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Abstract
Let ψμ,ν (z) = (1 – 2 cosνeiμz + e2iμz2)–1, μ,ν ∈ [0, 2π ) and p be an analytic mapping
with Rep > 0 on the open unit disk. We consider the sense-preserving planar
harmonic mappings f = h + g, which are shears of the mapping

∫ z
0 ψμ,ν (ξ )p(ξ )dξ in

the direction μ. These mappings include the harmonic right half-plan mappings,
vertical strip mappings, and their rotations. For various choices of dilatations g′/h′ of f ,
sufficient conditions are found for the convex combinations of these mappings to be
univalent and convex in the direction μ.
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1 Introduction
On a simply connected domain Ω ⊂ C a complex-valued harmonic mapping f can be
written as f = h + g , where h and g are analytic mappings. By Lewy [8], it is locally univa-
lent sense-preserving if and only if its Jacobian Jf = |h′|2 – |g ′|2 is positive or, equivalently,
its dilatation ωf := g ′/h′ lies in D := {z ∈C : |z| < 1}. Let H denote the class of all locally uni-
valent sense-preserving harmonic mappings f = h + g defined on D. Also, let SH denote
the subclass of H consisting of univalent mappings with normalization f (0) = 0 = fz(0) – 1.
Moreover, let S0

H be the subclass of SH that contains all mappings f = h + g such that
fz(0) = 0. For 0 ≤ ν < π , a mapping ϕ is called convex in the direction ν if ϕ(D) has con-
nected intersection with every line that is parallel to the line joining eiν to the origin. Such
a mapping is also called a directional convex mapping. If ν = 0 (or π/2), then ϕ is known
as convex in the real (or imaginary) direction. A harmonic mapping f = h + g ∈ S0

H is said
to be a right half-plane or a vertical strip mapping if it maps D onto the right half-plane

R =
{

w ∈C : Re(w) > –1/2
}

or the vertical strip

Vα :=
{

w ∈C :
α – π

2 sinα
< Re w <

α

2 sinα

}

,
π

2
< α < π ,
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respectively. It is well known [1, 4] that if f = h + g is a right half-plane harmonic map-
ping then h′(z) + g ′(z) = (1 – z)–2, and if it is a vertical strip harmonic mapping then
h′(z) + g ′(z) = (1 + 2z cosα + z2)–1. In this article, we find some sufficient conditions for the
convex combination of the right half-plane mappings, the vertical strip mappings, their
rotations, and some other harmonic mappings to be univalent and convex in a particular
direction. Generally, the convex combination of two analytic/harmonic mappings does
not carry the univalency or other geometric properties of individual mappings. One can
refer to the survey article by Campbell [2] and the references therein for the univalency
and other geometric properties of the convex combination of analytic mappings. However,
recently, a convex combination of some harmonic mappings has been studied in [5, 7, 11–
13]. In particular, Wang et al. [13] and Kumar et al. [7] respectively studied the directional
convexity of convex combination of harmonic mappings, which are shears of the analytic
mappings z/(1 – z) and z(1 –αz)/(1 – z2), –1 ≤ α ≤ 1. Motivated by the work carried out in
[7, 13], we study the convex combination of harmonic mappings which are shears of the
analytic mapping ψμ,νpk , where pk is analytic with positive real part on D and

ψμ,ν(z) =
1

1 – 2ze–iμ cosν + z2e–2iμ , μ,ν ∈ [0, 2π ). (1.1)

In particular, we show that the combination f = tf1 + (1 – t)f2, 0 ≤ t ≤ 1 of the mappings
fk = hk + gk ∈ SH , k = 1, 2, satisfying h′

k – e2iμg ′
k = ψμ,νpk is univalent and convex in the

direction μ for some specific dilatations of f1 and f2. The following result by Royster and
Ziegler [10] is used to check the convexity in a particular direction of analytic mappings.

Lemma 1.1 Let φ be a non-constant analytic mapping inD. Then φ mapsD onto a domain
convex in the direction γ (0 ≤ γ < π ) if and only if there are real numbers μ and ν (0 ≤ ν <
2π ) such that

Re
(
ei(μ–γ )(1 – 2ze–iμ cosν + z2e–2iμ)

φ′(z)
) ≥ 0, z ∈D. (1.2)

Remark 1.2 By taking γ or γ + π equal to μ in Lemma 1.1, we see that a non-constant
analytic mapping φ is convex in the direction μ if, for some real number ν (0 ≤ ν < 2π ),
the real part of the mapping φ′/ψμ,ν , where ψμ,ν is given by (1.1), is either non-negative or
non-positive on D.

Lemma 1.1 along with the following result due to Clunie and Sheil-Small [3], known as
shear construction, is used to check the convexity in a particular direction of harmonic
mappings.

Lemma 1.3 A locally univalent and sense-preserving harmonic mapping f = h + g on D

is univalent and maps D onto a domain convex in the direction γ (0 ≤ γ < π ) if and only
if the analytic mapping h – e2iγ g is univalent and maps D onto a domain convex in the
direction γ .

2 Main results
Theorem 2.1 For k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) – e2iμgk(z) =
∫ z

0
ψμ,ν(ξ )pk(ξ ) dξ , μ,ν ∈ [0, 2π ), (2.1)
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where pk is an analytic mapping with Re pk > 0 on D and ψμ,ν is given by (1.1). Then the
mapping f = tf1 + (1 – t)f2 is univalent and is convex in the direction μ for 0 ≤ t ≤ 1 if it is
locally univalent and sense-preserving.

Proof Let f = h + g, then

h = th1 + (1 – t)h2 and g = tg1 + (1 – t)g2,

and thus

h – e2iμg = t
(
h1 – e2iμg1

)
+ (1 – t)

(
h2 – e2iμg2

)
.

Therefore, in view of (2.1), it follows that

Re

(
h′ – e2iμg ′

ψμ,ν

)

= t Re p1 + (1 – t) Re p2 > 0

on D for 0 ≤ t ≤ 1. Hence, by Lemma 1.1, it follows that the mapping h – e2iμg is convex
in the direction μ. The result now follows by Lemma 1.3. �

Theorem 2.1 has the following obvious extension to n mappings.

Theorem 2.2 For k = 1, 2, . . . , n, let fk = hk + gk ∈ SH satisfy (2.1), where pk is an analytic
mapping with Re pk > 0 on D and ψμ,ν is given by (1.1). If

∑n
t=1 tk = 1, 0 ≤ tk ≤ 1, then the

mapping f =
∑n

t=1 tkfk is univalent and is convex in the direction μ provided it is locally
univalent and sense-preserving.

In Theorems 2.1 and 2.2 we assumed f to be locally univalent and sense-preserving onD.
Next, we will study some cases where this assumption can be relaxed.

Theorem 2.3 For k = 1, 2, let fk = hk + gk ∈ SH satisfy (2.1), where pk is an analytic map-
ping with Re pk > 0 on D and ψμ,ν is given by (1.1). Let ωfk be the dilatation of fk , then the
mapping f = tf1 + (1 – t)f2 is univalent and is convex in the direction μ for 0 ≤ t ≤ 1 if ωfk
and pk satisfy one of the following:

(i) ωf1 = ωf2 ,
(ii) p1/(1 – e2iμωf1 ) = p2/(1 – e2iμωf2 ),

(iii) p1 = p2,
(iv) ωf2 = –ωf1 and Re(p2(1 – e2iμωf1 )/(p1(1 + e2iμωf1 ))) > 0.

Proof In view of Theorem 2.1, it is enough to show that f is locally univalent and sense-
preserving or, equivalently, |ωf | < 1 on D, where ωf is the dilatation of f . Since for t = 0
and 1 the result is obvious, we consider 0 < t < 1. On differentiation (2.1) gives

h′
k – e2iμg ′

k = ψμ,νpk .

The above equation along with g ′
k = ωfk h′

k gives

h′
k =

ψμ,νpk

1 – e2iμωfk
. (2.2)
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Since f = h + g := th1 + (1 – t)h2 + tg1 + (1 – t)g2, in view of (2.2), ωf is given by

ωf =
g ′

h′ =
tg ′

1 + (1 – t)g ′
2

th′
1 + (1 – t)h′

2

=
tωf1 h′

1 + (1 – t)ωf2 h′
2

th′
1 + (1 – t)h′

2

=
tωf1 (1 – e2iμωf2 )p1 + (1 – t)ωf2 (1 – e2iμωf1 )p2

t(1 – e2iμωf2 )p1 + (1 – t)(1 – e2iμωf1 )p2
. (2.3)

Let ωf1 = ωf2 , then (2.3) gives that ωf = ωf1 and hence |ωf | < 1. Also, let pk and ωfk be given
by (ii), then (2.3) gives that ωf = tωf1 + (1 – t)ωf2 . Hence, |ωfk | < 1 follows that |ωf | < 1.
Moreover, let p1 = p2, then (2.3) shows that

ωf =
tωf1 (1 – e2iμωf2 ) + (1 – t)ωf2 (1 – e2iμωf1 )

t(1 – e2iμωf2 ) + (1 – t)(1 – e2iμωf1 )
.

Therefore, |ωfk | < 1 implies that

Re

(
1 + e2iμωf

1 – e2iμωf

)

= t Re

(
1 + e2iμωf1
1 – e2iμωf1

)

+ (1 – t) Re

(
1 + e2iμωf2
1 – e2iμωf2

)

> 0.

Hence, |ωf | < 1. Lastly, let ωf2 = –ωf1 , then from (2.3) we have

ωf = ωf1
t(1 + e2iμωf1 )p1 – (1 – t)(1 – e2iμωf1 )p2

t(1 + e2iμωf1 )p1 + (1 – t)(1 – e2iμωf1 )p2
=: ωf1ϕ.

Therefore, |ωf | < 1 if |ϕ| < 1. Now, by the assumption in (iv), we have

Re

(
1 + ϕ

1 – ϕ

)

= Re

(
t(1 + e2iμωf1 )p1

(1 – t)(1 – e2iμωf1 )p2

)

> 0.

Hence, |ϕ| < 1. This proves the result when ωfk and pk satisfy condition (iv). This completes
the proof. �

From its proof, it is easily seen that Theorem 2.3, except case (iv), has a natural extension
to n mappings as follows.

Theorem 2.4 For k = 1, 2, . . . , n, let fk = hk + gk ∈ SH have dilatation ωfk and satisfy (2.1),
where pk is an analytic mapping with Re pk > 0 onD and ψμ,ν is given by (1.1). If

∑n
t=1 tk = 1,

0 ≤ tk ≤ 1, then the mapping f =
∑n

t=1 tkfk is univalent and is convex in the direction μ

provided ωfk and pk satisfy one of the following:
(i) ωf1 = ωf2 = · · · = ωfn ,

(ii) p1/(1 – e2iμωf1 ) = p2/(1 – e2iμωf2 ) = · · · = pk/(1 – e2iμωfk ),
(iii) p1 = p2 = · · · = pn.

The following example gives an illustration of Theorem 2.3.
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Figure 1 Images of D under f at different values of t

Example 2.5 For k = 1, 2, let fk = hk + gk ∈ SH be given by

f1(z) = h1(z) + g1(z) =
1
2

log

(
1 + z
1 – z

)

+ z –
1
2

log

(
1 + z
1 – z

)

and

f2(z) = h2(z) + g2(z) =
1
2

log

(
1 + z
1 – z

)

+
1
2

log
1

1 – z2 .

Then, ωfk , the dilatation of fk , is given by ωf1 (z) = –z2 and ωf2 (z) = z. Also, we can see that

h′
k(z) + g ′

k(z) =
1 + ωfk (z)

1 – z2 .

Thus, fk satisfies (2.1) with μ = π/2, ν = π/2 and pk = 1 + ωfk , where Re pk > 0 on D. There-
fore, it follows from Theorem 2.3 that the mapping f = tf1 +(1– t)f2 is univalent and convex
in the imaginary direction for 0 ≤ t ≤ 1. Images of D under f at t = 1, t = 0, and t = 1/3 are
shown in Fig. 1.

We will use the following lemma to prove our next results.

Lemma 2.6 For n ∈N and k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) – gk(z) =
(
1 + (–1)ka

)
∫ z

0

q(ξ ) dξ

ψμ,νk (ξn)
, μ,νk ∈ [0, 2π ), (2.4)

where q is an analytic mapping and ψμ,ν is defined by (1.1). Let ωfk be the dilatation of fk .
If

ωf1 (z) = –ωf2 (z) =
a + ei(θ–μ)zn

1 + aei(θ–μ)zn , a ∈ (–1, 1), θ ∈ [0, 2π ), (2.5)
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then the mapping f = tf1 + (1 – t)f2 is locally univalent and sense-preserving for 0 ≤ t ≤ 1
provided:

(i) cos θ > max{cosν1, – cosν2} and cosν1 > cosν2, or
(ii) cos θ < min{cosν1, – cosν2} and cosν2 > cosν1.

To prove the above lemma, we will use the following result commonly known as Cohn’s
rule [9].

Theorem 2.7 Let r(z) = a0 + a1z + · · · + anzn be a polynomial of degree n and

r∗(z) = znr(1/z) = an + an–1z + · · · + a0zn.

Let s and s1 be the number of zeros of r inside and on the unit circle |z| = 1, respectively. If
|a0| < |an|, then

r1(z) =
anr(z) – a0r∗(z)

z

is a polynomial of degree n – 1 and has s – 1 and s1 number of zeros inside and on the unit
circle |z| = 1, respectively.

Proof of Theorem 2.1 Since fk ∈ SH , we need to prove the result only for 0 < t < 1. First of
all, we will show that both conditions (i) and (ii) imply

∣
∣1 – (cosν1 – cosν2)e–iθ ∣∣ < 1 (2.6)

and
∣
∣
∣
∣

cosν1 + cosν2

cosν1 – cosν2 + 2 cos θ

∣
∣
∣
∣ < 1. (2.7)

We see that (cosν1 – cosν2)(cosν1 – cosν2 – 2 cos θ ) < 0 if condition (i) or (ii) is satisfied.
Therefore,

∣
∣1 – (cosν1 – cosν2)e–iθ ∣∣2 – 1 =

(
1 – (cosν1 – cosν2) cos θ

)2 +
(
(cosν1 – cosν2) sin θ

)2

= (cosν1 – cosν2)(cosν1 – cosν2 – 2 cos θ ) < 0.

Hence, both (i) and (ii) imply (2.6). Next, let condition (i) be satisfied. Then cos θ > cosν1

and cos θ > – cosν2, and hence

cosν1 – cosν2 – 2 cos θ < cosν1 + cosν2 < – cosν1 + cosν2 + 2 cos θ . (2.8)

Similarly, if condition (ii) is satisfied, then

– cosν1 + cosν2 + 2 cos θ < cosν1 + cosν2 < cosν1 – cosν2 – 2 cos θ . (2.9)

Therefore, (2.8) and (2.9) show that both (i) and (ii) imply (2.7).
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Now, differentiating (2.4), we have

(
h′

k(z) – g ′
k(z)

)
ψμ,νk

(
zn) =

(
1 + (–1)ka

)
q(z).

The above equation along with g ′
k = ωfk h′

k gives

h′
k(z) =

(1 + (–1)ka)q(z)
ψμ,νk (zn)(1 – ωfk (z))

.

Therefore ωf , the dilatation of f = tf1 + (1 – t)f2, is given by

ωf (z) =
tg ′

1(z) + (1 – t)g ′
2(z)

th′
1(z) + (1 – t)h′

2(z)

=
tωf1 (z)h′

1(z) + (1 – t)ωf2 (z)h′
2(z)

th′
1(z) + (1 – t)h′

2(z)

=
tωf1 (z)ψμ,ν2 (zn)(1 – ωf2 (z))(1 – a) + (1 – t)ωf2 (z)ψμ,ν1 (zn)(1 – ωf1 (z))(1 + a)

tψμ,ν2 (zn)(1 – ωf2 (z))(1 – a) + (1 – t)ψμ,ν1 (zn)(1 – ωf1 (z))(1 + a)
.

(2.10)

Now, on substituting the values of ωfk , given by (2.5), in (2.10), we obtain

ωf (z) = ωf1 (z)

×
(

t(1 + aei(θ–μ)zn + a + ei(θ–μ)zn)ψμ,ν2 (zn)(1 – a) – (1 – t)(1 + aei(θ–μ)zn – a – ei(θ–μ)zn)ψμ,ν1 (zn)(1 + a)
t(1 + aei(θ–μ)zn + a + ei(θ–μ)zn)ψμ,ν2 (zn)(1 – a) + (1 – t)(1 + aei(θ–μ)zn – a – ei(θ–μ)zn)ψμ,ν1 (zn)(1 + a)

)

= ωf1 (z)
t(1 + ei(θ–μ)zn)ψμ,ν2 (zn) – (1 – t)(1 – ei(θ–μ)zn)ψμ,ν1 (zn)
t(1 + ei(θ–μ)zn)ψμ,ν2 (zn) + (1 – t)(1 – ei(θ–μ)zn)ψμ,ν1 (zn)

.

The above equation, after substituting the values of ψμ,νk and then putting e–iμzn = w, is
equivalent to

ωf
((

eiμw
)1/n) = ωf1

((
eiμw

)1/n)

×
(

t(1 + eiθ w)(1 – 2w cosν1 + w2) – (1 – t)(1 – eiθ w)(1 – 2w cosν2 + w2)
t(1 + eiθ w)(1 – 2w cosν1 + w2) + (1 – t)(1 – eiθ w)(1 – 2w cosν2 + w2)

)

=: ωf1
((

eiμw
)1/n)W (w). (2.11)

To prove our result, we have to show |ωf | < 1 on D. Since |ωf1 | < 1, in view of (2.11), it is
enough to show that |W | < 1 on D. Let

W (w) = e–iθ p(w)
q(w)

,

where, after a simplification,

p(w) = eiθ w3 +
(
2t – 1 – 2teiθ cosν1 – 2(1 – t)eiθ cosν2

)
w2

+
(
eiθ – 2t cosν1 + 2(1 – t) cosν2

)
w + 2t – 1
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and

q(w) = (2t – 1)w3 +
(
e–iθ – 2t cosν1 + 2(1 – t) cosν2

)
w2

+
(
2t – 1 – 2te–iθ cosν1 – 2(1 – t)e–iθ cosν2

)
w + e–iθ .

Clearly q(w) = w3p(1/w). Hence, we can write W as follows:

W (w) =
p(w)

w3p(1/w)
= eiθ

3∏

i=1

w – wi

1 – wiw
,

where w1, w2, and w3 are the zeros of k. Thus, to show |W | < 1, it is enough to show
w1, w2, w3 ∈ D. We will discuss it for the cases t = 1/2 and t �= 1/2 separately. For t �= 1/2,
we have 0 < |2t – 1| < |eiθ | = 1. Define a polynomial p1 by

p1(w) =
e–iθp(w) – (2t – 1)q(w)

w
.

A calculation gives

p1(w) = 4t(1 – t)w2 – 4t(1 – t)(cosν1 + cosν2)w + 4t(1 – t)
(
1 – (cosν1 – cosν2)e–iθ )

= 4t(1 – t)p̃1(w),

where

p̃1(w) = w2 – (cosν1 + cosν2)w + 1 – (cosν1 – cosν2)e–iθ .

Recall that inequality (2.6) holds. Again, define a polynomial p2 by

p2(w) =
p̃1(w) – (1 – (cosν1 – cosν2)e–iθ )p̃∗

1(w)
w

,

where p̃∗
1(w) = w2p̃1(1/w). Furthermore, we see that

p2(w) =
(
1 –

∣
∣1 – (cosν1 – cosν2)e–iθ ∣∣2)w –

(
cos2 ν1 – cos2 ν2

)
e–iθ

= –(cosν1 – cosν2)
(
(cosν1 – cosν2 – 2 cos θ )w + (cosν1 + cosν2)e–iθ).

Since cosν1 �= cosν2, it follows from (2.7) that the only zero of p2 lies in D. Thus, by Theo-
rem 2.7 both the zeros of p1 and hence all the three zeros of p lie in D. This completes the
proof for t �= 1/2. Now, for t = 1/2, we have

p(w) = eiθ wp1(w). (2.12)

Since p1 has two zeros and both of them lie in D, by (2.12), all the three zeros of p lie in D.
This completes the proof of Theorem 2.1. �
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Corollary 2.8 For n ∈N and k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) – gk(z) =
(
1 + (–1)ka

)
∫ z

0
q(ξ )ψμ,νk

(
ξn)dξ , μ,ν ∈ [0, 2π ), (2.13)

where q is an analytic mapping and ψμ,ν is defined by (1.1). Let ωfk be the dilatation of fk .
If

ωf1 (z) = –ωf2 (z) =
a + ei(θ–μ)zn

1 + aei(θ–μ)zn , a ∈ (–1, 1), θ ∈ [0, 2π ),

then the mapping f = tf1 + (1 – t)f2 is locally univalent and sense-preserving for 0 ≤ t ≤ 1
provided:

(i) cos θ > max{cosν2, – cosν1} and cosν2 > cosν1, or
(ii) cos θ < min{cosν2, – cosν1} and cosν1 > cosν2.

Proof Following similarly as in Lemma 2.6, we find the expression for the dilatation ωf of
f = tf1 + (1 – t)f2 as follows:

ωf (z) =
tωf1 (z)ψμ,ν1 (zn)(1 – ωf2 (z))(1 – a) + (1 – t)ωf2 (z)ψμ,ν2 (zn)(1 – ωf1 (z))(1 + a)

tψμ,ν1 (zn)(1 – ωf2 (z))(1 – a) + (1 – t)ψμ,ν2 (zn)(1 – ωf1 (z))(1 + a)
.

The above equation is identical with (2.10) except that cosν1 and cosν2 are interchanged.
Hence, the result follows by Lemma 2.6. �

By using Lemma 2.6, we now examine the local univalence of f in Theorem 2.1 for some
specific values of pk .

Theorem 2.9 For k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) + e2iμgk(z) =
(
1 + (–1)ka

)
∫ z

0
ψμ,νk (ξ ) dξ , –1 < a < 1, (2.14)

where ψμ,νk is defined by (1.1). Let ωfk be the dilatation of fk . If

ωf1 (z) = –ωf2 (z) = –e–2iμ a + ei(θ–μ)z
1 + aei(θ–μ)z

, 0 ≤ θ < 2π , (2.15)

then the mapping f = tf1 + (1 – t)f2 is univalent and convex in the direction μ + π/2 for
0 ≤ t ≤ 1 provided θ and νk are given as in Corollary 2.8.

Proof Let Fk = Hk + Gk , where Hk = hk and Gk = –e2iμgk . Then, in view of (2.14) and (2.15),
we have

Hk(z) – Gk(z) =
(
1 + (–1)ka

)
∫ z

0
ψμ,νk (ξ ) dξ ,

and the dilatation of ωFk of Fk is given by

ωF1 (z) = –ωF2 (z) =
a + ei(θ–μ)z

1 + aei(θ–μ)z
.
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Therefore, by Corollary 2.8, the mapping F := tF1 + (1 – t)F2 is locally univalent and sense-
preserving. Thus,

∣
∣
∣
∣
tG′

1 + (1 – t)G′
2

tH ′
1 + (1 – t)H ′

2

∣
∣
∣
∣ < 1 on D.

Equivalently,

∣
∣
∣
∣

tg ′
1 + (1 – t)g ′

2
th′

1 + (1 – t)h′
2

∣
∣
∣
∣ < 1 on D.

Hence, f is locally univalent and sense-preserving. Now, we can write (2.14) as

hk(z) – e2i(μ+π/2)gk(z) =
∫ z

0
ψμ+π/2,π/2(ξ )pk(ξ ) dξ , (2.16)

where ψμ+π/2,π/2 is defined by (1.1) and

pk(z) =
(1 + (–1)ka)ψμ,νk (z)

ψμ+π/2,π/2(z)
=:

(
1 + (–1)ka

)
p̃k

(
e–iμz

)
.

Therefore, in view of (2.16), Theorem 2.1 follows the result once we show that Re pk or,
equivalently, Re p̃k is positive on D. Since

p̃k(z) =
1 – z2

1 – 2z cosνk + z2 , (2.17)

we see that

∣
∣
∣
∣
p̃k(z) – 1
p̃k(z) + 1

∣
∣
∣
∣ =

∣
∣
∣
∣
z(cosνk – z)
1 – z cosνk

∣
∣
∣
∣ < 1,

and hence Re p̃k(z) > 0 on D. This completes the proof. �

Next, we give an illustration of Theorem 2.9 through an example.

Example 2.10 For k = 1, 2, let fk = hk + gk ∈ SH be such that

h1(z) =
1
4

tan–1 z +
3
8

log
1 + z2

(1 – z)2 ,

g1(z) =
1
4

tan–1 z –
3
8

log
1 + z2

(1 – z)2 ,

h2(z) =
3

2
√

2
tan–1(

√
2z – 1) +

1
8 + 4

√
2

log
(1 + z)2

1 –
√

2z + z2
+

3π

8
√

2
,

and

g2(z) =
3

2
√

2
tan–1(

√
2z – 1) –

1
8 + 4

√
2

log
(1 + z)2

1 –
√

2z + z2
+

3π

8
√

2
.
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Figure 2 Images of D under f at different values of t

Then we have

h1(z) + g1(z) =
1
2

tan–1 z =
∫ z

0

1/2
1 + ξ 2 dξ ,

h2(z) + g2(z) = –
3i

2
√

2
log

√
2 – (1 – i)z√
2 – (1 + i)z

=
∫ z

0

3/2
1 –

√
2ξ + ξ 2

dξ ,

and

ωf2 (z) =
g ′

2(z)
h′

2(z)
=

1/2 + z
1 + z/2

= –ωf1 (z),

where ωfk is the dilatation of fk . Thus, it is seen that fk satisfy (2.14) and (2.15) with μ = 0,
ν1 = π/2, ν2 = π/4, θ = 0, and a = 1/2. Moreover, since cosν2 = 1/

√
2 > 0 = cosν1 and

cos θ = 1 >
1√
2

= max{cosν2, – cosν1},

condition (i) in Corollary 2.8 holds. Hence, by Theorem 2.9, the mapping f = tf1 + (1 – t)f2

is univalent and convex in the imaginary direction for 0 ≤ t ≤ 1. Images of D under f at
t = 0, t = 1, and t = 1/3 are shown in Fig. 2.

Theorem 2.11 For k = 1, 2, let f = hk + gk ∈ SH such that

hk(z) + e2iμgk(z) =
(
1 + (–1)ka

)z(1 – ze–iμ cosνk)
1 – z2e–2iμ , –1 < a < 1, (2.18)

for μ,νk ∈ [0, 2π ). If ωfk , the dilatation of fk is given by

ωf1 (z) = –ωf2 (z) = –e–2iμ a + ei(θ–μ)z
1 + aei(θ–μ)z

, 0 ≤ θ < 2π , (2.19)

then the mapping f = tf1 + (1 – t)f2 is univalent and convex in the direction μ + π/2 for
0 ≤ t ≤ 1 provided θ and νk are given as in Lemma 2.6.
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Proof Differentiating (2.18), we get

h′
k(z) + e2iμg ′

k(z) =
(1 + (–1)ka)(1 – 2ze–iμ cosνk + z2e–2iμ)

(1 – z2e–2iμ)2 .

The above equation can be written as

hk(z) + e2iμgk(z) =
(
1 + (–1)ka

)
∫ z

0

q(ξ )
ψμ,νk (ξ )

dξ , (2.20)

where q(z) = (1 – z2e–2iμ)–2. Similar to the proof of Theorem 2.9, by Lemma 2.6, we obtain
that f is locally univalent and sense-preserving. Also, we can write (2.20) as

hk(z) – e2i(μ+π/2)gk(z) =
∫ z

0
pk(ξ )ψμ+π/2,π/2(ξ ) dξ , (2.21)

where

pk(z) =
(1 + (–1)ka)(1 – 2ze–iμ cosνk + z2e–2iμ)

1 – z2e–2iμ .

Note that pk(z) = (1 + (–1)ka)/p̃k(e–iμz), where p̃k is defined by (2.17) and thus Re p̃k or
equivalently Re pk is positive on D. Therefore, in view of (2.21), Theorem 2.1 follows the
result. �

Remark 2.12 If we put a = θ = μ = 0 in Theorem 2.11, we get Theorem 7 of Kumar et
al. [7].

For μ,ν ∈ [0, 2π ), define Φμ,ν by

Φμ,ν(z) =
1 – cosν

4e–iμ log

(
1 + e–iμz
1 – e–iμz

)

+
(1 + cosν)z

2(1 + e–2iμz2)
. (2.22)

The mapping Φ0,ν maps D onto a domain with parallel slits along the real direction and
its harmonic shears along the real direction were studied in [6]. In the next result we find
sufficient conditions for the directional convexity of the convex combination of harmonic
shears of Φμ,ν .

Theorem 2.13 For k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) – e2iμgk(z) =
(
1 + (–1)ka

)
Φμ,νk (z), a ∈ (–1, 1),μ,νk ∈ [0, 2π ), (2.23)

where Φμ,νk is defined by (2.22). If ωfk , the dilatation of fk is given by

ωf1 (z) = –ωf2 (z) = e–2iμ a + ei(θ–2μ)z2

1 + aei(θ–2μ)z2 , 0 ≤ θ < 2π ,

then the mapping f = tf1 + (1 – t)f2 is univalent and convex in the direction μ for 0 ≤ t ≤ 1
provided θ and νk are given as in Lemma 2.6.
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Proof On differentiating (2.23), we have

h′
k(z) – e2iμg ′

k(z) =
(
1 + (–1)ka

)
(

1 – cosνk

2(1 – e–2iμz2)
+

(1 + cosνk)(1 – e–2iμz2)
2(1 + e–2iμz2)2

)

=
(
1 + (–1)ka

)1 – 2 cosνke–2iμz2 + e–4iμz4

(1 – e–2iμz2)(1 + e–2iμz2)2 .

Therefore,

hk(z) – e2iμgk(z) =
(
1 + (–1)ka

)
∫ z

0

q(ξ )
ψ2μ,νk (ξ 2)

dξ , (2.24)

where

q(z) =
1

(1 – e–2iμz2)(1 + e–2iμz2)2 .

Hence, following similarly as in the proof of Theorem 2.9, we see by using Lemma 2.6 that
f is locally univalent and sense-preserving. Moreover, (2.24) can also be written as

hk(z) – e2iμgk(z) =
∫ z

0
pk(ξ )ψμ,π/2(ξ ) dξ , (2.25)

where

pk(z) =
(
1 + (–1)ka

)1 – 2 cosνke–2iμz2 + e–4iμz4

1 – e–4iμz4 .

Since pk(z) = (1+(–1)ka)/p̃k(e–2iμz2), where p̃k is defined by (2.17) and thus Re p̃k or equiv-
alently Re pk is positive on D. Therefore, in view of (2.25), the result follows from Theo-
rem 2.1. �

Theorem 2.14 For k = 1, 2, let fk = hk + gk ∈ SH such that

hk(z) – e2iμgk(z) =
(
1 + (–1)ka

)
∫ z

0
Ψk(ξ ) dξ , a ∈ (–1, 1),

where

Ψk(z) =
1 – 2 cosνke–inμzn + e–2inμz2n

(1 – e–2inμz2n)(1 – 2 cosνe–iμz + e–2iμz2)
, n ∈N,μ,ν,νk ∈ [0, 2π ).

If ωfk , the dilatation of fk is given by

ωf1 (z) = –ωf2 (z) = e–2iμ a + ei(θ–nμ)zn

1 + aei(θ–nμ)zn , 0 ≤ θ < 2π ,

then the mapping f = tf1 + (1 – t)f2 is univalent and convex in the direction μ for 0 ≤ t ≤ 1
provided θ and νk are given as in Lemma 2.6.

The proof of the above theorem is similar to that of Theorem 2.13 and is thus omitted
here.
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