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1 Introduction
The celebrated Jensen inequality states that: If I is an interval in R and g, p : [a, b] → R

are integrable functions such that g(�) ∈ I, p(�) > 0 ∀� ∈ [a, b]. Also, if ψ : I →R is convex
function and (ψ ◦ g).p is integrable on [a, b]. Then

ψ

(∫ b
a g(�)p(�) d�∫ b

a p(�) d�

)
≤

∫ b
a p(�)(ψ ◦ g)(�) d�∫ b

a p(�) d�
. (1)

Jensen’s inequality is one of the fundamental inequalities in mathematics and it underlies
many vital statistical concepts and proofs. Some important applications involve deriva-
tion of the AM-GM inequality, estimations for Zipf–Mandelbrot and Shannon entropies,
the convergence property of the expectation maximization algorithm, and positivity of
Kullback–Leibler divergence [1–7]. Also, this inequality has been utilized to solve sev-
eral problems in many areas of science and technology e.g. physics, engineering, financial
economics and computer science.

There are several classical important inequalities which may be deduced from (1), for
example Hölder, Levinson’s, and Ky Fan and Young’s inequalities. Due to the great impor-
tance of this inequality, several researchers have focused on this inequality and derived
many improvements, refinements and extensions of the Jensen inequality. The Jensen in-
equality also has been given for some other generalized convex functions such as s-convex,
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preinvex, h-convex and η-convex functions. For some recent results concerning the Jensen
inequality see [1–3, 5, 8–20].

In this article first of all we establish an interesting refinement of the Jensen inequality
associated to two functions whose sum is equal to unity. Using this refinement, we de-
rive refinements of Hölder, power mean, quasi-arithmetic mean and Hermite–Hadamard
inequalities. We also focus on deducing bounds for Csiszár-divergence, Kullback–Leibler
divergence, Shannon entropy and variational distance etc. We present a more general re-
finement of Jensen inequality concerning n functions whose sums are equal to unity.

2 Main results
We start to derive a new refinement of the Jensen inequality associated to two functions
whose sum is equal to unity.

Theorem 1 Let ψ : I → R be a convex function defined on the interval I . Let p, u, v, g :
[a, b] → R be integrable functions such that g(�) ∈ I, u(�), v(�), p(�) ∈ R

+ for all � ∈ [a, b]
and v(�) + u(�) = 1, P =

∫ b
a p(�) d�. Then

1
P

∫ b

a
p(�)ψ

(
g(�)

)
d�

≥ 1
P

∫ b

a
u(�)p(�) d�ψ

(∫ b
a p(�)u(�)g(�) d�∫ b

a p(�)u(�) d�

)

+
1
P

∫ b

a
p(�)v(�) d�ψ

(∫ b
a p(�)v(�)g(�) d�∫ b

a p(�)v(�) d�

)

≥ ψ

(
1
P

∫ b

a
p(�)g(�) d�

)
. (2)

If the function ψ is concave then the reverse inequalities hold in (2).

Proof Since u(�) + v(�) = 1, so we have

∫ b

a
p(�)ψ

(
g(�)

)
d� =

∫ b

a
u(�)p(�)ψ

(
g(�)

)
d� +

∫ b

a
v(�)p(�)ψ

(
g(�)

)
d�. (3)

Applying the integral Jensen inequality on both terms on the right side of (3) we obtain

1
P

∫ b

a
p(�)ψ

(
g(�)

)
d�

≥ 1
P

∫ b

a
u(�)p(�) d�ψ

(∫ b
a u(�)p(�)g(�) d�∫ b

a u(�)p(�) d�

)

+
1
P

∫ b

a
v(�)p(�) d�ψ

(∫ b
a v(�)p(�)g(�) d�∫ b

a v(�)p(�) d�

)

≥ ψ

(
1
P

∫ b

a
u(�)p(�)g(�) d� +

1
P

∫ b

a
v(�)p(�)g(�) d�

)

(by the convexity of ψ)



Adil Khan et al. Journal of Inequalities and Applications         (2020) 2020:76 Page 3 of 11

= ψ

(
1
P

∫ b

a
p(�)g(�) d�

)
. (4)

�

As a consequence of the above theorem we deduce the following refinement of the
Hölder inequality.

Corollary 1 Let r1, r2 > 1 be such that 1
r1

+ 1
r2

= 1. If u, v, τ , g1 and g2 are non-negative
functions defined on [a, b] such that τgr1

1 , τgr2
2 , uτgr2

2 , vτgr2
2 , uτg1g2, vτg1g2, τg1g2 ∈ L1([a, b])

and u(�) + v(�) = 1 for all � ∈ [a, b], then

(∫ b

a
τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

≥
(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

×
{(∫ b

a
u(�)τ (�)gr2

2 (�) d�

)1–r1(∫ b

a
u(�)τ (�)g1(�)g2(�) d�

)r1

+
(∫ b

a
v(�)τ (�)gr2

2 (�) d�

)1–r1(∫ b

a
v(�)τ (�)g1(�)g2(�) d�

)r1} 1
r1

≥
∫ b

a
τ (�)g1(�)g2(�) d�. (5)

In the case when 0 < r1 < 1 and r2 = r1
r1–1 with

∫ b
a τ (�)gr2

2 (�) d� > 0 or r1 < 0 and∫ b
a τ (�)gr1

1 (�) d� > 0, then we have

∫ b

a
τ (�)g1(�)g2(�) d�

≥
(∫ b

a
u(�)τ (�)gr2

2 (�) d�

) 1
r2

(∫ b

a
u(�)τ (�)gr1

1 (�) d�

) 1
r1

+
(∫ b

a
v(�)τ (�)gr2

2 (�) d�

) 1
r2

(∫ b

a
v(�)τ (�)gr1

1 (�) d�

) 1
r1

≥
(∫ b

a
τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

. (6)

Proof If
∫ b

a τ (�)gr2
2 (�) d� > 0, then by using Theorem 1 for ψ(�) = �r1 ,� > 0, r1 > 1, p(�) =

τ (�)gr2
2 (�), g(�) = g1(�)g

–r2
r1

2 (�), we obtain (5). If
∫ b

a τ (�)gr1
1 (�) d� > 0, then applying the

same procedure but taking r1, r2, g1, g2 instead of r2, r1, g2, g1, we obtain (5).
Set

∫ b
a τ (�)gr2

2 (�) d� = 0 and
∫ b

a τ (�)gr1
1 (�) d� = 0. We know that

0 ≤ τ (�)g1(�)g2(�) ≤ 1
r1

τ (�)gr1
1 (�) +

1
r2

τ (�)gr2
2 (�). (7)

Therefore taking the integral and then using the given conditions we have
∫ b

a τ (�)g1(�) ×
g2(�) d� = 0.

For the case r1 > 1, the proof is completed.
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For the case when 0 < r1 < 1, M = 1
r1

> 1 and applying (5) for M and N = (1 – r1)–1, g1 =
(g1g2)r1 , g2 = g–r1

2 instead of r1, r2, g1, g2.
Finally, if r1 < 0 then 0 < r2 < 1 and we may apply similar arguments with r1, r2, g1, g2

replaced by r2, r1, g2, g1 provided that
∫ b

a τ (�)gr1
1 (�) d� > 0. �

Another refinement of the Hölder inequality presented in the following corollary.

Corollary 2 Let r1 > 1, r2 = r1
r1–1 . If u, v, τ , g1 and g2 are non-negative functions defined on

[a, b] such that τgr1
1 , τgr2

2 , uτgr2
2 , vτgr2

2 , τg1g2 ∈ L1([a, b]) and u(�)+v(�) = 1 for all � ∈ [a, b],
also assuming that

∫ b
a τ (�)gr2

2 (�) > 0, then

(∫ b

a
τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

≥
(∫ b

a
u(�)τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
u(�)τ (�)gr2

2 (�) d�

) 1
r2

+
(∫ b

a
v(�)τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
v(�)τ (�)gr2

2 (�) d�

) 1
r2

≥
∫ b

a
τ (�)g1(�)g2(�) d�. (8)

In the case when 0 < r1 < 1 and r2 = r1
r1–1 with

∫ b
a τ (�)gr2

2 (�) d� > 0 or r1 < 0 and∫ b
a τ (�)gr1

1 (�) d� > 0, then we have

(∫ b

a
τ (�)gr1

1 (�) d�

) 1
r1

(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

≤
(∫ b

a
τ (�)gr2

2 (�) d�

) 1
r2

×
{(∫ b

a
u(�)τ (�)gr2

2 (�) d�

)1–r1(∫ b

a
u(�)τ (�)g1(�)g2(�) d�

)r1

+
(∫ b

a
v(�)τ (�)gr2

2 (�) d�

)1–r1(∫ b

a
v(�)τ (�)g1(�)g2(�) d�

)r1} 1
r1

≤
∫ b

a
τ (�)g1(�)g2(�) d�. (9)

Proof Assume that
∫ b

a τ (�)gr2
2 (�) d� > 0. Let ψ(�) = �

1
r1 , � > 0, r1 > 1. Then clearly the

function ψ is concave. Therefore applying Theorem 1 for ψ(�) = �
1
r1 , p = τgr2

2 , g = gr1
1 g–r2

2 ,
we obtain (8). If

∫ b
a τ (�)gr1

1 (�) d� > 0, then applying the same procedure but taking
r1, r2, g1, g2 instead of r2, r1, g2, g1, we obtain (8).

If
∫ b

a τ (�)gr2
2 (�) d� = 0 and

∫ b
a τ (�)gr1

1 (�) d� = 0, then since as we know that

0 ≤ τ (�)g1(�)g2(�) ≤ 1
r1

τ (�)gr1
1 (�) +

1
r2

τ (�)gr2
2 (�). (10)

Therefore taking the integral and then using the given conditions we have
∫ b

a τ (�) ×
g1(�)g2(�) d� = 0.
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In the case when 0 < r1 < 1, M = 1
r1

> 1 and applying (8) for M and N = (1 – r1)–1, g1 =
(g1g2)r1 , g2 = g–r1

2 instead of r1, r2, g1, g2, we get (9).
Finally, if r1 < 0 then 0 < r2 < 1 and we may apply similar arguments with r1, r2, g1, g2

replaced by r2, r1, g2, g1 provided that
∫ b

a τ (�)gr1
1 (�) d� > 0. �

Remark 1 If we put u(�) = b–�

b–a , v(�) = �–a
b–a in (8), then we deduce the inequalities which

have been obtained by Işcan in [21].

Let p and g be positive integrable functions defined on [a, b]. Then the integral power
means of order r ∈R are defined as follows:

Mr(p; g) =

⎧⎪⎨
⎪⎩

( 1∫ b
a p(�) d�

∫ b
a p(�)gr(�) d�) 1

r , if r �= 0,

exp(
∫ b

a p(�) log g(�) d�∫ b
a p(�) d�

), if r = 0.
(11)

In the following corollary we deduce inequalities for power means.

Corollary 3 Let p, u, v and g be positive integrable functions defined on [a, b] with u(�) +
v(�) = 1 for all � ∈ [a, b]. Let s, t ∈R such that s ≤ t. Then

Mt(p; g) ≥ [
M1(u; p)Mt

s(u.p; g) + M1(v; p)Mt
s(v.p; g)

] 1
t ≥ Ms(p; g), t �= 0, (12)

Mt(p; g) ≥ M1(u; p) log Ms(u.p; g) + M1(v; p) log Ms(v.p; g) ≥ Ms(p; g), t = 0, (13)

Ms(p; g) ≤ [
M1(u; p)Ms

t(u.p; g) + M1(v; p)Ms
t(v.p; g)

] 1
s ≤ Mt(p; g), s �= 0, (14)

Ms(p; g) ≤ M1(u; p) log Mt(u.p; g) + M1(v; p) log Mt(v.p; g) ≤ Mt(p; g), s = 0. (15)

Proof If s, t ∈R and s, t �= 0, then using (2) for ψ(�) = �
t
s , � > 0, g → gs and then taking the

power 1
t we get (12). For the case t = 0, taking the limit t → 0 in (12) we obtain (13). We

have the same for s = 0 taking the limit.
Similarly taking (2) for ψ(�) = �

s
t , � > 0, s, t �= 0, g → gt and then taking the power 1

s we
get (14). For s = 0 or t = 0 we take the limit as above. �

Let p be positive integrable function defined on [a, b] and g be any integrable function
defined on [a, b]. Then, for a strictly monotone continuous function h whose domain be-
longs to the image of g , the quasi-arithmetic mean is defined as follows:

Mh(p; g) = h–1
(

1∫ b
a p(�) d�

∫ b

a
p(�)h

(
g(�)

)
d�

)
. (16)

We give inequalities for the quasi-arithmetic mean.

Corollary 4 Let u, v, p be positive integrable functions defined on [a, b] such that u(�) +
v(�) = 1 for all � ∈ [a, b] and g be any integrable function defined on [a, b]. Also assume
that h is a strictly monotone continuous function whose domain belongs to the image of g .
If f ◦ h–1 is convex function then

1∫ b
a p(�) d�

∫ b

a
p(�)f

(
g(�)

)
d�
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≥ M1(u; p)f
(
Mh(p.u; g)

)
+ M1(v; p)f

(
Mh(p.v; g)

) ≥ f
(
Mh(p; g)

)
. (17)

If the function f ◦ h–1 is concave then the reverse inequalities hold in (17).

Proof The required inequalities may be deduced by using (2) for g → h ◦ g and ψ → f ◦
h–1. �

The following refinement of the Hermite–Hadamard inequality may be given.

Corollary 5 Let ψ : [a, b] →R be a convex function defined on the interval [a, b]. Let u, v :
[a, b] → R be integrable functions such that u(�), v(�) ∈ R

+ for all � ∈ [a, b] and u(�) +
v(�) = 1. Then

1
b – a

∫ b

a
ψ(�) d� ≥ 1

b – a

∫ b

a
u(�) d�ψ

(∫ b
a �u(�) d�∫ b
a u(�) d�

)

+
1

b – a

∫ b

a
v(�) d�ψ

(∫ b
a �v(�) d�∫ b
a v(�) d�

)
≥ ψ

(
a + b

2

)
. (18)

For the concave function ψ the reverse inequalities hold in (18).

Proof Using Theorem 1 for p(�) = 1, g(�) = � for all � ∈ [a, b], we obtain (18). �

3 Applications in information theory
In this section, we present some important applications for different divergences and dis-
tances in information theory [22] of our main result.

Definition 1 (Csiszár divergence) Let T : I → R be a function defined on the positive
interval I . Also let u1, v1 : [a, b] → (0,∞) be two integrable functions such that u1(�)

v1(�) ∈ I
for all � ∈ [a, b], then the Csiszár divergence is defined as

Cd(u1, v1) =
∫ b

a
v1(�)T

(
u1(�)
v1(�)

)
d�.

Theorem 2 Let T : I → R be a convex function defined on the positive interval I . Let
u, v, u1, v1 : [a, b] →R

+ be integrable functions such that u1(�)
v1(�) ∈ I and u(�) + v(�) = 1 for all

� ∈ [a, b]. Then

Cd ≥
∫ b

a
u(�)v1(�) d�T

(∫ b
a u(�)u1(�) d�∫ b
a u(�)v1(�) d�

)

+
∫ b

a
v(�)v1(�) d�T

(∫ b
a v(�)u1(�) d�∫ b
a v(�)v1(�) d�

)
≥ T

(∫ b
a u1(�) d�∫ b
a v1(�) d�

)∫ b

a
v1(�) d�. (19)

Proof Using Theorem 1 for ψ = T , g = u1
v1

and p = v1, we obtain (19). �

Definition 2 (Shannon entropy) If v1(�) is positive probability density function defined
on [a, b], then the Shannon entropy is defined by

SE(v1) = –
∫ b

a
v1(�) log v1(�) d�.
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Corollary 6 Let u, v, v1 : [a, b] → R
+ be integrable functions such that v1 is probability

density function and u(�) + v(�) = 1 for all � ∈ [a, b]. Then

∫ b

a
v1(�) log

(
u1(�)

)
d� + SE(v1)

≤
∫ b

a
u(�)v1(�) d� log

(∫ b
a u(�)u1(�) d�∫ b
a u(�)v1(�) d�

)

+
∫ b

a
v(�)v1(�) d� log

(∫ b
a v(�)u1(�) d�∫ b
a v(�)v1(�) d�

)
≤ log

(∫ b

a
u1(�) d�

)
. (20)

Proof Taking T(�) = – log�,� ∈R
+, in (19), we obtain (20). �

Definition 3 (Kullback–Leibler divergence) If u1 and v1 are two positive probability den-
sities defined on [a, b], the Kullback–Leibler divergence is defined by

KLd(u1, v1) =
∫ b

a
u1(�) log

(
u1(�)
v1(�)

)
d�.

Corollary 7 Let u, v, u1, v1 : [a, b] → R
+ be integrable functions such that u1 and v1 are

probability density functions and u(�) + v(�) = 1 for all � ∈ [a, b]. Then

KLd(u1, v1) ≥
∫ b

a
u(�)u1(�) d� log

(∫ b
a u(�)u1(�) d�∫ b
a u(�)v1(�) d�

)

+
∫ b

a
v(�)u1(�) d� log

(∫ b
a v(�)u1(�) d�∫ b
a v(�)v1(�) d�

)
≥ 0. (21)

Proof Taking T(�) = � log�,� ∈R
+, in (19), we obtain (20). �

Definition 4 (Variational distance) If u1 and v1 are positive probability density functions
defined on [a, b], then the variational distance is defined by

Vd(u1, v1) =
∫ b

a

∣∣u1(�) – v1(�)
∣∣d�.

Corollary 8 Let u, v, u1, v1 be as stated in Corollary 7. Then

Vd(u1, v1) ≥
∣∣∣∣
∫ b

a
u(�)

(
u1(�) – v1(�)

)
d�

∣∣∣∣
+

∣∣∣∣
∫ b

a
v(�)

(
u1(�) – v1(�)

)
d�

∣∣∣∣. (22)

Proof Using the function T(�) = |� – 1|,� ∈R
+, in (19), we obtain (22). �

Definition 5 (Jeffrey’s distance) If u1 and v1 are two positive probability density functions
defined on [a, b], then the Jeffrey distance is defined by

Jd(u1, v1) =
∫ b

a

(
u1(�) – v1(�)

)
log

(
u1(�)
v1(�)

)
d�.
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Corollary 9 Let u, v, u1, v1 be as stated in Corollary 7. Then

Jd(u1, v1) ≥
∫ b

a
u(�)

(
u1(�) – v1(�)

)
d� log

(∫ b
a u(�)u1(�) d�∫ b
a u(�)v1(�) d�

)

+
∫ b

a
v(�)

(
u1(�) – v1(�)

)
d� log

(∫ b
a v(�)u1(�) d�∫ b
a v(�)v1(�) d�

)
≥ 0. (23)

Proof Using the function T(�) = (� – 1) log�,� ∈R
+, in (19), we obtain (23). �

Definition 6 (Bhattacharyya coefficient) If u1 and v1 are two positive probability density
functions defined on [a, b], then the Bhattacharyya coefficient is defined by

Bd(u1, v1) =
∫ b

a

√
u1(�)v1(�) d�.

Corollary 10 Let u, v, u1, v1 be as stated in Corollary 7. Then

Bd(u1, v1) ≤
√∫ b

a
u(�)v1(�) d�

∫ b

a
u(�)u1(�) d�

+

√∫ b

a
v(�)v1(�) d�

∫ b

a
v(�)u1(�) d�. (24)

Proof Using the function T(�) = –√
�,� ∈R

+, in (19), we obtain (24). �

Definition 7 (Hellinger distance) If u1 and v1 are two positive probability density func-
tions defined on [a, b], then the Hellinger distance is defined by

Hd(u1, v1) =
∫ b

a

(√
u1(�) –

√
v1(�)

)2 d�.

Corollary 11 Let u, v, u1, v1 be as stated in Corollary 7. Then

Hd(u1, v1) ≥
(√∫ b

a
u(�)u1(�) d� –

√∫ b

a
u(�)v1(�) d�

)2

+
(√∫ b

a
v(�)u1(�) d� –

√∫ b

a
v(�)v1(�) d�

)2

≥ 0. (25)

Proof Using the function T(�) = (√� – 1)2,� ∈ R
+, in (19), we obtain (25). �

Definition 8 (Triangular discrimination) If u1 and v1 are two positive probability density
functions defined on [a, b], then the triangular discrimination between u1 and v1 is defined
by

Td(u1, v1) =
∫ b

a

(u1(�) – v1(�))2

u1(�) + v1(�)
d�.
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Corollary 12 Let u, v, u1, v1 be as stated in Corollary 7. Then

Td(u1, v1) ≥ (
∫ b

a u(�)(u1(�) – v1(�)) d�)2

∫ b
a u(�)(u1(�) + v1(�)) d�

+
(
∫ b

a (u1(�) – v1(�))v(�) d�)2

∫ b
a (u1(�) + v1(�))v(�) d�

≥ 0. (26)

Proof Since the function φ(�) = (�–1)2

�+1 ,� ∈ R
+, is convex, using the function T(�) = φ(�),

in (19), we obtain (26). �

4 Further generalization
In the following theorem we present further refinement of the Jensen inequality concern-
ing n functions whose sum is equal to unity.

Theorem 3 Let ψ : G → R be a convex function defined on the interval G. Let p, g, ul ∈
L[a, b] such that g(�) ∈ G, p(�), ul(�) ∈ R

+ for all � ∈ [a, b] (l = 1, 2, . . . , n) and
∑n

l=1 ul(�) =
1, P =

∫ b
a p(�) d�. Assume that L1 and L2 are non-empty disjoint subsets of {1, 2, . . . , n} such

that L1 ∪ L2 = {1, 2, . . . , n}. Then

1
P

∫ b

a
p(�)ψ

(
g(�)

)
d�

≥ 1
P

∫ b

a

∑
l∈L1

ul(�)p(�) d�ψ

(∫ b
a

∑
l∈L1

ul(�)p(�)g(�) d�∫ b
a

∑
l∈L1

ul(�)p(�) d�

)

+
1
P

∫ b

a

∑
l∈L2

ul(�)p(�) d�ψ

(∫ b
a

∑
l∈L2

ul(�)p(�)g(�) d�∫ b
a

∑
l∈L2

ul(�)p(�) d�

)

≥ ψ

(
1
P

∫ b

a
p(�)g(�) d�

)
. (27)

If the function ψ is concave then the reverse inequalities hold in (27).

Proof Since
∑n

l=1 ul(�) = 1, we may write

∫ b

a
p(�)ψ

(
g(�)

)
d�

=
∫ b

a

∑
l∈L1

ul(�)p(�)ψ
(
g(�)

)
d� +

∫ b

a

∑
l∈L2

ul(�)p(�)ψ
(
g(�)

)
d�. (28)

Applying integral Jensen’s inequality on both terms on the right hand side of (28) we obtain

1
P

∫ b

a
p(�)ψ

(
g(�)

)
d�

≥ 1
P

∫ b

a

∑
l∈L1

ul(�)p(�) d�ψ

(∫ b
a

∑
l∈L1

ul(�)p(�)g(�) d�∫ b
a

∑
l∈L1

ul(�)p(�) d�

)
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+
1
P

∫ b

a

∑
l∈L2

ul(�)p(�) d�ψ

(∫ b
a

∑
l∈L2

ul(�)p(�)g(�) d�∫ b
a

∑
l∈L2

ul(�)p(�) d�

)

≥ ψ

(
1
P

∫ b

a

∑
l∈L1

ul(�)p(�)g(�) d� +
1
P

∫ b

a

∑
l∈L2

ul(�)p(�)g(�) d�

)

(by the convexity of ψ)

= ψ

(
1
P

∫ b

a
p(�)g(�) d�

)
. (29)

�

Remark 2 If we take n = 2, in Theorem 3, we deduce Theorem 1. Also, analogously to the
previous sections we may give applications of Theorem 3 for different means, the Hölder
inequality and information theory.
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