b],

(
σ ∗x

)
(t) = σ

(
t, y(t)

)
, t ∈ [0, b],

g∗(x) = g(y).
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Then, by conditions (H1)–(H3) and (H5), it is easy to see that f ∗, σ ∗, g∗ is well defined on
Br(δ) and continuous. In addition,

E
∥
∥
(
f ∗x

)
(t)

∥
∥2 ≤ ξf (t)Ψf

(
E‖x‖2), a.e. t ∈ [0, b],∀x ∈ Br(δ),

E
∥
∥
(
σ ∗x

)
(t)

∥
∥2

L0
2
≤ ξσ (t)Ψσ

(
E‖x‖2), a.e. t ∈ [0, b],∀x ∈ Br(δ),

E
∥
∥g∗(x)

∥
∥2 ≤ bΨh(r)‖ξh‖L[0,b], ∀x ∈ Br(δ).

(2.18)

Define an operator Fδ on Br(δ) as follows:

(Fδx)(t) = Tα(t)g∗(x) +
∫ t

0
(t – s)α–1Sα(t – s)

[(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds

+
∫ t

0
(t – s)α–1Sα(t – s)

(
σ ∗x

)
(s) dW (s), t ∈ [δ, b],

here u∗
ε (s, x) is defined by u∗

ε (t, x) = B∗S∗
α(b – t)Φ∗

ε (x), and Φ∗
ε (x) is the critical point of

Jε(φ, x) of p∗(x), where

p∗(x) = xb –
(

Tα(b)g∗(x) +
∫ b

0
(b – s)α–1Sα(b – s)

(
f ∗x

)
(s) ds

+
∫ b

0
(b – s)α–1Sα(b – s)

(
σ ∗x

)
(s) dW (s)

)

.

Evidently, the results in Lemma 2.12 hold for u∗
ε (s, x).

Next we prove that Fδ has a fixed point by Schauder’s fixed point theorem. For this pur-
pose, we first check that there is a positive number R such that Fδ maps BR(δ) into itself.
For any x ∈ BR(δ) and t ∈ [δ, b], it follows from (2.17), (2.18), Lemmas 2.1 and 2.6, and
Hölder inequality that

E
∥
∥(Fδx)(t)

∥
∥2

≤ 3E
∥
∥Tα(t)g∗(x)

∥
∥2 + 3E

∥
∥
∥
∥

∫ t

0
(t – s)α–1Sα(t – s)

[(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ tr

0
(tr – s)α–1Sα(tr – s)

(
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

≤ 3M2bΨh(r)‖ξh‖L[0,b] +
3M2

Γ 2(α)
· b2α–1

2α – 1

∫ t

0
E

∥
∥
(
f ∗x

)
(s) + Bu∗

ε (s, x)
∥
∥2 ds

+
3 Tr(Q)M2

Γ 2(α)

∫ t

0
(t – s)2α–2

E
∥
∥
(
σ ∗x

)
(s)

∥
∥2

L0
2

ds

≤ 3M2bΨh(R)‖ξh‖L[0,b] + 3c0
(
2Ψf (R)‖ξf ‖L[0,b] + 2b‖B‖2Lu

)

+ 3c1 Tr(Q)Ψσ (R)‖ξσ‖
L

1
q

≤ R.

It then follows that Fδ maps BR(δ) to BR(δ).
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Secondly, with a method similar to that in the proof of Lemma 2.9, we can also prove that
Fδ : BR(δ) → BR(δ) is a continuous operator and the set {(Fδx)(t) : x ∈ BR(δ)} is relatively
compact in H for t ∈ [δ, b].

In what follows, we will show that Fδ(BR(δ)) is an equicontinuous family of functions on
[δ, b]. For any x ∈ BR(δ) and δ ≤ t1 < t2 ≤ b, we get that

E
∥
∥(Fδx)(t2) – (Fδx)(t1)

∥
∥2

= 7E
∥
∥
(
Tα(t2) – Tα(t2)

)
g∗(x)

∥
∥2

+ 7E
∥
∥
∥
∥

∫ t2

t1

(t2 – s)α–1Sα(t2 – s)
[(

f ∗x
)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]Sα(t2 – s)

[(
f ∗x

)
(s) + Bu∗

ε (s, x)
]
∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

][(
f ∗x

)
(s) + Bu∗

ε (s, x)
]
∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t2

t1

(t2 – s)α–1Sα(t2 – s)
(
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]Sα(t2 – s)

(
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

](
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

= I0 + I1 + I2 + I3 + I4 + I5 + I6.

In order to prove that E‖(F1x)(t2) – (F1x)(t1)‖2 → 0(t2 – t1 → 0), we only need to check
Ii → 0 independently of x ∈ BR(δ) when t2 – t1 → 0 for i = 0, 1, 2, . . . , 6. Clearly, I0 → 0 as
t2 – t1 → 0.

For I1 and I4, from (2.18), Lemmas 2.1 and 2.6, and Hölder inequality, we obtain the
estimates

I1 = 7E
∥
∥
∥
∥

∫ t2

t1

(t2 – s)α–1Sα(t2 – s)
[(

f ∗x
)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

≤ 7M2

Γ 2(α)

∫ t2

t1

(t2 – s)2α–2 ds
∫ t2

t1

E
∥
∥
(
f ∗x

)
(s) + Bu∗

ε (s, x)
∥
∥2 ds

≤ 7M2(2Ψf (R)‖ξf ‖L[0,b] + 2‖B‖2Lub)
Γ 2(α)

· (t2 – t1)2α–1

2α – 1

→ 0 (t2 – t1 → 0),

I4 = 7E
∥
∥
∥
∥

∫ t2

t1

(t2 – s)α–1Sα(t2 – s)
(
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

≤ 7 Tr(Q)M2

Γ 2(α)

∫ t2

t1

(t2 – s)2α–2
E

∥
∥
(
σ ∗x

)
(s)

∥
∥2 ds

≤
7 Tr(Q)M2Ψσ (R)‖ξσ‖

L
1
β

Γ 2(α)

(
1 – q

2α – 1 – q

)1–q

(t2 – t1)2α–1–q

→ 0 (t2 – t1 → 0).
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Similarly, for I2 and I5, we get

I2 = 7E
∥
∥
∥
∥

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]Sα(t2 – s)

× [(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

≤ 7M2

Γ 2(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]2 ds

×
∫ t1

0
E

∥
∥
(
f ∗x

)
(s) + Bu∗

ε (s, x)
∥
∥2 ds

≤ 7M2(2Ψf (R)‖ξf ‖L[0,b] + 2‖B‖2Lub)
Γ 2(α)

×
∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]2 ds

→ 0 (t2 – t1 → 0),

I5 = 7E
∥
∥
∥
∥

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]Sα(t2 – s)

(
σ ∗x

)
(s) dW (s)

∥
∥
∥
∥

2

≤ 7 Tr(Q)M2

Γ 2(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]2

E
∥
∥
(
σ ∗x

)
(s)

∥
∥2 ds

≤
7 Tr(Q)M2Ψσ (R)‖ξσ‖

L
1
q

Γ 2(α)

×
(∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1] 2

1–q ds
)1–q

→ 0 (t2 – t1 → 0).

Further, for I3 and I6, suppose 0 < ε < t1 is small enough, we obtain the following inequal-
ities:

I3 = 7E
∥
∥
∥
∥

∫ t1

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

]

× [(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

≤ 14E
∥
∥
∥
∥

∫ t1–ε

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

]

× [(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

+ 14E
∥
∥
∥
∥

∫ t1

t1–ε

(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)
]

× [(
f ∗x

)
(s) + Bu∗

ε (s, x)
]

ds
∥
∥
∥
∥

2

≤ 14 sup
s∈[0,t1–ε]

∥
∥Sα(t2 – s) – Sα(t1 – s)

∥
∥2(2Ψf (R)‖ξf ‖L[0,b] + 2‖B‖2Lub

)
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× t2α–1
1 – ε2α–1

2α – 1

+ 14
(

2M
Γ (α)

)2(
2Ψf (R)‖ξf ‖L[0,b] + 2‖B‖2Lub

) ε2α–1

2α – 1

→ 0 (t2 – t1 → 0 and ε → 0),

I6 = 7E
∥
∥
∥
∥

∫ t1

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

](
σ ∗x

)
(s)

∥
∥
∥
∥

2

≤ 14E
∥
∥
∥
∥

∫ t1–ε

0
(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)

](
σ ∗x

)
(s) ds

∥
∥
∥
∥

2

+ 14E
∥
∥
∥
∥

∫ t1

t1–ε

(t1 – s)α–1[Sα(t2 – s) – Sα(t1 – s)
](

σ ∗x
)
(s) ds

∥
∥
∥
∥

2

≤ 14 Tr(Q)(1 – q)Ψσ (R)
2α – 1 – q

sup
s∈[0,t1–ε]

∥
∥Sα(t2 – s) – Sα(t1 – s)

∥
∥2‖ξσ ‖

L
1
q

× (
t

2α–1–q2
1–q

1 – ε
2α–1–q

1–q
)1–q

+ 14 Tr(Q)
(

2M
Γ (α)

)2

Ψσ (R)‖ξσ‖
L

1
q

(
1 – q

2α – 1 – q

)2α–1–q

ε2α–1–q

→ 0 (t2 – t1 → 0 and ε → 0).

Overall, we have Ii → 0 as t2 – t1 → 0 and ε → 0, which means F1(Br(δ)) is equicontinu-
ous. Therefore, an application of Arzela–Ascoli theorem justifies the precompactness of
Fδ(Br(δ)). Thus, by Schauder fixed point theorem, Fδ has at least a fixed point x̄ ∈ BR(δ),
i.e.,

x̄(t) = Tα(t)g∗(x̄) +
∫ t

0
(t – s)α–1Sα(t – s)

[(
f ∗x̄

)
(s) + Bu∗

ε (s, x̄)
]

ds

+
∫ t

0
(t – s)α–1Sα(t – s)

(
σ ∗x̄

)
(s) dW (s), t ∈ [δ, b].

Set

ȳ(t) = Tα(t)g∗(x̄) +
∫ t

0
(t – s)α–1Sα(t – s)

[(
f ∗x̄

)
(s) + Bu∗

ε (s, x̄)
]

ds

+
∫ t

0
(t – s)α–1Sα(t – s)

(
σ ∗x̄

)
(s) dW (s), t ∈ [0, b].

Clearly, x̄(t) = ȳ(t) for t ∈ [δ, b]. From the definitions of f ∗, σ ∗ and g∗, it follows immediately
that

ȳ(t) = Tα(t)g(ȳ) +
∫ t

0
(t – s)α–1Sα(t – s)

[
f
(
s, ȳ(s)

)
+ Buε(s, ȳ)

]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)σ

(
s, ȳ(s)

)
dW (s), t ∈ [0, b].

that is, ȳ is a mild solution of system (1.1) in BR.
This completes the proof of Lemma 2.13. �
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For each δ ∈ (0, b) and arbitrary x ∈H([0, b], L2(Ω ,H)), write

(Lδx)(t) =

⎧
⎨

⎩

x(δ), t ∈ [0, δ],

x(t), t ∈ [δ, b]
(2.19)

and

fδ
(
t, x(t)

)
= f

(
t, (Lδx)(t)

)
, t ∈ [0, b],

σδ

(
t, x(t)

)
= σ

(
t, (Lδx)(t)

)
, t ∈ [0, b],

hδ

(
t, x(t)

)
= h

(
t, (Lδx)(t)

)
, t ∈ [0, b],

It is easy to see that fδ , σδ , and hδ defined above satisfy condition (H5), thus we obtain

Lemma 2.14 Assume that –A generates a compact C0-semigroup T(t) (t ≥ 0) of uniformly
bounded operators in a Hilbert space H. Let Assumptions (H1)–(H4) hold. Then the follow-
ing nonlocal problem:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t x(t) + Ax(t) = fδ(t, x(t)) + σδ(t, x(t)) dW (t)

dt

+ Buε(t,Lδx), t ∈ [0, b],

x(0) =
∫ b

0 hδ(s, x(s)) ds

(2.20)

has at least one mild solution in BR provided that there exists a positive constant R such
that (2.17) is satisfied.

3 Main results
In this section, we shall discuss the finite-approximate controllability of the fractional
stochastic dynamical control system (1.1) by using the approximation techniques and a
diagonal argument.

Theorem 3.1 Assume that –A generates a compact C0-semigroup T(t) (t ≥ 0) of uniformly
bounded operators in a Hilbert space H. If Assumptions (H1)–(H4) are satisfied, then frac-
tional stochastic control system with nonlocal conditions (1.1) has at least one mild solution
in H([0, b], L2(Ω ,H)) provided that there exists a positive constant R such that (2.17) is sat-
isfied.

Proof To begin with, let {δn : n ∈N} be a decreasing sequence in (0, b) with limn→∞ δn = 0.
For every n, according to Lemma 2.14, we claim that the following system:

⎧
⎪⎪⎨

⎪⎪⎩

cDα
t x(t) + Ax(t) = fδn (t, x(t)) + σδn (t, x(t)) dW (t)

dt

+ Buε(t, (Lδn x)(t)), t ∈ [0, b],

x(0) =
∫ b

0 hδn (s, x(s)) ds

(3.1)
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has a mild solution xn ∈ BR if constant R satisfies (2.17), which is expressed by

xn(t) = Tα(t)
∫ b

0
hδn

(
s, x(s)

)
ds

+
∫ t

0
(t – s)α–1Sα(t – s)

[
(fδn

(
s, xn(s)

)
+ Buε(s,Lδn xn)

]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)(σδn

(
s, xn(s)

)
dW (s), t ∈ [0, b].

Let

vn(t) =

⎧
⎨

⎩

xn(δn), t ∈ [0, δn],

xn(t), t ∈ [δn, b],
(3.2)

then vn ∈ BR. In view of the definitions of fδn , σδn , and hδn , we conclude that

xn(t) = Tα(t)
∫ b

0
h
(
s, vn(s)

)
ds

+
∫ t

0
(t – s)α–1Sα(t – s)

[(
f
(
s, vn(s)

)
+ Buε(s, vn)

)]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)(σ

(
s, vn(s)

)
dW (s), t ∈ [0, b]. (3.3)

Next, we will show that the set {xn : n ∈ N} is precompact in H([0, b], L2(Ω ,H)). For this
purpose, we introduce the following definition:

ρn(t) = Tα(t)
∫ b

0
h
(
s, vn(s)

)
ds, t ∈ [0, b],

ϕn(t) =
∫ t

0
(t – s)α–1Sα(t – s)

[
f
(
s, vn(s) + Buε(s, vn)

)]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)σ

(
s, vn(s)

)
dW (s), t ∈ [0, b], t ∈ [0, b].

Therefore, we only need to show that the sets {ρn : n ∈N} and {ϕn : n ∈N} are precompact
in H([0, b], L2(Ω ,H)).

From the expression of vn(t), we know that vn ∈ BR. This implies that (H1)–(H3) hold
for f (s, vn(s)), σ (s, vn(s)) and h(s, vn(s)). Moreover, uε(s, vn) satisfies the estimates (i) and (ii)
in Lemma 2.12. Hence, it is not difficult to prove that the set {ϕn : n ∈N} is precompact in
H([0, b], L2(Ω ,H)) by the arguments similar to those in the proof of Lemma 2.13. In the
sequel, we will show that the set {ρn : n ∈ N} is also precompact in H([0, b], L2(Ω ,H)).
In fact, we only need to prove that the set {∫ b

0 h(s, vn(s)) ds : n ∈ N} is precompact in
H([0, b], L2(Ω ,H)).

Let {ηn : n ∈ N} be a decreasing sequence in (0, b) such that limn→∞ ηn = 0. For ev-
ery n ∈ N and t ∈ [η1, b], define function ωn : [η1, b] → H by ωn(t) = xn(t). Note that
vn ∈ BR and hence, {∫ b

0 h(s, vn(s)) ds : n ∈ N} is bounded. Meanwhile, Tα(t) is compact
and norm-continuous for t > 0, which implies that the set {Tα(t)

∫ b
0 h(s, vn(s)) ds : n ∈ N}



Ding and Li Journal of Inequalities and Applications         (2020) 2020:95 Page 19 of 24

is precompact in H for any t ∈ [η1, b] and {Tα(·) ∫ b
0 h(s, vn(s)) ds : n ∈ N} is equicontinu-

ous. By Arzela–Ascoli theorem, we conclude that {Tα(·) ∫ b
0 h(s, vn(s)) ds : n ∈ N} is pre-

compact in H([η1, b], L2(Ω ,H)). Combining this with the fact that {ϕn : n ∈N} is precom-
pact in H([0, b], L2(Ω ,H)), we claim that {ωn : n ∈N} is precompact in H([η1, b], L2(Ω ,H)).
Hence, we can find a subsequence {x1

n : n ∈ N} ⊂ {xn : n ∈ N} which is a Cauchy se-
quence in H([η1, b], L2(Ω ,H)). In the same way, we can select a subsequence {x2

n : n ∈
N} ⊂ {x1

n : n ∈N} which is a Cauchy sequence in H([η2, b], L2(Ω ,H)). Repeating the above
reasoning and applying a diagonal argument, we know that there exist a subsequence
{x∗

n : n ∈ N} ⊂ {xn : n ∈ N} which is a Cauchy sequence in H([ηn, b], L2(Ω ,H)). Moreover,
for every t ∈ (0, b], {x∗

n(t) : n ∈ N} is a Cauchy sequence in H. So there exists a continuous
function x∗ : (0, b] → L2(Ω ,H) such that for each ηk ,

lim
n→∞ max

t∈[ηk ,b]
E

∥
∥x∗

n(t) – x∗(t)
∥
∥2 = 0. (3.4)

We further show that {g(x∗
n) : n ∈N} is a Cauchy sequence in H. Let δ ∈ (0, b), then for any

x1, x2 ∈H([0, b], L2(Ω ,H)) with x1(t) = x2(t), t ∈ [δ, b], we have

E
∥
∥g(x1) – g(x2)

∥
∥2 = E

∥
∥
∥
∥

∫ δ

0

[
h
(
s, x1(s)

)
ds – h

(
s, x2(s)

)]
ds

∥
∥
∥
∥

2

→ 0 (δ → 0).

Therefore, for ∀ε > 0, there exists a positive constant δ0 < b such that

E
∥
∥g(x1) – g(x2)

∥
∥2 <

ε

16

for any x1, x2 ∈ H([0, b], L2(Ω ,H)) with x1(t) = x2(t), t ∈ [δ0, b]. Let y(t) be the function
defined by

y(t) =

⎧
⎨

⎩

x∗(δ0), t ∈ [0, δ0],

x∗(t), t ∈ [δ0, b].
(3.5)

Clearly, y ∈H([0, b], L2(Ω ,H)). By (3.4) we have

lim
n→∞ max

t∈[δ0,b]
E

∥
∥x∗

n(t) – y(t)
∥
∥2 = 0.

From the definition of Lδ , we can see easily that

lim
n→∞

∥
∥Lδ0 x∗

n – y
∥
∥
H = 0.

By the continuity of g , we can find a natural number N such that

lim
n→∞E

∥
∥g

(
Lδ0 x∗

n
)

– g(y)
∥
∥2 <

ε

16
, n > N .

Therefore, for any m, n > N , we have

E
∥
∥g

(
x∗

m
)

– g
(
x∗

n
)∥
∥2 ≤ 4E

∥
∥g

(
x∗

m
)

– g
(
Lδ0 x∗

m
)∥
∥2 + 4E

∥
∥g

(
Lδ0 x∗

m
)

– g(y)
∥
∥2

+ 4E
∥
∥g

(
Lδ0 x∗

n
)

– g(y)
∥
∥2 + 4E

∥
∥g

(
x∗

n
)

– g
(
Lδ0 x∗

n
)∥
∥2

< ε.
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This inequality implies that {g(x∗
n) : n ∈ N} is a Cauchy sequence in H, namely, {g(xn) : n ∈

N} is precompact in H.
Finally, by (3.2), we can verify easily that

E
∥
∥g(xn) – g(vn)

∥
∥2 → 0 (n → ∞),

which implies that {∫ b
0 h(s, vn(s)) ds : n ∈N} is precompact in H.

So far we have proved that the set {xn : n ∈ N} ⊂ H([0, b], L2(Ω ,H)) is precompact.
Hence, there exist a subsequence of {xn : n ∈ N} denoted again by {xn : n ∈ N} and a func-
tion x0 ∈ BR such that

lim
n→∞‖xn – x0‖2

H = 0. (3.6)

From the definition of vn it follows that

‖vn – x0‖2
H = max

t∈J
E

∥
∥vn(t) – x0(t)

∥
∥2

≤ max
t∈[0,δn]

E
∥
∥xn(δn) – x0(t)

∥
∥2 + max

t∈[δn ,b]
E

∥
∥xn(t) – x0(t)

∥
∥2

≤ 2E
∥
∥xn(δn) – x0(δn)

∥
∥2 + 2 max

t∈[0,δn]
E

∥
∥x0(δn) – x0(t)

∥
∥2 + ‖xn – x0‖2

H

≤ ‖xn – x0‖2
H2 max

t∈[0,δn]
E

∥
∥x0(δn) – x0(t)

∥
∥2

→ 0 (n → ∞) (3.7)

By (3.6)–(3.7) and taking the limit as n → ∞ in (3.3), one gets that

x0(t) = Tα(t)
∫ b

0
h
(
s, x0(s)

)
ds

+
∫ t

0
(t – s)α–1Sα(t – s)

[(
f
(
s, x0(s)

)
+ Buε(s, x0)

)]
ds

+
∫ t

0
(t – s)α–1Sα(t – s)(σ

(
s, x0(s)

)
dW (s), t ∈ [0, b].

This means that x0 ∈H([0, b], L2(Ω ,H)) is a mild solution of system (1.1).
This completes the proof of Theorem 3.1. �

Remark 3.2 Even if without control u in the fractional nonlocal control system (1.1), The-
orem 3.1 is still new.

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 hold. Then the fractional con-
trol system (1.1) is finitely-approximately controllable on [0, b].

Proof Let xε be a mild solution of (1.1) in BR. Then functional Jε(φ, xε) has a unique critical
point φ̂ε such that Jε(φ̂ε , xε) = minφ∈H Jε(φ, xε). Therefore, for any ψ ∈H and λ ∈R, we have

Jε(φ̂ε , xε) ≤ Jε(φ̂ε + λψ , xε).
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By this inequality, for λ > 0, we have

0 ≤ 1
λ

[
Jε(φ̂ε + λψ , xε) – Jε(φ̂ε , xε)

]

=
∫ b

0
(b – s)α–1

E
〈
B∗S∗

α(b – s)φ̂ε , B∗S∗
α(b – s)ψ

〉
ds

+
λ

2

∫ b

0
(b – s)α–1

E
∥
∥B∗S∗

α(b – s)ψ
∥
∥2 ds

+ ε
(E‖(I – πE)(φ̂ε + λψ)‖2) 1

2 – (E‖(I – πE)φ̂ε‖2) 1
2

λ
– E

〈
ψ , p(xε)

〉
.

Setting λ → 0+ in the inequality above, we have

E
〈
ψ , p(xε)

〉
–

∫ b

0
(b – s)α–1

E
〈
B∗S∗

α(b – s)φ̂ε , B∗S∗
α(b – s)ψ

〉
ds

≤ ε
(
E

∥
∥(I – πE)ψ

∥
∥2) 1

2 .

Similarly to the process above with λ < 0, we get

∣
∣
∣
∣E

〈
ψ , p(xε)

〉
–

∫ b

0
(b – s)α–1

E
〈
B∗S∗

α(b – s)φ̂ε , B∗S∗
α(b – s)ψ

〉
ds

∣
∣
∣
∣

≤ ε
(
E

∥
∥(I – πE)ψ

∥
∥2) 1

2 . (3.8)

Since
∫ b

0
(b – s)α–1

E
〈
B∗S∗

α(b – s)φ̂ε , B∗S∗
α(b – s)ψ

〉
ds

=
∫ b

0
(b – s)α–1

E
〈
Sα(b – s)Buε(s, xε),ψ

〉
ds,

(3.9)

from the definition of p(xε) and (3.8)–(3.9), for any ψ ∈H, it follows that

∣
∣E

〈
xε(b) – xb,ψ

〉∣
∣ ≤ ε

(
E

∥
∥(I – πE)ψ

∥
∥2) 1

2 .

By this and the properties of the orthogonal projection, we have

E
∥
∥xε(b) – xb

∥
∥2 < ε2,

πExε(b) = πExb.

Therefore, the fractional stochastic control system (1.1) is finitely-approximately control-
lable on [0, b].

This completes the proof of Theorem 3.3. �

Remark 3.4 If we take an abstract space C([0, b],H) with norm ‖x‖C = maxt∈[0,b] ‖x(t)‖,
and functional

Jε(φ, x) =
1
2

∫ b

0
(b – s)α–1∥∥B∗S∗

α(b – s)φ
∥
∥2 ds + ε

∥
∥(I – πE)φ

∥
∥ –

〈
φ, p(x)

〉
,
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where

p(x) = xb –
(

Tα(b)
∫ b

0
h
(
s, x(s)

)
ds +

∫ b

0
(b – s)α–1Sα(b – s)f

(
s, x(x)

)
ds

)

,

the methods used in this paper can be applied to study the finite-approximate controlla-
bility of deterministic systems

⎧
⎨

⎩

cDα
t x(t) + Ax(t) = f (t, x(t)) + Bu(t), t ∈ [0, b],

x(0) =
∫ b

0 h(s, x(s)) ds.

The corresponding results that appear are also new.

4 Application
To illustrate the main result, we consider the following fractional stochastic control sys-
tem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂
2
3

∂t
2
3

x(z, t) – ∂2x(z,t)
∂z2 = ( tx(z,t)

2(1+|x(z,t)|) + x(z, t)) + (etx(z, t) + sin x(z, t)) dW (t)
dt

+ u(z, t), t ∈ [0, b], z ∈ [0, 1],

x(0, t) = x(1, t), t ∈ [0, b],

x(z, 0) =
∫ b

0 s2 sin( x(z,s)
s ) ds, z ∈ [0, 1],

(4.1)

where W (t) is a standard one-dimensional Brownian motion defined on the filtered prob-
ability space (Ω ,F , {Ft}t≥0, P). To write the above system (4.1) into the abstract form of
(1.1), let H = E = U = L2[0, 1] with the norm ‖ · ‖. Define the operator A : D(A) ⊂ X → H

by

Av = –v′′, v ∈ D(A),

D(A) =
{

v ∈H, v, v′ are absolutely continuous, v′′ ∈H, v(0) = v(1) = 0
}

.

We know that –A generates a compact, analytic semigroup T(t) (t ≥ 0) in H and

T(t)v =
∞∑

n=1

e–n2t(v, vn)vn,
∥
∥T(t)

∥
∥ ≤ e–t , t > 0,

where vn =
√

2 sin(ns), n = 1, 2, . . . is the orthogonal set of eigenvectors in A.
For any t ∈ [0, b], let x(t)(z) = x(z, t), Bu(t)(z) = u(z, t), f (t, x(t))(z) = tx(z,t)

2(1+|x(z,t)|) + x(z, t),
σ (t, x(t))(z) = etx(z, t) + sin x(z, t), h(t, x(t))(z) = t2 sin( x(z,t)

t ). Then problem (4.1) can be
rewritten in the abstract form of (1.1). From the definitions of nonlinear terms f , σ , and h,
we can easily verify that Aassumptions (H1)–(H3) hold with ξf (t) = t2

2 +2, ξσ (t) = 2(e2t +1),
ξh(t) = t2, and Ψf (s) = Ψσ (s) = Ψh(s) = s. It can be easily seen that the deterministic linear
fractional control system corresponding to (4.1) is approximately controllable on [0, b] (see
[28]). Hence, by Theorem 3.1, system (4.1) has a mild solution provided that (2.17) holds.
Also, all the conditions of Theorem 3.3 are satisfied, so we get that stochastic control sys-
tem (4.1) is approximately controllable on [0, b].
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