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1 Introduction
A function f is said to be completely monotonic on an interval I if f has derivatives of all
orders on I which alternate successively in sign, that is,

(–1)nf (n)(x) ≥ 0 (1.1)

for all x ∈ I and for all n ≥ 0. See for example [13, Chapterviii], [28, Chap. 1], and [29,
Chapter iv]. If inequality (1.1) is strict for all x ∈ I and for all n ≥ 0, then f is said to be
strictly completely monotonic. Completely monotonic functions have played a very im-
portant role in various areas such as the theory of special functions, probability, numerical
analysis, and physics.

A notion of completely monotonic degree was invented first in reference [6] and re-
viewed in the recent paper [22]. It can be used to measure and differentiate complete
monotonicity more accurately, and it is also introduced in [6, 8–12, 14, 16, 18–21, 25, 26]
and closely related references. Let f (x) be a completely monotonic function on (0,∞) and
denote f (∞) = limx→∞ f (x) ≥ 0. When the function xα[f (x) – f (∞)] is completely mono-
tonic on (0,∞) if and only if 0 ≤ α ≤ r, the number r, denoted by degx

cm[f (x)], is called
the completely monotonic degree of f (x) with respect to x ∈ (0,∞). For more studies on
complete monotonicity, the reader is also referred to [3, 8–12, 14, 16, 18–21, 25, 26].

For x > 0, the classical gamma function

Γ (x) =
∫ ∞

0
e–ttx–1 dt,
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first introduced by the Swiss mathematician Leonhard Euler, is one of the most important
functions in mathematical analysis. It often appears in asymptotic series, hypergeomet-
ric series, Riemann zeta function, number theory, and so on. It is well known that the
digamma function or the psi function is defined by ψ(x) = Γ ′(x)/Γ (x), and ψ (i)(x) (i ≥ 1)
is called the polygamma functions. In particular, ψ ′(x) is called the trigamma function.
In [1], an interesting fact was verified that the function f (x) = xα[log(x) – ψ(x)] is strictly
completely monotonic on (0,∞) if and only if α ≤ 1, which improved the results due to An-
derson et al. [2]. A new proof was given by [5]. The above result implies that degx

cm[log(x) –
ψ(x)] = 1. It was proved in [27] that the function x2[ψ(x) – log(x)] + x/2 is strictly decreas-
ing and convex on (0,∞) and, as x → ∞, tends to –1/12. Then the result was improved by
[3], and it was proved that the function Φ(x) = x2[ψ(x) – log(x)] + x/2 + 1/12 is completely
monotonic on (0,∞). A concise proof of the complete monotonicity of the function Φ(x)
was presented by Qi and Liu [22]. Meanwhile, they proved that

degx
cm

[
Φ(x)/x2] = 2. (1.2)

Furthermore, Qi and Liu [22] guessed that

degx
cm

[
log(x) –

1
2x

– ψ(x)
]

= 1, (1.3)

degx
cm

[
1
x

+
1

2x2 +
1

6x3 – ψ ′(x)
]

= 2, (1.4)

degx
cm

[
ψ ′(x) –

1
x

–
1

2x2 –
1

6x3 +
1

30x5

]
= 4. (1.5)

Equations (1.3), (1.2), (1.4), and (1.5) can be written concisely as follows:

degx
cm

[
(–1)R′

0(x)
]

= 1,

degx
cm

[
(–1)R′

1(x)
]

= 2,

degx
cm

[
(–1)2R′′

1(x)
]

= 2,

degx
cm

[
(–1)2R′′

2(x)
]

= 4,

if we let

Rn(x) = (–1)n

[
logΓ (x) –

(
x –

1
2

)
log(x) + x –

1
2

log(2π )

–
n∑

k=1

B2k

(2k – 1)2k
1

x2k–1

]
, (1.6)

where Bi denotes the ith Bernoulli number defined by the generating function

t
et – 1

=
∞∑
i=1

Bi

i!
ti.

In fact, Rn(x) (n ≥ 0) was proved to be completely monotonic on (0,∞) in [1] and [7].
In [11], the completely monotonic degree of the function Rn(x) for n ≥ 0 on (0,∞) was
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proved to be at least n. This means that the functions (–1)m[Rn(x)](m) for m, n ≥ 0 are com-
pletely monotonic on (0,∞). Qi and Liu [22] asked a question: What are the completely
monotonic degrees of the completely monotonic functions (–1)m[Rn(x)](m) for m, n ≥ 0
on (0,∞)? Several conjectures posed by Qi can be recited as follows:

(1) The completely monotonic degrees of Rn(x) for n ≥ 0 with respect to x ∈ (0,∞) sat-
isfy

degx
cm

[
R0(x)

]
= 0, degx

cm
[
R1(x)

]
= 1,

and

degx
cm

[
Rn(x)

]
= 2(n – 1), n ≥ 2;

(2) The completely monotonic degrees of –R′
n(x) for n ≥ 0 with respect to x ∈ (0,∞)

satisfy

degx
cm

[
–R′

0(x)
]

= 1, degx
cm

[
–R′

1(x)
]

= 2,

and

degx
cm

[
–R′

n(x)
]

= 2n – 1, n ≥ 2;

(3) The completely monotonic degrees of (–1)mR(m)
n (x) for m ≥ 2 and n ≥ 0 with respect

to x ∈ (0,∞) satisfy

degx
cm

[
(–1)m[

R0(x)
](m)] = m – 1, degx

cm
[
(–1)m[

R1(x)
](m)] = m,

and

degx
cm

[
(–1)m[

Rn(x)
](m)] = m + 2(n – 1), n ≥ 2.

In this paper, following the method due to Koumandos and Pedersen [11], we prove that

degx
cm

[
(–1)2R′′

0(x)
]

= 2, (1.7)

degx
cm

[
(–1)2R′′

1(x)
]

= 3, (1.8)

degx
cm

[
–R′

0(x)
]

= 1, (1.9)

and

degx
cm

[
–R′

1(x)
]

= 2. (1.10)

Eqs. (1.7) and (1.8) show that it may be not true that degx
cm[(–1)m[R0(x)](m)] = m – 1 and

degx
cm[(–1)m[R1(x)](m)] = m for all m ≥ 2.

It is worth noting that almost at the same time that we submitted our paper, Qi and
Mahmoud [23, 24] independently confirmed (1.9) and (1.10). Meanwhile, motivated by
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(1.7) and (1.8), which can also be verified as in [15], Qi and Mahmoud [23, 24] corrected
and modified two conjectures stated in (3) as follows: The completely monotonic degrees
of (–1)mR(m)

n (x) for m ≥ 2 with respect to x ∈ (0,∞) satisfy

degx
cm

[
(–1)m[

R0(x)
](m)] = m, degx

cm
[
(–1)m[

R1(x)
](m)] = m + 1.

2 A lemma
A necessary and sufficient condition for complete monotonicity was given by Bernstein’s
theorem (see Theorem 12b in [29, p. 161]), which states that f is completely monotonic
on (0,∞) if and only if

f (x) =
∫ ∞

0
e–xt dμ(t),

where μ is nondecreasing and the integral converges for 0 < x < ∞. Bernstein’s theorem
was extended by Koumandos and Pedersen [11]. The theorem of Koumandos and Peder-
sen is a key and useful tool in our paper. Now, we state it as a lemma.

Lemma 1 ([11], Theorem 1.3) Let r ≥ 1 be an integer. The function xrf (x) is completely
monotonic if and only if

f (x) =
∫ ∞

0
p(t)e–xt dt,

where the integral converges for all x > 0 and p is r – 1 times differentiable on [0,∞) with
p(r–1)(t) = μ([0, t]) for some Radon measure μ and p(k)(0) = 0 for 0 ≤ k ≤ r – 2.

The theorem of Koumandos and Pedersen contains a simple characterization of com-
pletely monotonic functions like xrf (x). It is very helpful for us to evaluate the completely
monotonic degrees for certain functions.

3 Proofs of the conjectures
Now, we present our theorems and proofs.

Theorem 1 For x > 0, we have

degx
cm

[
(–1)2R′′

0(x)
]

= 2. (3.1)

Proof Let φ(x) = (–1)2R′′
0(x) = ψ ′(x) – 1

x – 1
2x2 . It follows from Theorem 9 in [1] that

limx→∞ φ(x) = 0. Using Binet’s formula [4, p. 8], we obtain the representation

φ(x) =
∫ ∞

0

(
t

et – 1
+

t
2

– 1
)

e–xt dt =
∫ ∞

0
p(t)e–xt dt,

where

p(t) =

⎧⎨
⎩

t
et–1 + t

2 – 1, t > 0,

0, t = 0.
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It is obvious that p(t) and p′(t) are right-continuous at t = 0 and the right-derivative p′
+(0) =

0. For t > 0, we have

p′′(t) =
et

(et – 1)3

[
(t – 2)et + t + 2

]
.

Write g(t) = (t – 2)et + t + 2. We find g(0) = 0, g ′(0) = 0, and g ′′(t) = tet > 0 for t > 0. Thus, we
have g ′(t) > 0 and g(t) > 0 for t > 0, which implies p′′(t) > 0 for t > 0. So we have that p′(t) is
a Radon measure on [0,∞). It follows from Lemma 1 that x2φ(x) is completely monotonic
on (0,∞), which implies that

degx
cm

[
(–1)2R′′

0(x)
] ≥ 2. (3.2)

Next, we assume that xαφ(x) is completely monotonic on (0,∞). Then, for all x > 0, we
have

[
xαφ(x)

]′ = αxα–1φ(x) + xαφ′(x) ≤ 0,

which implies

α ≤ –
xφ′(x)
φ(x)

= –
x(ψ ′′(x) + 1

x2 + 1
x3 )

ψ ′(x) – 1
x – 1

2x2
= –

x3ψ ′′(x) + x + 1
x2ψ ′(x) – x – 1

2
.

Since limx→0 x2ψ ′(x) = 1 and limx→0 x3ψ ′′(x) = –2, we get α ≤ 2 if we let x tend to 0. Thus,
we have

degx
cm

[
(–1)2R′′

0(x)
] ≤ 2. (3.3)

From (3.2) and (3.3) we have (3.1). Then the proof is complete. �

Theorem 2 For x > 0, we have

degx
cm

[
(–1)2R′′

1(x)
]

= 3. (3.4)

Proof Let φ(x) = (–1)2R′′
1(x) = 1

x + 1
2x2 + 1

6x3 – ψ ′(x). From Theorem 9 in [1] we obtain
limx→∞ φ(x) = 0. By Binet’s formula [4, p. 8], we obtain the representation

φ(x) =
∫ ∞

0

(
–

t
et – 1

–
t
2

+
t2

12
+ 1

)
e–xt dt =

∫ ∞

0
p(t)e–xt dt,

where

p(t) =

⎧⎨
⎩

– t
et–1 – t

2 + t2

12 + 1, t > 0,

0, t = 0.

It is easy to check that p(t), p′(t), and p′′(t) are right-continuous at t = 0, and the right-
derivatives p′

+(0) = p′′
+(0) = 0. For t > 0, we have

p′′′(t) =
et

(et – 1)4

[
(t – 3)e2t + 4tet + t + 3

]
.
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Write g(t) = (t – 3)e2t + 4tet + t + 3. We find g(k)(0) = 0 for k = 0, 1, . . . , 4, g(5)(0) = 4, and
g(6)(t) = 64te2t +4(t +6)et . Thus, we have g(k)(t) > 0 for t > 0 and k = 0, 1, . . . , 6, which implies
p′′′(t) > 0 for t > 0. So we have that p′′(t) is a Radon measure on [0,∞). It follows from
Lemma 1 that x3φ(x) is completely monotonic on (0,∞), which implies that

degx
cm

[
(–1)2R′′

1(x)
] ≥ 3. (3.5)

Next, we assume that xαφ(x) is completely monotonic on (0,∞). Then, for all x > 0, we
have

[
xαφ(x)

]′ = αxα–1φ(x) + xαφ′(x) ≤ 0,

which implies

α ≤ –
xφ′(x)
φ(x)

= –
x(– 1

x2 – 1
x3 – 1

2x4 – ψ ′′(x))
1
x + 1

2x2 + 1
6x3 – ψ ′(x)

=
x4ψ ′′(x) + x2 + x + 1

2

x2 + 1
2 x + 1

6 – x3ψ ′(x)
.

Since limx→0 x2ψ ′(x) = 1 and limx→0 x3ψ ′′(x) = –2, we get α ≤ 3 if we let x tend to 0. Thus,
we have

degx
cm

[
(–1)2R′′

1(x)
] ≤ 3. (3.6)

From (3.5) and (3.6) we conclude that (3.4) is true. Then the proof is complete. �

Remark 1 It follows from the conjectures of Qi that degx
cm[(–1)2R′′

0(x)] = 1 and
degx

cm[(–1)2R′′
1(x)] = 2. According to Theorems 1 and 2, we correct them and get

degx
cm[(–1)2R′′

0(x)] = 2 and degx
cm[(–1)2R′′

1(x)] = 3.

Theorem 3 For x > 0, we have

degx
cm

[
–R′

0(x)
]

= 1. (3.7)

Proof Let φ(x) = –R′
0(x) = log(x)– 1

2x –ψ(x). It is known that limx→∞ φ(x) = 0. Using Binet’s
formula [4, p. 8], we obtain the representation

φ(x) =
∫ ∞

0

(
1

1 – e–t –
1
t

–
1
2

)
e–xt dt =

∫ ∞

0

(
1

et – 1
–

1
t

+
1
2

)
e–xt dt

=
∫ ∞

0
p(t)e–xt dt,

where

p(t) =

⎧⎨
⎩

1
et–1 – 1

t + 1
2 , t > 0,

0, t = 0.

It is easy to check p(t) is right-continuous at t = 0, and for t > 0,

p′(t) = –
1

et – 1
–

1
(et – 1)2 +

1
t2 .



Xu and Cen Journal of Inequalities and Applications         (2020) 2020:83 Page 7 of 10

Since et > 1 + t + t2

2 + t3

6 , we have

p′(t) > –
1

t + t2
2 + t3

6

–
1

(t + t2
2 + t3

6 )2
+

1
t2 =

t2 + 3
(t2 + 3t + 6)2 > 0.

So we have that p(t) is a Radon measure on [0,∞). It follows from Lemma 1 that xφ(x) is
completely monotonic on (0,∞), which implies that

degx
cm

[
–R′

0(x)
] ≥ 1. (3.8)

On the other hand, we assume that xαφ(x) is completely monotonic on (0,∞). Then, for
all x > 0, we have

(
xαφ(x)

)′ = αxα–1φ(x) + xαφ′(x) ≤ 0,

which implies

α ≤ –
xφ′(x)
φ(x)

= –
x( 1

x + 1
2x2 – ψ ′(x))

log(x) – 1
2x – ψ(x)

= –
x + 1

2 – x2ψ ′(x)
x(log(x) – ψ(x)) – 1

2
.

Since limx→0 x[log(x) – ψ(x)] = 1 (see [2]) and limx→0 x2ψ ′(x) = 1, we get α ≤ 1 if we let x
tend to 0. Thus, we have

degx
cm

[
–R′

0(x)
] ≤ 1. (3.9)

From (3.8) and (3.9) we conclude that (3.7) is true. Then the proof is complete. �

Remark 2 In fact, in reference [5] and closely related references therein, it was proved that
the function x[log(x) – ψ(x)] is completely monotonic on (0,∞) and that

lim
x→∞

{
x
[
log(x) – ψ(x)

]}
=

1
2

.

This implies that the function

x
[
log(x) – ψ(x)

]
–

1
2

= x
{[

log(x) – ψ(x)
]

–
1

2x

}

is also completely monotonic on (0,∞) and that it tends to 0 as x → ∞. Hence, the func-
tion [log(x) –ψ(x)] – 1/(2x) is completely monotonic and its completely monotonic degree
is 1 at least. This result can be applied to prove the above theorem.

Theorem 4 For x > 0, we have

degx
cm

[
–R′

1(x)
]

= 2. (3.10)

Proof Let φ(x) = –R′
1(x) = ψ(x) – log(x) + 1

2x + 1
12x2 , and we have limx→∞ φ(x) = 0. It follows

from (14) in [17] that

φ(x) =
∫ ∞

0

(
–

1
et – 1

+
1
t

+
t

12
–

1
2

)
e–xt dt =

∫ ∞

0
p(t)e–xt dt,
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where

p(t) =

⎧⎨
⎩

– 1
et–1 + 1

t + t
12 – 1

2 , t > 0,

0, t = 0.

It is easy to check that p(t) and p′(t) are right-continuous at t = 0 and the right-derivative
of p(t) at t = 0 is zero, that is, p′

+(0) = 0. For t > 0, we have

p′′(t) =
2
t3 –

1
et – 1

–
3

(et – 1)2 –
2

(et – 1)3

>
2
t3 –

1
t + t2

2 + t3
6 + t4

24 + t5
120

–
3

(t + t2
2 + t3

6 + t4
24 + t5

120 )2

–
2

(t + t2
2 + t3

6 + t4
24 + t5

120 )3

=
2t(t8 + 15t4 + 75t6 + 305t5 + 960t4 + 2100t3 + 3800t2 + 3600t + 7200)

(t4 + 5t3 + 20t2 + 60t + 120)3

> 0.

So we have that p′(t) is a Radon measure on [0,∞). According to Lemma 1, we conclude
that x2φ(x) is completely monotonic on (0,∞), which implies that

degx
cm

[
–R′

1(x)
] ≥ 2.

For the proof of degx
cm[–R′

1(x)] ≤ 2, see [22]. �

Remark 3 In reference [3], it was proved that the function

Φ(x) = x2[ψ(x) – log(x)
]

+
x
2

+
1

12
= x2

[
ψ(x) – log(x) +

1
2x

+
1

12x2

]

is completely monotonic on (0,∞) and that it tends to 0 as x → ∞. This implies that the
completely monotonic degree of the function ψ(x) – log(x) + 1

2x + 1
12x2 is 2 at least. This is

also a part of the proof of Theorem 2 in reference [22] by Qi and Liu. Our method, with
the help of the Koumandos–Pedersen theorem, is the same as that of Qi and Liu, a method
of integration-by-part, essentially.

Remark 4 Almost at the same time that we submitted our paper, Qi and Mahmoud [23, 24]
independently proved Theorems 3 and 4.

Remark 5 In the proof of Theorems 1 and 4, Koumandos and Pedersen’s theorem is ap-
plied with r = 2, in the proof of Theorem 2 with r = 3, and in the proof of Theorem 3 with
r = 1. However, Koumandos and Pedersen’s theorem cannot be applied with an r one unity
larger in Theorems 1, 2, 3, and 4. Let us take the proof of Theorem 1 as an example. In the
proof of Theorem 1, we got

p′′(t) =
et

(et – 1)3

[
(t – 2)et + t + 2

]
,



Xu and Cen Journal of Inequalities and Applications         (2020) 2020:83 Page 9 of 10

and proved p′′(t) > 0 for t > 0. So we obtained degx
cm[(–1)2R′′

0(x)] ≥ 2. In fact, we can further
obtain

p′′′(t) = –
et

(et – 1)4

[
(t – 3)e2t + 4tet + t + 3

]
.

According to the proof of Theorem 2, we can prove p′′′(t) < 0 for t > 0 and get that p′′(t)
is not increasing on [0,∞). Thus, the function p′′(t) is not a Radon measure on [0,∞). It
means that the function p(t) in Theorem 1 does not satisfy the conditions of Lemma 1
with r = 3. In other words, we cannot get that x3R′′

0(x) is completely monotonic on (0,∞)
and degx

cm[(–1)2R′′
0(x)] ≥ 3. Similar discussion can be carried out in the proofs of the other

three theorems.
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