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1 Introduction

On a simply connected domain 2 C C a complex-valued harmonic mapping f can be
written as f = 1 + g, where /1 and g are analytic mappings. By Lewy [8], it is locally univa-
lent sense-preserving if and only if its Jacobian J; = ||> - |¢'|* is positive or, equivalently,
its dilatation wy := g'/h liesin D := {z € C : |z] < 1}. Let H denote the class of all locally uni-
valent sense-preserving harmonic mappings f = /4 + g defined on . Also, let Sy denote
the subclass of H consisting of univalent mappings with normalization f(0) = 0 = f;(0) — 1.
Moreover, let S}, be the subclass of Sy that contains all mappings f = 4 + g such that
fz(0) = 0. For 0 < v < 7, a mapping ¢ is called convex in the direction v if ¢(D) has con-
nected intersection with every line that is parallel to the line joining " to the origin. Such
a mapping is also called a directional convex mapping. If v = 0 (or /2), then ¢ is known
as convex in the real (or imaginary) direction. A harmonic mapping f = & + g € S} is said

to be a right half-plane or a vertical strip mapping if it maps D onto the right half-plane
R={weC:Re(w)>-1/2}

or the vertical strip

o -7 o T
Vyi=iweC: — <Rew< — , —<o<T,

2sino 2sino 2
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respectively. It is well known [1, 4] that if f = &2 + g is a right half-plane harmonic map-
ping then #'(z) + g'(z) = (1 — z)7%, and if it is a vertical strip harmonic mapping then
W (z) +g'(z) = (1 + 2zcosa + z2)~!. In this article, we find some sufficient conditions for the
convex combination of the right half-plane mappings, the vertical strip mappings, their
rotations, and some other harmonic mappings to be univalent and convex in a particular
direction. Generally, the convex combination of two analytic/harmonic mappings does
not carry the univalency or other geometric properties of individual mappings. One can
refer to the survey article by Campbell [2] and the references therein for the univalency
and other geometric properties of the convex combination of analytic mappings. However,
recently, a convex combination of some harmonic mappings has been studied in [5, 7, 11—
13]. In particular, Wang et al. [13] and Kumar et al. [7] respectively studied the directional
convexity of convex combination of harmonic mappings, which are shears of the analytic
mappings z/(1 —z) and z(1 — az)/(1 - z%), =1 < a < 1. Motivated by the work carried out in
[7, 13], we study the convex combination of harmonic mappings which are shears of the
analytic mapping v, ,p«, where py is analytic with positive real part on D and

1
= - T
1-2ze " cosv + z2e2in

Yy (2) w,v € [0,2m). (1.1)
In particular, we show that the combination f = tf; + (1 — £)f2, 0 < ¢ < 1 of the mappings
Je = hi + g € Sy, k = 1,2, satisfying k) — e*g, = ¥, pi is univalent and convex in the
direction p for some specific dilatations of f; and f;. The following result by Royster and
Ziegler [10] is used to check the convexity in a particular direction of analytic mappings.

Lemmal.1 Let ¢ be a non-constant analytic mapping in D. Then ¢ maps D onto a domain
convex in the direction y (0 <y < x) ifand only if there are real numbers . and v (0 <v <
27) such that

Re(e“7) (1 -2ze ™ cosv + 2% 21)¢'(2)) >0, zeD. (1.2)

Remark 1.2 By taking y or y + w equal to  in Lemma 1.1, we see that a non-constant
analytic mapping ¢ is convex in the direction p if, for some real number v (0 < v < 27),
the real part of the mapping ¢'/v,, ,, where v, , is given by (1.1), is either non-negative or
non-positive on D.

Lemma 1.1 along with the following result due to Clunie and Sheil-Small [3], known as
shear construction, is used to check the convexity in a particular direction of harmonic
mappings.

Lemma 1.3 A locally univalent and sense-preserving harmonic mapping f =h + g on D
is univalent and maps D onto a domain convex in the direction y (0 <y < x) if and only
if the analytic mapping h — €*7 g is univalent and maps D onto a domain convex in the
direction y .

2 Main results
Theorem 2.1 For k = 1,2, let fi = hy + gk € Sy such that

hk(Z)—em“gk(Z):/O Vi (E)pi(§)dE, v €0,27), (2.1)
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where py is an analytic mapping with Repy > 0 on D and ,,, is given by (1.1). Then the
mapping f = tfi + (1 — t)f is univalent and is convex in the direction p for 0 <t <1 ifitis
locally univalent and sense-preserving.

Proof Letf =h+g, then

h=thy+(1-t)h, and g=tg+(1-t),
and thus

h—e*g=t(h -e"g)+(1-1t)(h - e"g).
Therefore, in view of (2.1), it follows that

W _eZiug/
Re T =tRep;+(1-t)Repy, >0
JTRY)

on D for 0 <t < 1. Hence, by Lemma 1.1, it follows that the mapping / — ez”‘g is convex
in the direction p. The result now follows by Lemma 1.3. O

Theorem 2.1 has the following obvious extension to #» mappings.

Theorem 2.2 Fork =1,2,...,n, let fi = hi + gk € Sy satisfy (2.1), where py is an analytic
mapping with Repy >0 on D and ., is given by (1.1). If >_;_ tx = 1, 0 < tx < 1, then the
mapping f =Y, tfi is univalent and is convex in the direction | provided it is locally
univalent and sense-preserving.

In Theorems 2.1 and 2.2 we assumed f to be locally univalent and sense-preserving on D.
Next, we will study some cases where this assumption can be relaxed.

Theorem 2.3 For k = 1,2, let fi = hi + gk € Sy satisfy (2.1), where py. is an analytic map-
ping with Repy > 0 on D and ,,, is given by (1.1). Let wy, be the dilatation of fi, then the
mapping f = th + (1 - t)f, is univalent and is convex in the direction j for 0 <t <1 if wy,
and py satisfy one of the following:
(i) wp =wp,

(i) p1/(1-e*"wp) = pal (1 - eV awy,),

(iii) p1 = pa,

(iv) wp = oy, and Re(pa(1 - " wy)/(p1(1 + € wy))) > 0.

Proof In view of Theorem 2.1, it is enough to show that f is locally univalent and sense-
preserving or, equivalently, |w¢| < 1 on DD, where oy is the dilatation of f. Since for t = 0
and 1 the result is obvious, we consider 0 < ¢ < 1. On differentiation (2.1) gives

h;< - e2iugl/< = YuuPk-
The above equation along with g; = wy, /1) gives

= L (22)
1- ez”‘wfk
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Since f = h +g:=thy + (1 - t)hy + tg1 + (1 — t)g, in view of (2.2), wy is given by

/

ol (1-Dg
T70 " i+ (- o),
B twflhll +(1- t)a)fzh’z
th, + (1 - )

_ top (1— e ap)py + (1 - oy, (1 - "oy )ps
t(1 - erawp)py + (1-1)(1 - e¥rawp)ps

(2.3)

Let wy, = wp,, then (2.3) gives that wy = wy;, and hence |wy| < 1. Also, let p; and wj;, be given
by (ii), then (2.3) gives that wy = twp + (1 - £)wy,. Hence, |wj; | < 1 follows that |wy| < 1.
Moreover, let p; = p,, then (2.3) shows that

2L 2L

o = twn (1 -e“*op) + (1 - Haop (1 - e“*op)
I T A= Prag) + (1 - £)(1 — e2ray,)

Therefore, |wy; | < 1 implies that

1+ e*ty 1+ ¥y 1+ ¥ty
Re(—f> _ tRe<4fl) L —t)Re<7fz> .0,

1-elrwpy 1 - e?irwy 1 - ety
Hence, |wy| < 1. Lastly, let wp, = —wy;, then from (2.3) we have

W t(1+ e wp)pr - (1-1)(1 - wp)py
1+ e2twn)py + (1—t)(1 - e¥ray)py

wf a)f1 Q.

Therefore, |wy| < 1 if |¢| < 1. Now, by the assumption in (iv), we have

1 (1 + e
Re( 119 cpe( ALt enn
1-¢ (1-1)(1 - e*Hwyg)p)

Hence, |¢| < 1. This proves the result when wy, and py satisfy condition (iv). This completes
the proof. d

From its proof, it is easily seen that Theorem 2.3, except case (iv), has a natural extension

to n mappings as follows.

Theorem 2.4 For k=1,2,...,n, let fy = hy + gk € Sy have dilatation ws_and satisfy (2.1),
where py is an analytic mapping with Re py > 0on D and ,,, isgiven by (L.1).If Y 1 tx = 1,
0 < tx <1, then the mapping f =Y _, tifx is univalent and is convex in the direction p
provided wy, and py satisfy one of the following:

(i) o =wp=--=wy,
(il) pr/(1 - ¥ wp) = pal(1 - 2t ay) = - - = pi/ (1 — ¥l ay,),
(ili) p1=pa=---=pu

The following example gives an illustration of Theorem 2.3.

Page 4 of 14
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Figure 1 Images of D under f at different values of t

Example 2.5 For k = 1,2, let fi = hy + g € Sy be given by

fi@) =) + i) = %log(i—z) te- %IOgG—Z)

and

— 1 l+z 1 1
fo(2) = ha(2) + ga(2) = EIOg(l——z) + Elog 7

Then, wy,, the dilatation of f;, is given by wy, (z) = —z* and wy, (z) = z. Also, we can see that

1+ wy (2)
H(2) + gi(z) = —
() + gila) = —
Thus, fi satisfies (2.1) with u = 7/2, v = 7/2 and py = 1 + wg, where Re p; > 0 on ID. There-
fore, it follows from Theorem 2.3 that the mapping f = ¢f; + (1 —£)f, is univalent and convex
in the imaginary direction for 0 < ¢ < 1.Images of D under f at£=1,¢£=0,and ¢ = 1/3 are

shown in Fig. 1.
We will use the following lemma to prove our next results.
Lemma 2.6 Forn e N and k = 1,2, let fi = hy + gk € Sy such that

* qe)ds

hi(2) - gi(2) = (1 + (-1)*a) Tt
vk

I, vi € [0,27), (2.4)

where q is an analytic mapping and \,,,, is defined by (1.1). Let wy, be the dilatation of fi.
If

a + ellf-mzn

= m, ae (—1, 1),9 S [0, 27T), (25)

wp, (2) = ~wy, (2)
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then the mapping f = th + (1 — t)fs is locally univalent and sense-preserving for 0 <t <1
provided.:

(i) cos® > max{cos vy, —cos vy} and cos vy > COS vy, OF

(ii) cos® < min{cos vy, —cos vy} and cos vy > COS V7.

To prove the above lemma, we will use the following result commonly known as Cohn’s
rule [9].

Theorem 2.7 Let r(z) =ag + a1z + - - - + a,z" be a polynomial of degree n and

r(z) =2"r(1/2) =a, + Gp_1z2 + - - - + GoZ".

Let s and s, be the number of zeros of r inside and on the unit circle |z| = 1, respectively. If

lag| < |ayl|, then

a,r(z) — agr*(z)
z

ri(z) =

is a polynomial of degree n — 1 and has s — 1 and s, number of zeros inside and on the unit

circle |z| = 1, respectively.

Proof of Theorem 2.1 Since fi € Sy, we need to prove the result only for 0 < ¢ < 1. First of
all, we will show that both conditions (i) and (ii) imply

|1 — (cosv; —cos vz)e’ie{ <1 (2.6)
and

COS V1 + COS Vg .1 (2.7)

COS V] —COS Vy + 2cos b

We see that (cos vy — cos 1,)(cos vy — cos vy — 2c0s8) < 0 if condition (i) or (ii) is satisfied.

Therefore,

|1 — (cos vy — cos vy)e™? {2 -1= (1 — (cos vy — cosvy) cos 9)2 + ((cos V1 — COS V) sin@)2

= (cosv; —cosvy)(cosv; —cosvy —2cosd) < 0.

Hence, both (i) and (ii) imply (2.6). Next, let condition (i) be satisfied. Then cos6 > cos v,

and cos @ > —cos vy, and hence

COS V] —COSVy —2C0S6H < COSV; + COSVy < —COSVp + COSVy +2C0s6. (2.8)
Similarly, if condition (ii) is satisfied, then

—COSV; +COSVy +2C0S6H <COSV; + COSVy < COSV1 —COSVy —2¢0S6. (2.9)

Therefore, (2.8) and (2.9) show that both (i) and (ii) imply (2.7).
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Now, differentiating (2.4), we have
(H(2) = gD Vi (27) = (1 + (-D¥a)g(2).
The above equation along with g; = wy, /) gives

(1+(-ra)q(2)
Yy (@) (1 = w5 (2))

(2) =

Therefore wy, the dilatation of f = tf; + (1 — £)f3, is given by

_tg1(2) + (1 -1)gy(2)

Tt (2) + (1 - O)Hy(2)

_ tay (M (2) + (1 - Dy, (2)Hy(2)

) th,(2) + (1 - O)H,(2)

10 @Y (") (L = 05 (D)1= @) + (1= Do (Y () (1 = 05 (2))(1 + @)
W, (21— wp (2)(1 - a) + (1 = )Y, (2") (1 - wp (2))(1 + a)

wy(2)

(2.10)
Now, on substituting the values of wy,, given by (2.5), in (2.10), we obtain

wr(2) = wy, (2)

t(1 +ae® Pz +a+ Oy, L (21 —a) - (1-6)(1 +ael® Bzt —a— @ 1zh)y, | (2")(1 +a)
t(1+ae@mz" +a+e@-mz0y, (21 - a) + (1 - t)(1 + ael®~1Wz" — g — 0=z, (2)(1 + a)

1+ 0120, (1) — (L= 01— &1 2,0, (27)
L+ €020, (27) + (1= (1 = 027, (27)

= wy, (2)

The above equation, after substituting the values of ,,,, and then putting e”#z" = w, is

equivalent to

i 1/n i 1/n
or{(€)") = o (€)")
1+ e?w)(1 - 2wcosv; + w?) — (1 —)(1 — e?w)(1 — 2wcos vy + w?)
t(1+e?w)(1 -2wcosv; + w2) + (1 —£)(1 — e w)(1 — 2wcos vy + w?)

=y, ((¢"w)" )W (w). (2.11)

To prove our result, we have to show |ws| < 1 on . Since |y, | < 1, in view of (2.11), it is
enough to show that |[W| <1 onD. Let

W(w) = e M
q(w)
where, after a simplification,

p(w) = e”w? + (2t — 1 - 2te” cos vy — 2(1 - £)e” cos vy)w?

+ (e”’ —2tcosv; +2(1 —t)cos vz)w+ 2t -1

Page 7 of 14
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and

qw) = 2t - )w? + (e’ie —2tcosvy +2(1—£)cos vz)w2

+ (2t —1-2te™ cos vy — 2(1 - )e™ cos va)w + 7.

Clearly q(w) = w3p(1/w). Hence, we can write W as follows:

3
W(w) = —f_(w’_ =[] —=,
w3p(1/w) L L-wiw

where w;, wy, and ws are the zeros of k. Thus, to show |W| < 1, it is enough to show
wy, wy, w3 € D. We will discuss it for the cases ¢t = 1/2 and ¢ # 1/2 separately. For t # 1/2,
we have 0 < |2¢ — 1| < |€?| = 1. Define a polynomial p; by

() = e p(w) —I(A/Zt —Daw).

A calculation gives

pr(w) = 4¢(1 — t)w? — 4¢(1 — £)(cos vy + cos vp)w + 4t(1 — t)(l — (cosv; —cos vz)e_ie)

=4t(1 - t)p1(w),

where

P1(w) = w? — (cos vy + cos va)w + 1 — (cos vy — cos vy)e ™.

Recall that inequality (2.6) holds. Again, define a polynomial p, by

o) = pi(w) — (1 - (cos v;}— cos vz)e”'(’)ﬁ’{(w),

where p}(w) = w?p;(1/w). Furthermore, we see that

pa(w) = (1 - |1 - (cos vy — cos vy)e™ {z)w — (cos® vy — cos® vy)e ™

= —(cosv; —cos vy) ((cos V1 — COS vy — 2¢080)w + (cos v; + cos vg)e’ie).
Since cos v; # cos v, it follows from (2.7) that the only zero of p; lies in D. Thus, by Theo-

rem 2.7 both the zeros of p; and hence all the three zeros of p lie in D. This completes the
proof for t # 1/2. Now, for t = 1/2, we have

p(w) = e’ wpi(w). (2.12)

Since p; has two zeros and both of them lie in D, by (2.12), all the three zeros of p lie in D.
This completes the proof of Theorem 2.1. O

Page 8 of 14
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Corollary 2.8 Forne Nand k = 1,2, let fi = hi + gk € Sy such that

(@) - (@) = (1 + (<1)a) /0 GEN o (E7) dE, v e [0,27), (2.13)

where q is an analytic mapping and \r,,,, is defined by (1.1). Let wy, be the dilatation of fi.
i

a + elt-wzn

T7ae@mg *€LD,0€(02m),

wf (2) = —wf, (2) =
then the mapping f = tfy + (1 — t)fs is locally univalent and sense-preserving for 0 <t <1
provided:
(i) cos® > max{cos vy, —cosvi} and cosv, > Ccos vy, or
(ii) cos® < min{cos vy, —cos v1} and cos vy > CoS V.

Proof Following similarly as in Lemma 2.6, we find the expression for the dilatation wy of
f =t +(1-1)fs as follows:

() = tws (2) Y (2") (1 - 0y (2)(1 - a) + (1 - Dy, (2) V., (2" (1 — o5 (2)(1 + a)
4 W @) (1= 0, @)1= @) + (1 = Oy (Z)(1 — 0y, (2))(1 + )

The above equation is identical with (2.10) except that cos v; and cos v, are interchanged.
Hence, the result follows by Lemma 2.6. O

By using Lemma 2.6, we now examine the local univalence of f in Theorem 2.1 for some
specific values of py.

Theorem 2.9 For k = 1,2, let fi = hy + gx € Sy such that

hi(2) + 2 gi(2) = (1 + (—1)ka) AZ Yun (E)dE, -1<a<l, (2.14)

where Y,,,,, is defined by (1.1). Let wy, be the dilatation of fi. If

) i(0—p)
w;,(2) = —wp (@) = —e M 21 £ 0 <p<on, (2.15)
h fa

1+ aei®-1z’

then the mapping f = tfy + (1 — t)f; is univalent and convex in the direction u + /2 for
0 <t <1 provided 6 and vy are given as in Corollary 2.8.

Proof Let Fy = Hy + Gi, where Hy = hy and Gy = —e**g;. Then, in view of (2.14) and (2.15),
we have

H@) - Ge(@) = (1 + (-1)a) /0 Vo (8 dE,

and the dilatation of wr, of Fy is given by

a+ etz
WF; (2) = —WF, (2) = m~
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Therefore, by Corollary 2.8, the mapping F := ¢tF; + (1 —t)F; is locally univalent and sense-

preserving. Thus,

Gi+(1-0G| \ p

tH) + (1 - t)H}, '
Equivalently,

m+1-0%| . p

th + (1 - t)H) '

Hence, f is locally univalent and sense-preserving. Now, we can write (2.14) as

hi(2) - VT g (z) = /0 Visn /2,725 )Pk(§) d8, (2.16)

where V.7 /2,7/2 is defined by (1.1) and

1+ D)Y@

. 1Y\ 5 —in
pir(2) = — ((1+ (-D*a)pr(e2).

Therefore, in view of (2.16), Theorem 2.1 follows the result once we show that Re py or,

equivalently, Re py is positive on D. Since

i) = —— =% (2.17)
Z)=—- .
Pi 1-2zcos vy + 22
we see that
pr(z) -1 z(cos vg — z) )
= < »
prlz) +1 1-2zcosvg
and hence Re pi(z) > 0 on D. This completes the proof. O

Next, we give an illustration of Theorem 2.9 through an example.

Example 2.10 For k =1,2, let fi = hi + gk € Sy be such that

1 ., 3 1+2%
hl(Z): Ztan zZ+ §logm,
1, 3. 1+7
=—tan  z-— —log ——,
&1(2) g z—-clog 1_2?

1 (1 +2)? 37
log + )
8 +42 1-2z+22 82

_ 3,
hy(z) = 23 tan"'(v/2z - 1) +
and

3 i 1 (1+2)? 37
Z)= ——tan (V22 - 1) - lo + .
&a) = o7 tan( N R S R
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Figure 2 Images of I under f at different values of ¢

Then we have

1/2

h1(Z)+g1(z)=%tan‘lz:/0 ngd&
3i V2-(1-i)z ‘ 3/2
h =— 1 = d&,
2(2) + £2(2) 22 Ogﬁ—(lﬂ’)z /0 1-2& + 2 :
and
ople) = 29 12z ),

hy(z) T1vz2

where wy, is the dilatation of f;. Thus, it is seen that f; satisfy (2.14) and (2.15) with 1 = 0,
Vi =7/2, vy = 7w/4, 0 =0, and a = 1/2. Moreover, since cos vy = 1/4/2 > 0 = cos v; and

1
cosf = 1> — =max{cos vy, —cos vy},

V2

condition (i) in Corollary 2.8 holds. Hence, by Theorem 2.9, the mapping f = tfi + (1 -t)f2
is univalent and convex in the imaginary direction for 0 < ¢ < 1. Images of D under f at
t=0,¢=1,and ¢ = 1/3 are shown in Fig. 2.

Theorem 2.11 For k=1,2, let f = hy + gk € Sy such that

z(1 — ze~™* cos vg)

2i _ k
hi(2) + et gi(2) = (1 +(-1) a) T -1<ac<l, (2.18)
Sor p, v € [0,27). If wy,, the dilatation of fi is given by
i(0—p)
_ o At ez
wy, (2) = —wp, (2) = —e T+ 2oy’ 0<60<2m, (2.19)

then the mapping f = tfy + (1 — t)f; is univalent and convex in the direction u + /2 for
0 <t <1 provided 0 and v are given as in Lemma 2.6.
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Proof Differentiating (2.18), we get

_ (L+ (=1)*a)(1 — 2ze™* cos vy + Z%e721)

/ 20
h(z) + e g (2) (1 — z2e-2in)2

The above equation can be written as

hi(2) + e gi(z) = (1 + (-1)a) /z q() dE, (2.20)

0 I//u,vk (S)

where g(z) = (1 - z2¢72*)~2, Similar to the proof of Theorem 2.9, by Lemma 2.6, we obtain

that f is locally univalent and sense-preserving. Also, we can write (2.20) as

hi(z) — e D g (2) = /0 PeEVWusn o n(€) dE, (2.21)

where

(1 + (-1 a)(1 - 2z~ cos vi + 2% %1)
1 — z2¢2in :

pi(2) =
Note that pr(z) = (1 + (=1)*a)/pr(e*z), where p is defined by (2.17) and thus Re p; or
equivalently Re py is positive on D. Therefore, in view of (2.21), Theorem 2.1 follows the

result. O

Remark 2.12 If we put a = 6 = u = 0 in Theorem 2.11, we get Theorem 7 of Kumar et
al. [7].

For p,v € [0,27), define @,,, by

D,.(2) = (2.22)

1-cosv 1+eig (1 +cosv)z
4e-in 1-eirz)  2(1+e2inz?)

The mapping @, maps D onto a domain with parallel slits along the real direction and
its harmonic shears along the real direction were studied in [6]. In the next result we find
sufficient conditions for the directional convexity of the convex combination of harmonic

shears of @, .
Theorem 2.13 For k = 1,2, let fi = hi + gk € Sy such that

hi(z) - et gi(z) = (1 + (-1)fa) @, (2),  ae(-1,1), 1,1 € [0,27), (2.23)
where @, is defined by (2.22). If wy,, the dilatation of fx is given by

a + e ®-2m 72

1 + ael®-2z2’

—2i

wf,(2) = —wp(z)=e 0<0<2m,

then the mapping f = tfi + (1 — t)f; is univalent and convex in the direction i for0 <t <1
provided 6 and vy are given as in Lemma 2.6.
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Proof On differentiating (2.23), we have

W, (z) - ezi“g,/((z) _ (1 N (—l)kzz)( 1—-cosyg (1 +cosvp)(1 - e—2mzz)>

, + .
2(1 — e 2inz2) 2(1 + e 2inz2)2

1—2cosvie 2iz? 4 g~ingt

(1 — e 2inz2)(1 + e~2inz2)2 *

= (1 + (—l)l‘a)

Therefore,

hi(z) — " gi(2) = (1 + (-1)a) /0 ) ﬁf()éz) dk, (2.24)
where

q(2) = .

(1 — e2ing2)(1 + e~2inz2)2"

Hence, following similarly as in the proof of Theorem 2.9, we see by using Lemma 2.6 that
f is locally univalent and sense-preserving. Moreover, (2.24) can also be written as

() — g (2) = fo DV a(E) dE, (2.25)

where

1 —2cos vpe 2iHz? 4 g7ttt

Pk(z) = (1 + (_l)ka) 1 — edings

Since px(z) = (1+ (=1)ka)/pr(e7%"2%), where py is defined by (2.17) and thus Re p; or equiv-
alently Re py is positive on D. Therefore, in view of (2.25), the result follows from Theo-
rem 2.1. |

Theorem 2.14 For k = 1,2, let fi = hi + gk € Sy such that

I(2) - ¥ (@) = (1+ (-1)a) / W) dE, ae(-11),
0

where

1 —2cos vpe gt 4 g=2inig2n

Yi(z) = - : : ,
k( ) (1 _ efzzthZn)(l —2cosve itz + e’zll"z2)

neN,u,v, v €[0,2m).

If wy,, the dilatation of fi is given by

a + '@ gn

—2i[
1 + ael®-nmzn’

wf,(2) =-wp(z)=e 0<0<2m,
then the mapping f = tfi + (1 — t)f; is univalent and convex in the direction ju for 0 <t <1

provided 6 and vy are given as in Lemma 2.6.

The proof of the above theorem is similar to that of Theorem 2.13 and is thus omitted
here.
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