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Abstract
This work is about a splitting approach for solving separably smooth nonconvex
linearly constrained optimization problems. Based on the ideas from two classical
methods, namely the sequential quadratic programming (SQP) and the alternating
direction method of multipliers (ADMM), we propose an ADMM-based SQP method.
We focus on decomposing the quadratic programming (QP) subproblem of the
primal problem into small-scale QP subproblems, which further embedded with
Bregman distances can be solved effectively and followed by a dual ascent type
update for the Lagrangian multipliers. Under suitable conditions as well as the crucial
Kurdyka–Łojasiewicz property, we establish the global and strong convergence
properties of the proposed method.

Keywords: Nonconvex optimization; SQP; ADMM; Kurdyka–Łojasiewicz property;
Convergence

1 Introduction
Nonconvex optimization problems arise in a variety of applications ranging from the fields
of signal and image processing, machine learning [1]. This class of problems is often struc-
tured and explicitly characterized with a separable objective, although they may be rather
challenging to deal with.

In this paper, we consider the following nonconvex optimization problems with linear
constraints and a separable objective function:

min
x,y

f (x) + g(y),

s.t. Ax + By = b,
(1)

where f : Rn1 → R and g : Rn2 → R are continuously differentiable, but not necessarily
convex, matrices A ∈ Rm×n1 , B ∈ Rm×n2 and the vector b ∈ Rm are assumed to be given.

To solve problem (1) with separable structure, when f and g are convex, one simple
but powerful method is the alternating direction method of multipliers (ADMM), which
was originally proposed in [2, 3]. A survey of ADMM or its related variants has gained
in popularity by many researchers, see, e.g., [4–9]. The standard iterative scheme of the
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classical ADMM for problem (1) acts as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xk+1 = arg min
x∈Rn1

{
Lβ

(
x, yk ,λk)}, (2a)

yk+1 = arg min
y∈Rn2

{
Lβ

(
xk+1, y,λk)}, (2b)

λk+1 = λk – β
(
Axk+1 + Byk+1 – b

)
, (2c)

where β > 0 is a penalty parameter and

Lβ (x, y,λ) = f (x) + g(y) – λT(Ax + By – b) +
β

2
‖Ax + By – b‖2 (3)

is the augmented Lagrangian function with a Lagrangian multiplier λ ∈ Rm.
In contrast to the developments of ADMM for the convex case outlined above, there

are some works investigated on understanding the properties of splitting approaches for
nonconvex problems, although a rigorous analysis is generally very difficult. Note that the
recent works in [10–12] all dealt with the nonconvex problems by means of ADMM-type
methods and established favorably crucial convergence results. In particular, a Bregman
modification of ADMM on the problem with the sum of a smooth function and a non-
convex function in the objective was considered by Wang et al. [10]. Meanwhile, Li et al.
[11] devised two types of splitting methods, in which there was only one subproblem also
embedded with a Bregman distance. Moreover, Hong et al. [12] focused on solving the
nonconvex consensus and sharing problems. We believe that it is very meaningful and
important to further study characteristics of splitting approaches designed in the sense of
nonconvexity and enlarge applicable spectrums due to the necessity in practice.

On the other hand, it is well known that the sequential quadratic programming (SQP)
method, dated back earliest to [13], is one of the most efficient methods for solving
smoothly constrained optimization problems, since it enjoys good theoretical properties
and stable numerical performance with better approximation of the primal problem. For
more than half a century, the SQP method has received rapid development and fruitful
achievements, see, e.g., [14–21] and the references therein. Recently, Jian et al. [22] dis-
cussed a class of separably smooth nonconvex optimization problems with linear con-
straints and closed convex sets and presented an ADMM-SQP method. In this work, the
QP subproblem of the primal problem was split into two smaller-scale QP subproblems,
which were solved in a Jacobian manner. Moreover, an inexact Armijo line search was car-
ried out to illustrate the descent property of the augmented Lagrangian function, and the
global convergence was proved under proper conditions. As we know, the classical QP
subproblem associated with problem (1) reads as follows:

min
x,y

∇f
(
xk)T(

x – xk) + ∇g
(
yk)T(

y – yk) +
1
2
∥
∥
(
x – xk , y – yk)∥∥2

Hk
,

s.t. Ax + By = b,
(4)

where Hk ∈ R(n1+n2)×(n1+n2) is a symmetric approximation to the Hessian of the Lagrangian
function, namelyL0(x, y,λ) with β = 0 in (3), for problem (1) with respect to variables (x, y).
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Consider that

∇2
(x,y)L0(x, y,λ) =

(
∇2f (x) O

O ∇2g(y)

)

,

then it is reasonable to choose matrix Hk of the form

Hk =

(
Hx

k O
O Hy

k

)

, (5)

where Hx
k and Hy

k are the symmetric approximations of ∇2f (xk) and ∇2g(yk), respectively.
In view of this, QP subproblem (4) can be converted into the following structure:

min
x,y

∇f
(
xk)T(

x – xk) +
1
2
∥
∥x – xk∥∥2

Hx
k

+ ∇g
(
yk)T(

y – yk) +
1
2
∥
∥y – yk∥∥2

Hy
k

s.t. Ax + By = b,
(6)

where we find that the objective function is separable.
In this paper, motivated by the ideas of the splitting scheme applied to the QP sub-

problem in [22], and of the Bregman modification of ADMM in [10], we focus on QP
subproblem (6) of the primal problem, and propose an ADMM-based SQP algorithm in
the nonconvex sense. The resulting method makes use of the separable structure of QP
subproblem (6) and decomposes it into two relatively small-scale QP subproblems in a
Gauss–Seidel manner, which further are well equipped with additional Bregman distances
and then are solved effectively. The main difference from the work [22] is that our pro-
posed method is irrelevant with any line search and the convergence properties can be
proved in terms of the potential function under some suitable conditions.

The remainder of this paper is structured as follows. In Sect. 2, the ADMM-based SQP
algorithm is established as some elementary preliminaries are prepared. Section 3 presents
the convergence properties of the proposed algorithm. Finally, we give the conclusions in
Sect. 4.

Notation. Throughout this paper, Rn stands for the n-dimensional real Euclidean space,
I is an identity matrix, ‖ · ‖ is the Euclidean norm equipped with inner product 〈·, ·〉. For
any vector x and matrix H , we denote ‖x‖2

H := xTHx, where T is the transpose operation.
H � 0 means that the matrix H is positive definite (resp., positive semidefinite, H 	 0),
while H � G is used to denote H – G � 0 (resp., H – G 	 0, H 	 G), and moreover the
minimum eigenvalue of a matrix H is denoted by σH . For brevity, we additionally introduce
the following notations:

w := (x, y,λ), wk :=
(
xk , yk ,λk), ŵ := (x, y,λ, ŷ), ŵk :=

(
xk , yk ,λk , yk–1),

and the primal-dual errors


xk := xk – xk–1, 
yk := yk – yk–1, 
λk := λk – λk–1.
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2 Preliminaries and ADMM-based SQP method
In this section, we provide some preliminaries that are useful in the sequel, and then de-
scribe the ADMM-based SQP method in detail.

The domain of function f is defined as dom f := {x ∈ Rn : f (x) < +∞}. For a subset S ⊆ Rn

and a point x ∈ Rn, the distance from x to S is defined as d(x, S) := inf{‖x – y‖ : y ∈ S} and
by convention d(x, S) = +∞ for all x when S = ∅.

Definition 1 ([23], KŁ property) Let f be a proper lower semicontinuous function, and
let ∂f be the basic subdifferential of f in dom f . Then

(a) The function f is said to have the Kurdyka–Łojasiewicz (KŁ) property at
x∗ ∈ dom ∂f if there exist η ∈ (0, +∞], a neighborhood U of x∗, and a continuous and
concave function ϕ : [0,η) → R+ such that
(i) ϕ(0) = 0, and ϕ is continuously differentiable on (0,η) with ϕ′ > 0;

(ii) for all x in U ∩ {x ∈ Rn : f (x∗) < f (x) < f (x∗) + η}, the KŁ inequality holds

ϕ′(f (x) – f
(
x∗))d

(
0, ∂f (x)

) ≥ 1.

(b) Let Φη be the set of concave functions that satisfy (i); if f satisfies the KŁ property at
each point of dom ∂f , then f is called a KŁ function.

Lemma 1 ([24], Uniformized KŁ property) Let Ω be a compact set, and let f be a proper
lower semicontinuous function. Assume that f is constant on Ω and satisfies the KŁ prop-
erty at each point of Ω . Then there exist ε > 0,η > 0, and ϕ ∈ Φη such that, for all x̄ ∈ Ω

and for all x, in the following intersection

{
x ∈ Rn : d(x,Ω) < ε

} ∩ {
x ∈ Rn : f (x̄) < f (x) < f (x̄) + η

}
,

one has

ϕ′(f (x) – f (x̄)
)
d
(
0, ∂f (x)

) ≥ 1.

A semialgebraic set S ⊆ Rn is a finite union of sets of the form

{
x ∈ Rn : p1(x) = · · · = pk(x) = 0, q1(x) < 0, . . . , ql(x) < 0

}
,

where p1, . . . , pk and q1, . . . , ql are real polynomial functions. A function f : Rn → R is semi-
algebraic if its graph is a semialgebraic subset of Rn+1. Such a function satisfies the KŁ
property, see, e.g., [23, 25, 26], with ϕ(s) = cs1–θ for some θ ∈ [0, 1) and some c > 0. On the
other hand, some important stability properties of semialgebraic functions can be found
[27].

• finite sums and products of semialgebraic functions are semialgebraic;
• scalar products are semialgebraic;
• indicator functions of semialgebraic sets are semialgebraic;
• generalized inverse of semialgebraic mappings are semialgebraic;
• composition of semialgebraic functions or mappings are semialgebraic;
• functions of the type Rn � x → f (x) = supy∈C g(x, y) (resp.

Rn � x → f (x) = infy∈C g(x, y)) where g and C are semialgebraic.
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For a continuously differentiable convex function f on Rn, the associated Bregman dis-
tance 
f is defined as


f
(
x1, x2) = f

(
x1) – f

(
x2) –

〈∇f
(
x2), x1 – x2〉

for any x1, x2 ∈ Rn. Let us now collect some important properties about Bregman distance
[10].

• Nonnegativity: 
f (x1, x2) ≥ 0,
f (x1, x1) = 0 for all x1, x2.
• Convexity: 
f (x1, x2) is convex in x1, but not necessarily in x2.
• Strong convexity: If f is σf -strongly convex, then 
f (x1, x2) ≥ σf

2 ‖x1 – x2‖2 for all x1, x2.
For the current primal-dual iterate (xk , yk ,λk) ∈ Rn1 × Rn2 × Rm, we apply the splitting idea
of the classical ADMM to the structured QP subproblem (6) so that variables x and y are
updated alternatively at each iteration with regularized Bregman distances 
φ(·, xk) and

ψ (·, yk), respectively, and then followed by the update of the Lagrangian multiplier λ,
such a procedure can be formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = arg min
x∈Rn1

{

∇f
(
xk)T(

x – xk) +
1
2
∥
∥x – xk∥∥2

Hx
k

–
(
λk)T(

Ax + Byk – b
)

+
β

2
∥
∥Ax + Byk – b

∥
∥2 + 
φ

(
x, xk)

}

, (7a)

yk+1 = arg min
y∈Rn2

{

∇g
(
yk)T(

y – yk) +
1
2
∥
∥y – yk∥∥2

Hy
k

–
(
λk)T(

Axk+1 + By – b
)

+
β

2
∥
∥Axk+1 + By – b

∥
∥2 + 
ψ

(
y, yk)

}

, (7b)

λk+1 = λk – β
(
Axk+1 + Byk+1 – b

)
, (7c)

where φ and ψ are continuously differentiable and strongly convex functions with modu-
lus σφ ,σψ on Rn1 and Rn2 , respectively. Notice that the objective functions of (7a) and (7b)
are strictly convex if additionally we use the strong convexity of φ and ψ as well as the
conditions that Hx

k + βATA + σφIn1 � 0 and Hy
k + βBTB + σψ In2 � 0.

Invoking the first-order optimality conditions of (7a) and (7b), we have

∇f
(
xk) + Hx

k 
xk+1 – ATλk + βAT(
Axk+1 + Byk – b

)
(8a)

+ ∇φ
(
xk+1) – ∇φ

(
xk) = 0,

∇g
(
yk) + Hy

k
yk+1 – BTλk + βBT(
Axk+1 + Byk+1 – b

)
(8b)

+ ∇ψ
(
yk+1) – ∇ψ

(
yk) = 0.

And then these, by the update formula (7c), can be rewritten as

∇f
(
xk) + Hx

k 
xk+1 – ATλk+1 – βATB
yk+1 + ∇φ
(
xk+1) – ∇φ

(
xk) = 0, (9a)

∇g
(
yk) + Hy

k
yk+1 – BTλk+1 + ∇ψ
(
yk+1) – ∇ψ

(
yk) = 0. (9b)

Based on the above analysis and preparation, now we describe the proposed algorithm
in detail for solving problems (1) as follows (Algorithm 1).
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Algorithm 1 (ADMM-based SQP)
Step 0. Input initial iterative point (x0, y0,λ0), select β > 0, initial symmetric matrices Hx

0 ∈
Rn1×n1 and Hy

0 ∈ Rn2×n2 , and continuously differentiable strongly convex functions φ and
ψ . Set k := 0.
Step 1. Solve QP subproblems (7a) and (7b) to obtain the (unique) optimal solution xk+1

and yk+1, respectively, and update λk+1 by (7c).
Step 2. If a termination criterion is not met, calculate new matrices Hx

k+1 and Hy
k+1, set

k := k + 1, and return to Step 1.

Remark 1 At first glance, one might view the ADMM-based SQP method proposed in this
paper as a special case of the well-known Bregman ADMM [10], whose iterative scheme
is given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = arg minx∈Rn1 {Lβ (x, yk ,λk) + 
φ̃k
(x, xk)},

yk+1 = arg miny∈Rn2 {Lβ (xk+1, y,λk) + 
ψ̃k
(y, yk)},

λk+1 = λk – β(Axk+1 + Byk+1 – b),

when given some concrete choices of functions φ̃k(x) and ψ̃k(y) such as

φ̃k(x) := φ(x) +
1
2
‖x‖2

Hx
k

– f (x), ψ̃k(y) := ψ(y) +
1
2
‖y‖2

Hy
k

– g(y).

However, this may cause disagreements, since the pursuit of this statement raised above is
simply a matter of form. In fact, the convexity property is required for a Bregman distance
by definition, see, e.g., [28, 29]. Meanwhile, it is worth pointing out that matrices Hx

k and
Hy

k in this paper are not required to be positive semidefinite/definite, and function f or g
is also not necessarily convex.

3 Convergence analysis
This section is devoted to the convergence analysis of the ADMM-based SQP method
introduced in Sect. 2. First, we consider some basic assumptions as follows.

Assumption 1 Let min{σ0,σφ ,σψ } > 0, f : Rn1 → R, and g : Rn2 → R be continuously dif-
ferentiable functions. Assume that the following conditions hold:

(i) BBT 	 σ0I , namely B is full row rank;
(ii) φ and ψ are strongly convex with modulus σφ ,σψ , respectively;

(iii) ∇f , ∇g , ∇φ, and ∇ψ are Lipschitz continuous with modulus �f ,�g ,�φ ,�ψ > 0,
respectively.

Assumption 2 The matrix sequences {Hx
k } and {Hy

k} are bounded, and there exist con-
stants h,ηx,ηy > 0 such that

∥
∥Hx

k
∥
∥ ≤ h,

∥
∥Hy

k
∥
∥ ≤ h, Hx

k 	 ηxIn1 , Hy
k 	 ηyIn2 , ∀k, (10)

where

Hx
k := Hx

k + σφIn1 – �f In1 , (11a)
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Hy
k := Hy

k + σψ In2 –
(

�g +
4(�ψ + h)2 + 4(�g + �ψ + h)2

βσ0

)

In2 . (11b)

Remark 2 From Assumption 2, in order to guarantee that the final two relations in (10)
hold, it is suitable for us to choose such quantities

infσHx
k

+ σφ – �f ≥ ηx,

and

β > β̄ :=
4[(�ψ + h)2 + (lg + �ψ + h)2]
σ0(infσHy

k
+ σψ – �g – ηy)

> 0, ∀k, (12)

where σHx
k

and σHy
k

are the minimum eigenvalues of matrices Hx
k and Hy

k , respectively.
Besides, there is no doubt that both QP subproblems (7a) and (7b) have a unique optimal
solution.

To design an appropriate merit function for problem (1), we introduce a modified po-
tential function L̂β : Rn1 × Rn2 × Rm × Rn2 → R defined as

L̂β (ŵ) := Lβ (w) + δ‖y – ŷ‖2, δ :=
2(�g + �ψ + h)2

βσ0
. (13)

Before giving the descent property of L̂β (·), we first establish a series of technical results,
which shall contribute to characterizing convergence properties of the ADMM-based SQP
algorithm. To see that, we now provide an upper estimate for the quantities ‖
λk+1‖2 in
the following.

Lemma 2 Suppose that Assumptions 1 and 2 are satisfied. Then we have

∥
∥
λk+1∥∥2 ≤ 2(�ψ + h)2

σ0

∥
∥
yk+1∥∥2 +

2(�g + �ψ + h)2

σ0

∥
∥
yk∥∥2. (14)

Proof First, it follows directly from Assumption 1(i) that

∥
∥BT
λk+1∥∥2 ≥ σ0

∥
∥
λk+1∥∥2. (15)

Again, by the optimality condition (9b), we have

BTλk+1 = ∇g
(
yk) + Hy

k
yk+1 + ∇ψ
(
yk+1) – ∇ψ

(
yk). (16)

Then, using inequality (16), Assumption 1(iii), and the boundedness of {Hy
k} in Assump-

tion 2, we obtain

∥
∥BT
λk+1∥∥2

=
∥
∥
(∇g

(
yk) + Hy

k
yk+1 + ∇ψ
(
yk+1) – ∇ψ

(
yk))

–
(∇g

(
yk–1) + Hy

k–1
yk + ∇ψ
(
yk) – ∇ψ

(
yk–1))∥∥2
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≤ [
(�ψ + h)

∥
∥
yk+1∥∥ + (�g + �ψ + h)

∥
∥
yk∥∥

]2

≤ 2(�ψ + h)2∥∥
yk+1∥∥2 + 2(�g + �ψ + h)2∥∥
yk∥∥2, (17)

which together with relation (15) immediately establishes the assertion. �

To proceed, the following lemma bounds the pointwise change of the augmented La-
grangian function.

Lemma 3 Suppose that Assumptions 1 and 2 are satisfied, let {wk} be the sequence gener-
ated by the ADMM-based SQP method. Then the following assertion is true:

Lβ

(
wk+1) – Lβ

(
wk)

≤ –
1
2
∥
∥
xk+1∥∥2

(Hx
k +σφ In1 –�f In1 ) +

2(�g + �ψ + h)2

βσ0

∥
∥
yk∥∥2

–
1
2
∥
∥
yk+1∥∥2

(Hy
k +σψ In2 –(�g +

4(�ψ +h)2
βσ0

)In2 )
. (18)

Proof From Assumption 1(iii), we can see that ∇f and ∇g are Lipschitz continuous, then
we can deduce

f
(
xk+1) – f

(
xk) – ∇f

(
xk)T(

xk+1 – xk)

=
∫ 1

0
∇f

(
xk + s

(
xk+1 – xk))T(

xk+1 – xk)ds –
∫ 1

0
∇f

(
xk)T(

xk+1 – xk)ds

=
∫ 1

0

[∇f
(
xk + s

(
xk+1 – xk)) – ∇f

(
xk)]T(

xk+1 – xk)ds

≤
∫ 1

0

∥
∥∇f

(
xk + s

(
xk+1 – xk)) – ∇f

(
xk)∥∥ · ∥∥xk+1 – xk∥∥ds

≤ �f
∥
∥
xk+1∥∥2

∫ 1

0
s ds =

�f

2
∥
∥
xk+1∥∥2, (19)

and similarly

g
(
yk+1) ≤ g

(
yk) + ∇g

(
yk)T(

yk+1 – yk) +
�g

2
∥
∥
yk+1∥∥2. (20)

By the definition of Lβ (·) and formula (7c), we have

Lβ

(
xk+1, yk+1,λk+1) – Lβ

(
xk+1, yk+1,λk)

=
(
λk – λk+1)T(

Axk+1 + Byk+1 – b
)

=
1
β

∥
∥
λk+1∥∥2. (21)

Moreover, since yk+1 is a minimizer of (7b), then using the strong convexity of ψ and re-
lation (20), we have

Lβ

(
xk+1, yk+1,λk) – Lβ

(
xk+1, yk ,λk)
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= f
(
xk+1) + g

(
yk+1) –

(
λk)T(

Axk+1 + Byk+1 – b
)

+
β

2
∥
∥Axk+1 + Byk+1 – b

∥
∥2

–
[

f
(
xk+1) + g

(
yk) –

(
λk)T(

Axk+1 + Byk – b
)

+
β

2
∥
∥Axk+1 + Byk – b

∥
∥2

]

≤ g
(
yk+1) – g

(
yk) – ∇g

(
yk)T(

yk+1 – yk) –
1
2
∥
∥
yk+1∥∥2

Hy
k

– 
ψ
(
yk+1, yk)

≤ �g

2
∥
∥
yk+1∥∥2 –

1
2
∥
∥
yk+1∥∥2

Hy
k

–
σψ

2
∥
∥
yk+1∥∥2,

= –
1
2
∥
∥
yk+1∥∥2

(Hy
k +σψ In2 –�g In2 ). (22)

Again, similarly recalling the update for x-subproblem (7a), one also has

Lβ

(
xk+1, yk ,λk) – Lβ

(
xk , yk ,λk)

= f
(
xk+1) + g

(
yk) –

(
λk)T(

Axk+1 + Byk – b
)

+
β

2
∥
∥Axk+1 + Byk – b

∥
∥2

–
[

f
(
xk) + g

(
yk) –

(
λk)T(

Axk + Byk – b
)

+
β

2
∥
∥Axk + Byk – b

∥
∥2

]

≤ f
(
xk+1) – f

(
xk) – ∇f

(
xk)T(

xk+1 – xk) –
1
2
∥
∥
xk+1∥∥2

Hx
k

– 
φ
(
xk+1, xk)

≤ �f

2
∥
∥
xk+1∥∥2 –

1
2
∥
∥
xk+1∥∥2

Hx
k

–
σφ

2
∥
∥
xk+1∥∥2,

= –
1
2
∥
∥
xk+1∥∥2

(Hx
k +σφ In1 –�f In1 ). (23)

Summing up relations (21), (22), and (23), we obtain

Lβ

(
wk+1) – Lβ

(
wk) ≤ 1

β

∥
∥
λk+1∥∥2 –

1
2
∥
∥
xk+1∥∥2

(Hx
k +σφ In1 –�f In1 )

–
1
2
∥
∥
yk+1∥∥2

(Hy
k +σψ In2 –�g In2 ).

This, combined with relation (14), justifies the conclusion. �

We next give the descent property of L̂β (·), i.e., the sequence {L̂β(ŵk)} is monotonically
nonincreasing when depending on Assumption 1 and Assumption 2.

Lemma 4 Suppose that Assumptions 1 and 2 hold, let {wk} be the sequence generated by
the ADMM-based SQP method. Then we have

L̂β

(
ŵk+1) ≤ L̂β

(
ŵk) –

1
2
∥
∥
xk+1∥∥2

Hx
k

–
1
2
∥
∥
yk+1∥∥2

Hy
k
, (24)

where matrices Hx
k and Hy

k are defined in (11a) and (11b), respectively.

Proof Clearly, we observe from Lemma 3 that

Lβ

(
wk+1) +

2(�g + �ψ + h)2

βσ0

∥
∥
yk+1∥∥2
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≤Lβ

(
wk) +

2(�g + �ψ + h)2

βσ0

∥
∥
yk∥∥2 –

1
2
∥
∥
xk+1∥∥2

(Hx
k +σφ In1 –�f In1 )

–
1
2
∥
∥
yk+1∥∥2

(Hy
k +σψ In2 –(�g +

4(�ψ +h)2+4(�g +�ψ +h)2
βσ0

)In2 )
.

Thus, using the definitions of L̂β (·), Hx
k , and Hy

k , the conclusion is immediately satisfied. �

Notice that the boundedness of the iterative sequence {wk} generated by the ADMM-
based SQP method plays an important role in the existence of a cluster point, so it is
necessary to consider some additional conditions as follows.

Assumption 3 Assume that the following conditions are satisfied:
(i) There exists a constant σ̃ > 0 with g∗ := infy{g(y) – σ̃‖∇g(y)‖2} > –∞;

(ii) f and g are coercive, i.e., lim‖x‖→+∞ f (x) = +∞, lim‖y‖→+∞ g(y) = +∞;
(iii) β > max{β̄ , 1

σ̃ σ0
}.

We now prove the boundedness of the iterative sequence {wk}, which is further benefi-
cial to illustrate that the potential function constructed is bounded from below.

Lemma 5 Suppose that Assumptions 1, 2, and 3 are all satisfied, let {wk} be the sequence
generated by the ADMM-based SQP method. Then {wk} is bounded, and there exists a
constant L such that L̂β (ŵk) ≥L > –∞,∀k > 0.

Proof First, by matching the complete square, we have

L̂β

(
ŵk) = f

(
xk) + g

(
yk) –

(
λk)T(

Axk + Byk – b
)

+
β

2
∥
∥Axk + Byk – b

∥
∥2 + δ

∥
∥
yk∥∥2

= f
(
xk) + g

(
yk) +

β

2

∥
∥
∥
∥Axk + Byk – b –

λk

β

∥
∥
∥
∥

2

–
1

2β

∥
∥λk∥∥2 + δ

∥
∥
yk∥∥2. (25)

Next, recalling relation (16), Assumption 1(iii), and Assumption 2 gives

σ0
∥
∥λk∥∥2 ≤ ∥

∥BTλk∥∥2 =
∥
∥∇g

(
yk–1) + Hy

k–1
yk + ∇ψ
(
yk) – ∇ψ

(
yk–1)∥∥2

≤ (∥
∥∇g

(
yk–1) – ∇g

(
yk)∥∥ +

∥
∥∇g

(
yk)∥∥ + (�ψ + h)

∥
∥
yk∥∥

)2

≤ (∥
∥∇g

(
yk)∥∥ + (�g + �ψ + h)

∥
∥
yk∥∥

)2

≤ 2
∥
∥∇g

(
yk)∥∥2 + 2(�g + �ψ + h)2∥∥
yk∥∥2,

and hence

1
2β

∥
∥λk∥∥2 ≤ 1

βσ0

∥
∥∇g

(
yk)∥∥2 +

(�g + �ψ + h)2

βσ0

∥
∥
yk∥∥2. (26)
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Subtracting this into (25) and invoking the definition of δ in (13), we obtain

L̂β

(
ŵk) ≥ f

(
xk) + g

(
yk) –

1
βσ0

∥
∥∇g

(
yk)∥∥2

+
β

2

∥
∥
∥
∥Axk + Byk – b –

λk

β

∥
∥
∥
∥

2

+
(�g + �ψ + h)2

βσ0

∥
∥
yk∥∥2

= f
(
xk) +

(
g
(
yk) – σ̃

∥
∥∇g

(
yk)∥∥2) +

(

σ̃ –
1

βσ0

)
∥
∥∇g

(
yk)∥∥2

+
β

2

∥
∥
∥
∥Axk + Byk – b –

λk

β

∥
∥
∥
∥

2

+
(�g + �ψ + h)2

βσ0

∥
∥
yk∥∥2. (27)

On the other hand, from Lemma 4 and Assumption 2, we know that {L̂β (ŵk)} is nonin-
creasing, and thus we have

L̂β

(
ŵ1) ≥ L̂β

(
ŵk). (28)

Since lim‖x‖→+∞ f (x) = +∞ implies that f ∗ := infx f (x) > –∞, which together with As-
sumption 3 as well as relations (27) and (28), implies that sequences {xk}, {‖∇g(yk)‖}, and
{‖
yk‖} are bounded, and then the boundedness of {λk} follows directly from estimate
(26). Moreover, {yk} is also bounded by taking the fact that lim‖y‖→+∞ g(y) = +∞ implies
that infy g(y) > –∞. Therefore, the sequence {wk} is bounded.

To this end, ignoring some nonnegative terms of (27), one has

L̂β

(
ŵk) ≥ f

(
xk) + g

(
yk) – σ̃

∥
∥∇g

(
yk)∥∥2 ≥L,

where L := f ∗ + g∗, and the proof is completed. �

Now, we are ready to establish the global convergence of the ADMM-based SQP
method.

Theorem 1 Suppose that Assumptions 1, 2, and 3 are all satisfied, let {wk} be the sequence
generated by the ADMM-based SQP method. Then

(i) limk→∞(‖
xk+1‖ + ‖
yk+1‖ + ‖
λk+1‖) = 0;
(ii) any cluster point w∗ of the sequence {wk} is a KKT point of problem (1).

Proof (i) Note first from Lemma 4 that

L̂β

(
ŵk) – L̂β

(
ŵk+1) ≥ 1

2
∥
∥
xk+1∥∥2

Hx
k

+
1
2
∥
∥
yk+1∥∥2

Hy
k
.

Thus, summing up this inequality from k = 1 to n, using Lemma 5 yields

∞ > L̂β

(
ŵ1) – L≥ L̂β

(
ŵ1) – L̂β

(
ŵn+1)

≥ 1
2

n∑

k=1

∥
∥
xk+1∥∥2

Hx
k

+
1
2

n∑

k=1

∥
∥
yk+1∥∥2

Hy
k
. (29)
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Again, by Assumption 2, we know that, for any k, both matrices Hx
k and Hy

k are positive
definite. Thus

∞∑

k=1

∥
∥
xk+1∥∥2 < ∞ and

∞∑

k=1

∥
∥
yk+1∥∥2 < ∞.

Furthermore, in view of estimate (14), one also has
∑∞

k=1 ‖
λk+1‖2 < ∞. So,

∥
∥
xk+1∥∥ → 0,

∥
∥
yk+1∥∥ → 0,

∥
∥
λk+1∥∥ → 0, k → ∞, (30)

which completes assertion (i).
(ii) By Lemma 5, we argue that {wk} is bounded and thus there exists at least one cluster

point. Assume that w∗ is a cluster point of {wk}, and let {wkj} be a convergent subsequence
such that limj→∞ wkj = w∗. On the other hand, from Assumption 1(iii) and assertion (i),
we know

∇φ
(
xk+1) – ∇φ

(
xk) → 0, ∇ψ

(
yk+1) – ∇ψ

(
yk) → 0, k → ∞. (31)

In view of this, and taking limit in (7c), (9a), and (9b) along the sequence {wkj}, we obtain

∇f
(
x∗) – ATλ∗ = 0, ∇g

(
y∗) – BTλ∗ = 0, Ax∗ + By∗ = b.

This implies that w∗ is a KKT point of problem (1). �

It is well known that when the potential function has a geometric property known as
the KŁ property, then Theorem 1 can typically be strengthened since the limit point of
the iterative sequence is unique.

Theorem 2 Suppose that Assumptions 1, 2, and 3 hold, and suppose that f and g are semi-
algebraic functions, let {wk} be the sequence generated by the ADMM-based SQP method.
Then the whole sequence {wk} converges to a KKT point of problem (1).

Proof Clearly, by Theorem 1, it suffices to prove that the sequence {wk} is convergent.
From Lemmas 4 and 5, we know that {ŵk} is also bounded and {L̂β(ŵk)} is monotonically
bounded from below, so L∗ := limk→∞ L̂β (ŵk) should exist. Then the rest of the proof is
divided into two cases.

Suppose first that L̂β (ŵN ) = L∗ for some N ≥ 1. Since {L̂β (ŵk)} is nonincreasing, we have
L̂β (ŵk) = L̂∗ for any k ≥ N . Then, according to Lemma 4, xN+t = xN and yN+t = yN hold for
any t ≥ 0. This implies that both sequences {xk} and {yk} converge finitely. Furthermore,
it follows from relation (14) that λN+t = λN+1 for any t ≥ 1. Hence, {λk} is also convergent,
which justifies the assertion.

Suppose next that L̂β (ŵk) > L∗ for all k. Note that L̂β (·) is a semialgebraic function due
to the semialgebraicity of f and g , hence it is a KŁ function. Subsequently, this part involves
three steps for analysis.

To begin with, we prove that L̂β (·) is constant on Ω , where Ω is a set of all cluster points
of the sequence {ŵk}, and then utilize the uniformized KŁ property in Lemma 1.
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By the boundedness of {ŵk}, obviously, Ω is nonempty and d(ŵk ,Ω) → 0. Similarly, as
proved in [24, Lemma 5(iii)], we also know that Ω is a compact and connected set. Let
ŵ∗ ∈ Ω be arbitrary, and consider a convergent subsequence {ŵkj} of {ŵk} converging to
ŵ∗. Then, by the continuity of L̂β (·), we have L∗ = limj→∞ L̂β (ŵkj ) = L̂β (ŵ∗), so {L̂β (ŵk)}
is convergent, namely L̂β (ŵk) → L̂β (ŵ∗). Thus, L̂β (·) is constant on Ω since ŵ∗ ∈ Ω is
arbitrary. Now, using Lemma 1, for any δ0 > 0, η > 0, there exists an integer k1 > 0 such
that d(ŵk ,Ω) < δ0 and L∗ < L̂β (ŵk) < L∗ + η, and

ϕ′(L̂β

(
ŵk) – L∗)d

(
0,∇L̂β

(
ŵk)) ≥ 1, ∀k ≥ k1. (32)

Next, we attempt to bound the distance from 0 to ∇L̂β (ŵk). Taking the partial derivative
of L̂β (·) at ŵk with respect to variable x, we have

∇xL̂β

(
ŵk) = ∇f

(
xk) – ATλk + βAT(

Axk + Byk – b
)

= –Hx
k 
xk+1 – βATA
xk+1 –

(∇φ
(
xk+1) – ∇φ

(
xk)), (33)

where the final equality follows from the optimality condition (8a). Likewise, for variable
y, we have

∇yL̂β

(
ŵk) = ∇g

(
yk) – BTλk + βBT(

Axk + Byk – b
)

+ 2δ
yk

= –Hy
k
yk+1 –

(∇ψ
(
yk+1) – ∇ψ

(
yk))

– βBT(
A
xk+1 + B
yk+1) + 2δ
yk

= –Hy
k
yk+1 –

(∇ψ
(
yk+1) – ∇ψ

(
yk))

+ BT(
λk+1 – 
λk) + 2δ
yk , (34)

where the second equality follows from (8b), and the final equality utilizes formula (7c).
Additionally,

∇λL̂β

(
ŵk) = –

(
Axk + Byk – b

)
=

1
β


λk (35)

and

∇ŷL̂β

(
ŵk) = –2δ
yk . (36)

Since ∇φ and ∇ψ are Lipschitz continuous, then combining Assumption 2 with relations
(33)–(36), there exists a constant a > 0 such that

d
(
0,∇L̂β

(
ŵk)) ≤ a

(∥
∥
xk+1∥∥ +

∥
∥
yk+1∥∥ +

∥
∥
yk∥∥ +

∥
∥
λk+1∥∥ +

∥
∥
λk∥∥

)
. (37)

Finally, based on relations (32) and (37), we start to study the convergence of the entire
sequence {wk}. For statement convenience, let

�k := ϕ
(
L̂β

(
ŵk) – L∗) – ϕ

(
L̂β

(
ŵk+1) – L∗)
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and

�k :=
∥
∥
xk+1∥∥ +

∥
∥
yk+1∥∥ +

∥
∥
yk∥∥ +

∥
∥
λk+1∥∥ +

∥
∥
λk∥∥.

As L̂β (·) is nonincreasing and by Definition 1 that ϕ is monotonous, it is easy to have
�k ≥ 0 for k ≥ k1. Multiplying both sides of (37) by �k , using inequality (32) and the
concavity of ϕ, as well as Lemma 4 and Assumption 2, we obtain for all k ≥ k1 that

�k · (a�k) ≥ d
(
0,∇L̂β

(
ŵk)) · �k

≥ d
(
0,∇L̂β

(
ŵk)) · ϕ′(L̂β

(
ŵk) – L∗) · (L̂β

(
ŵk) – L̂β

(
ŵk+1))

≥ L̂β

(
ŵk) – L̂β

(
ŵk+1) ≥ 1

2
(∥
∥
xk+1∥∥2

Hx
k

+
∥
∥
yk+1∥∥2

Hy
k

)

≥ ηx

2
∥
∥
xk+1∥∥2 +

ηy

2
∥
∥
yk+1∥∥2

≥ 1
2

min
{
ηx,ηy}(∥∥
xk+1∥∥2 +

∥
∥
yk+1∥∥2)

≥ 1
4

min
{
ηx,ηy}(∥∥
xk+1∥∥ +

∥
∥
yk+1∥∥

)2

:= σ1
(∥
∥
xk+1∥∥ +

∥
∥
yk+1∥∥

)2, (38)

where σ1 := 1
4 min{ηx,ηy} > 0. Now, dividing both sides of (38) by σ1, taking the square root,

and then applying the inequality u+v
2 ≥ √

uv for u, v ≥ 0 to address the resulting inequality,
we get

�k

2m
+

am
2σ1

�k ≥ ∥
∥
xk+1∥∥ +

∥
∥
yk+1∥∥, k ≥ k1, (39)

where m > 0 is an arbitrary constant. Then, by relation (16), Assumptions 1 and 2, we can
derive

√
σ0

∥
∥
λk+1∥∥ ≤ ∥

∥BT
λk+1∥∥

=
∥
∥
(∇g

(
yk) + Hy

k
yk+1 + ∇ψ
(
yk+1) – ∇ψ

(
yk))

–
(∇g

(
yk–1) + Hy

k–1
yk + ∇ψ
(
yk) – ∇ψ

(
yk–1))∥∥

≤ (�g + �ψ + h)
∥
∥
yk∥∥ + (�ψ + h)

∥
∥
yk+1∥∥.

Accordingly, for simplicity, let d1 := �g +�ψ +h√
σ0

and d2 := �ψ +h√
σ0

, we have

∥
∥
λk+1∥∥ ≤ d1

∥
∥
yk∥∥ + d2

∥
∥
yk+1∥∥, (40)

and

∥
∥
λk∥∥ ≤ d1

∥
∥
yk–1∥∥ + d2

∥
∥
yk∥∥.

Hence, substituting these into (39) and regrouping terms, we obtain
(

1 –
1

2m

)
∥
∥
xk+1∥∥ +

(

1 –
1 + d2

2m

)
∥
∥
yk+1∥∥
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≤ 1 + d1 + d2

2m
∥
∥
yk∥∥ +

d1

2m
∥
∥
yk–1∥∥ +

am
2σ1

�k ,

which by manipulating, can be rewritten as

(

1 –
1

2m

)
∥
∥
xk+1∥∥ +

(

1 –
1 + d1 + d2

m

)
∥
∥
yk+1∥∥

≤ 1 + 2d1 + d2

2m
(∥
∥
yk∥∥ –

∥
∥
yk+1∥∥

)
+

d1

2m
(∥
∥
yk–1∥∥ –

∥
∥
yk∥∥

)
+

am
2σ1

�k . (41)

As a result, making use of the nonnegativity of ϕ, summing up inequality (41) from k = k1

to ∞, we have

(

1 –
1

2m

) ∞∑

k=k1

∥
∥
xk+1∥∥ +

(

1 –
1 + d1 + d2

m

) ∞∑

k=k1

∥
∥
yk+1∥∥

≤ 1 + 2d1 + d2

2m
∥
∥
yk1

∥
∥ +

d1

2m
∥
∥
yk1–1∥∥ +

am
2σ1

ϕ
(
L̂β

(
ŵk1

)
– L∗). (42)

Note that m > 0 is arbitrary, now selecting m > 1 + d1 + d2, and hence 1 – 1
2m > 0 and

1 – 1+d1+d2
m > 0, then it follows directly from (42) that

∞∑

k=k1

∥
∥
xk+1∥∥ < ∞ and

∞∑

k=k1

∥
∥
yk+1∥∥ < ∞.

That is, sequences {xk} and {yk} are convergent. Moreover, summing up relation (40) from
k = k1 to ∞, we also receive

∞∑

k=k1

∥
∥
λk+1∥∥ ≤ d1

∞∑

k=k1

∥
∥
yk∥∥ + d2

∞∑

k=k1

∥
∥
yk+1∥∥ < ∞,

which implies that {λk} is convergent too. That is, {wk} is convergent. Therefore, combin-
ing with Theorem 1, the whole proof is finished. �

4 Conclusions
In this paper, an ADMM-based SQP method for separably smooth nonconvex problems
with linear equality constraints is proposed. Incorporating the favorable ideas of SQP
method and the classical ADMM, the QP subproblem of the original problem is split
into smaller-scale QP subproblems, which can be easily solved with the help of Bregman
distances, and hence relieve the difficulty brought by solving large-scale QP itself cor-
responding to the primal nonconvex optimization problem. Additionally, we update the
Lagrangian multipliers in a dual ascent step. Based on the KŁ property and other stan-
dard assumptions, the proposed method is globally and strongly convergent in terms of
the potential function.

As future work, it is tempting for us to consider whether these theoretical results can
be used to develop a relaxation factor in the multipliers updating (7c) or some acceler-
ated technique for variants of the ADMM-based SQP method. This is an interesting issue
worthy of further investigation.
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