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Abstract
In this paper, we propose a low-rank matrix approximation algorithm for solving the
Toeplitz matrix completion (TMC) problem. The approximation matrix was obtained
by the mean projection operator on the set of feasible Toeplitz matrices for every
iteration step. Thus, the sequence of the feasible Toeplitz matrices generated by
iteration is of Toeplitz structure throughout the process, which reduces the
computational time of the singular value decomposition (SVD) and approximates
well the solution. On the theoretical side, we provide a convergence analysis to show
that the matrix sequences of iterates converge. On the practical side, we report the
numerical results to show that the new algorithm is more effective than the other
algorithms for the TMC problem.
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1 Introduction
The problem of completing a low-rank matrix, which is to recover a matrix from the partial
entries, has became more and more popular. The problem arises in many areas of engi-
neering and applied science such as machine learning [1, 2], control [20], image inpainting
[4], and so on. And the problem is mathematically written as follows:

min
X∈Rm×n

rank(X)

s.t. PΩ (X) = PΩ (D),
(1.1)

where the objective function rank(X) denotes the rank of X, Ω is a subset of indices for
the q known entries, D ∈ R

m×n is the unknown matrix to be reconstructed and the one
that has available q sampled entries, PΩ (X) is the sampling projector which acquires only
the entries indexed by Ω .

When the rank of X is known in advance or can be estimated [17, 18], the matrix com-
pletion problem (1.1) is equivalent to the following non-convex optimization problem on
the manifold:

min
X

f (X) =
1
2
∥
∥PΩ (X – D)

∥
∥

2
F

s.t. X ∈Xr :=
{

X ∈R
m×n, rank(X) = r

}

,
(1.2)
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where Xr represents the smooth r-dimensional manifold set of rank r matrix.
It is clear that problem (1.2) is a smooth Riemannian optimization since the objective

function is also smooth.
Recently, there have been some algorithms, mentioned in what follows, to solve the

problem (1.1) or (1.2). The orthogonal rank-one matrix pursuit (OR1MP) [33] was pre-
sented based on the orthogonal matching pursuit for wavelet decomposition [22], only the
top singular value and the corresponding singular vector as well as a least square problem
on Ω were computed, but the precision was poor. It is well known that a manifold of rank r
matrix can be factorized into a bi-linear form: X = GHT with G ∈R

m×r , H ∈R
n×r , so some

algorithms have been proposed to solve the problem (1.1) or (1.2), for example, Vander-
eycken [27] proposed the geometric conjugate gradient method and Newton method on
Riemannian manifold; Mishra [21], Boumal and Absil [5] presented the Riemannian ge-
ometry method, i.e., the gradient descent scheme and trust-region scheme; Tanner and
Wei [26] took advantage of the different descent directions for exact linear search respec-
tively; the alternating direction methods were presented by Jain [15]; Keshavan [16] and
Wen [38] presented gradient descent method and nonlinear successive over-relaxation al-
gorithm respectively. Based on the shortest distance scheme in [32] and the alternating
steepest descent algorithm in [26], the inner and outer iteration was presented in [37] and
was proved to be feasible, but it depended on the inner iterative methods. The optimal
low-rank approximate algorithm in [32] was showed to be effective, since the algorithm
was simple and iterated repeatedly on the manifold of rank r matrix.

On the current practice, the sample matrix D often has a special structure such as the
Hankel or Toeplitz structure and so on. The Hankel or Toeplitz matrix also plays impor-
tant roles in many areas of engineering and applied science, especially in signal and image
processing [3, 14]. There are a lot algorithms which are effective for the low-rank Han-
kel or Toeplitz matrix completion problem. For example, the nuclear norm minimization
for the low-rank Hankel matrix reconstruction problem under the random Gaussian sam-
pling model was investigated in [7]. The common drawback of this otherwise very appeal-
ing convex optimization approach is the high computational complexity of solving the
equivalent semi-definite programming (SDP). Cai et al. [6] developed a fast non-convex
algorithm for a low-rank Hankel matrix completion by minimizing the distance between
a low-rank matrix and a Hankel matrix with partial known anti-diagonals, and an acceler-
ated variant has been developed by using Nesterov’s memory technique. [9] came up with
an iterative hard thresholding (IHT) and fast IHT (FIHT) algorithms for efficient recon-
struction of spectrally sparse signals via low-rank Hankel matrix completion. By utilizing
the low-rank structure of the Hankel matrix corresponding to a spectrally sparse signal x,
[8] introduced a computationally efficient algorithm for the spectral compressed sensing
problem. Chen and Chi [10] studied nuclear norm minimization for the low-rank Hankel
matrix completion problem, the method proposed in [10] utilized convex relaxation and
was theoretically guaranteed to work. Fazel et al. [11] proposed also the reconstruction
of the low-rank Hankel matrices via nuclear norm minimization for system identification
realization. Sebert et al. considered the Toeplitz block matrices as sensing matrices whose
elements are drawn from the same distributions in [23]. Shaw et al. [24] presented algo-
rithms for least-squares approximation of the Toeplitz and Hankel matrices from noise
corrupted or ill-composed matrices, which may not have correct structural or rank prop-
erties. Wang et al. [29, 30] proposed a mean value algorithm to force the Toeplitz structure
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and a structure-preserving algorithm for the Toeplitz matrix recovery. Wen et al. [34–
36] gave some algorithms for the TMC problem. Further, Ying et al. [40] exploited the
low-rank tensor structure of the signal when developing recovery problems for the mul-
tidimensional spectrally sparse signal recovery problems. For details, one can refer to the
above mentioned algorithms and references given therein.

An n × n Toeplitz matrix T ∈R
n×n is of the following form:

T = (tj–i)n
i,j=1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0 t1 · · · tn–2 tn–1

t–1 t0 · · · tn–3 tn–2
...

...
. . .

...
...

t–n+2 t–n+3 · · · t0 t1

t–n+1 t–n+2 · · · t–1 t0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.3)

It is clear that the entries of T are constant along each diagonal. Based on the Lanczos
method [13] and the FFT technique [28], an algorithm for the SVD of a Hankel matrix [19,
39] has been presented; its complexity is O(n2 log n) but that of the general SVD algorithm
is O(n3). It is significant to study the TMC problem because most of the popular algorithms
need to compute the SVD. The fast SVD (denoted by lansvd) algorithm with O(n2 log n)
complexity has been applied to some recent algorithms for solving the TMC problem as
inspired by [24]. That is also the interest of this study.

Then it motivates us to switch the iteration matrix into the Toeplitz matrix for solv-
ing the TMC problem. To exploit the structure well, in this paper, we modify the general
matrix completion algorithm to the TMC problem by using mean projection approxima-
tion. The proposed algorithm ensures that the sequence of iteration matrices remains the
Toeplitz structure so that the Lanczos SVD algorithm can always be used. It not only re-
duces the computational cost, but also improves the accuracy.

The rest of the paper is organized as follows. We present a new algorithm after giving
an outline of the OLRMA [32], MOR1MP, and MEOR1MP [12] algorithms for solving
the TMC problem in Sect. 2. Section 3 establishes the convergence results for the new
algorithm given in Sect. 2. We compare our algorithm with the OLRMA, MOR1MP, and
MEOR1MP algorithms through numerical experiments in Sect. 4. Finally, we conclude
the paper with a short discussion in Sect. 5.

Before continuing, we provide here a brief summary of the necessary notations used
throughout the paper. R is the set of real numbers, Rm×n denotes the set of m × n real
matrices. Likewise,Tn×n denotes the set of real n×n Toeplitz matrices. ‖X‖F is the F-norm
of a matrix X. 〈X, Y 〉 = trace(XT Y ) represents the standard inner product between two
matrices (‖X‖2

F = 〈X, X〉), XT stands for the transpose of X. Ω ⊂ {1, 2, . . . , m}× {1, 2, . . . , n}
is a subset of indices of the observed entries of the matrix X ∈ R

m×n, and Ω̄ represents
the indices of the missing entries. The singular value decomposition (SVD) of a matrix
A ∈R

m×n with rank r is

A = UΣrV T , Σr = diag(σ1, . . . ,σr),

where U ∈ R
m×r and V ∈ R

n×r are column orthogonal matrices, σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
In = (e1, e2, . . . , en) ∈ R

n×n denotes the n × n identity matrix and Sn = (e2, e3, . . . , en, 0) ∈
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R
n×n is called the shift matrix where 0 is a zero-vector. It is clear that

Sr
n =

{( O O
In–r O

)

, 1 < r < n,
O, r ≥ n

with “O” standing for a zero-matrix with the corresponding size. Thus, a Toeplitz matrix
T ∈ T

n×n, shown in (1.3), can be rewritten as a linear combination of these shift matrices,
that is,

T =
n–1
∑

l=1

t–lSl
n +

n–1
∑

l=0

tl
(

ST
n
)l. (1.4)

2 Description of algorithms
For the goal of completing comparison subsequently, we briefly review and introduce some
algorithms for solving the TMC problem firstly. Here, the TMC problem is considered as
follows:

min
Y∈Tn×n

rank(Y )

s.t. PΩ (Y ) = PΩ (D),
(2.1)

where D ∈ T
n×n is the underlying Toeplitz matrix to be reconstructed, Ω ⊂ {–n + 1, . . . ,

n – 1} is the indices of the observed diagonals of D, Ω̄ is the complementary set of Ω . For
X ∈ T

n×n, the diag(X, l) denotes the vector formed by lth diagonal of X, l ∈ {–n + 1, . . . ,
n – 1}, PΩ is the orthogonal projector on Ω , satisfying

diag
(

PΩ (X), l
)

=

{

diag(X, l), l ∈ Ω ,
0, l /∈ Ω

(0 is a zero-vector).

Likewise, diag(PΩ̄ (X), l) can be defined as follows:

diag
(

PΩ̄ (X), l
)

=

{

diag(X, l), l /∈ Ω ,
0, l ∈ Ω

(0 is a zero-vector).

Based on the OR1MP algorithm in [33], we came up with three schemes for solving the
TMC problem in the following. For convenience, [Uk ,Σk , Vk] = lansvd(Yk , r) denotes the
SVD of the matrix Yk to find the top-r singular pairs by using the Lanczos method.

Algorithm 2.1 ([12] (The MOR1MP algorithm for the TMC problem)) Given a sam-
pled set Ω and the sampled entries PΩ (D) = YΩ , ε = 10–3, maxiter. Given also the initial
Toeplitz matrix X0 = 0, k := 1.

Step 1. Compute the SVD of Rk , Rk = YΩ – Xk–1, [Uk ,∼, Vk] = lansvd(Rk , 1, L), set
Mk = UkV T

k , compute al = average(diag(Mk), l), l ∈ {–n + 1, . . . , n – 1}, set
Mk =

∑n–1
l=1 t–lSl

n +
∑n–1

l=0 tl(ST
n )l .

Step 2. Compute the weight vector θ k by using the closed form least squares solution
θ k = (M̄T

k M̄k)–1M̄T
k ẏ.

Step 3. Set Xk =
∑k

i=1 θ k
i PΩ (Mi).
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Step 4. Compute Ŷk =
∑k

i=1 θ k
i Mi.

Step 5. If k ≥ maxiter or ‖Rk‖F /‖YΩ‖F ≤ ε, stop; otherwise set k := k + 1; go to Step 1.

Algorithm 2.2 ([12] (The MEOR1MP algorithm for the TMC problem)) Given a sam-
pled set Ω and the sampled entries PΩ (D) = YΩ , ε = 10–3, maxiter. Given also the initial
Toeplitz matrix X∗

0 = 0, k := 1.
Step 1. Compute the SVD of Rk , Rk = YΩ – X∗

k–1; [Uk ,∼, Vk] = lansvd(Rk , 1, L), set
Mk = UkV T

k .
Step 2. Compute the optimal weights αk for X∗

k–1 and Mk by solving
minα ‖α1X∗

k–1 + α2PΩ (Mk) – YΩ‖2.
Step 3. Compute Xk = αk

1X∗
k–1 + αk

2PΩ (Mk); θ k
k = αk

2 and θ k
i = θ k–1

i αk
1 for i < k, set

al = average(diag(Xk), l), l ∈ {–n + 1, . . . , n – 1}, set
X∗

k =
∑n–1

l=1 t–lSl
n +

∑n–1
l=0 tl(ST

n )l .
Step 4. Compute Ŷk =

∑k
i=1 θ k

i Mi, set al = average(diag(Ŷk), l), l ∈ {–n + 1, . . . , n – 1}, set
Ŷ ∗

k =
∑n–1

l=1 t–lSl
n +

∑n–1
l=0 tl(ST

n )l .
Step 5. If k ≥ maxiter or ‖Rk‖F ≤ ε, stop; otherwise set k := k + 1; go to Step 1.

Remark The main difference between the proposed algorithms and OR1MP is that the
rank-one matrix Mk was switched into the Toeplitz matrix by the mean value operator
before solving the least square problem, which guarantees that Xk and Ŷk are all Toeplitz
matrices. So the computing time of the SVD is decreased due to using of the FFT tech-
nique. Then, in the iteration process, all the matrices are of the Toeplitz structure, which
ensures lower computational cost even though the process of the mean value increases
the computing time.

Algorithm 2.3 ([29] (Optimal low-rank matrix approximation (OLRMA) algorithm for
solving problem (1.1) or (1.2))) Given an initial Toeplitz matrix PΩ (D), Y1 = PΩ (D), tol-
erance parameter ε, 0 < c < 1, X0 = 0, r = 1, k := 1.

Step 1. [Uk ,Σk , Vk] = lansvd(Yk , r).
Step 2. Set Xk = UkΣkV T

k .
Step 3. If ‖PΩ (D) – PΩ (Xk)‖F ≤ c‖PΩ (D) – PΩ (Xk–1)‖F , r = r; otherwise r := r + 1.
Step 4. Set Yk+1 = PΩ (D) + PΩ̄ (Xk).
Step 5. If ‖PΩ (D) –PΩ (Xk)‖F /‖PΩ (D)‖F ≤ ε, stop; otherwise set k := k + 1; go to Step 1.

And we introduce a modified algorithm by using the mean projection technique. The
operator was defined as follows.

Definition 2.1 (Mean projection operator) For any matrix A = (aij) ∈R
n×n, the mean pro-

jection operator M is defined as follows:

M(A) :=
n–1
∑

l=1

ã–lSl
n +

n–1
∑

l=0

ãl
(

ST
n
)l, (2.2)

where ãα =
∑

j–i=α aij
n–|α| , α = –n + 1, –n + 2, . . . , n – 1.

It is clear that M(A) is a Toeplitz matrix derived from the matrix A. Namely, any A ∈
R

n×n can be changed into the Toeplitz structure via the mean projection operator M(·),
which is the best Toeplitz approximation under F-norm (see Theorem 3.1 in Sect. 3).
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Next, we are to switch the approximation matrix Xk in Algorithm 2.3 into the Toeplitz
one by mean projection matrix for solving the TMC problem, and the new algorithm was
presented as follows.

Algorithm 2.4 (Modified low-rank matrix approximation (MOLRMA) algorithm for solv-
ing TMC problem (2.1)) Given an initial Toeplitz matrix PΩ (D), Y1 = PΩ (D), tolerance
parameter ε, 0 < c < 1, X0 = O, r = 1, k := 1.

Step 1. [Uk ,Σk , Vk] = lansvd(Yk , r).
Step 2. Set Xk = UkΣkV T

k .
Step 3. If ‖PΩ (D) – PΩ (Xk)‖F ≤ c‖PΩ (D) – PΩ (Xk–1)‖F , r = r; otherwise r := r + 1.
Step 4. Compute the mean projection matrix X̄k = M(Xk) by (2.2).
Step 5. Set Yk+1 = PΩ (D) + PΩ̄ (Xk).
Step 6. If ‖PΩ (D) –PΩ (Xk)‖F /‖PΩ (D)‖F ≤ ε, stop; otherwise set k := k + 1; go to Step 1.

Remark We can see that both the iteration sequences {Yk} obtained by Algorithms 2.3–
2.4 are close to the underlying matrix. If the unknown matrix to be reconstructed D is
of the Toeplitz structure, however, it is clear that the iteration sequence {Yk} with the
Toeplitz structure in Algorithm 2.4 better approximates to the Toeplitz matrix. Further,
the iteration in Algorithm 2.4 ensures lower computational cost even though the process
of mean projection increases the computing time since the Lanczos SVD method can be
used.

3 Convergence analysis
In this section, based on the structure of a Toeplitz matrix and some reasonable condi-
tions, the convergence analysis of the new algorithm is given. Firstly, the distance between
the feasible Toeplitz matrix and its projection onto the r-dimensional manifold is pro-
vided. The one-to-one correspondence between a matrix and its projection enables us to
devise a notation of distance between a matrix and an r-dimensional manifold as follows.

Definition 3.1 For a matrix Y ∈R
m×n,

d(Y , r) = min‖Y – X‖2
F , X ∈Xr (3.1)

is called distance between a matrix Y and an r-dimensional manifoldXr . That is essentially
the distance between matrix Y and its projection onto the r-dimensional manifold Xr .

We trivially introduce the distance between a feasible matrix and its projection onto the
r-dimensional manifold.

For PΩ (Y ) = PΩ (D), we call d(Y , r) = mindim(X)=r ‖Y – X‖2
F a distance between a feasible

matrix Y and an r-dimensional manifold Xr .
Evidently,

d(Y , r) =
∥
∥R(Y , r)

∥
∥

2
F = σ 2

r+1 + · · · + σ 2
n (3.2)

by introducing

R(Y , r) = Y –
r

∑

i=1

σiuivT
i . (3.3)



Wen and Fu Journal of Inequalities and Applications         (2020) 2020:71 Page 7 of 13

Theorem 3.1 ([25]) For any matrix Y ∈ R
n×n, the mean projection matrix M(Y ) pre-

sented in (2.2) is the solution of the following optimization problem:

min
X∈Tn×n

‖Y – X‖F . (3.4)

Lemma 3.2 ([31]) Let Y ∈ R
n×n, X ∈ T

n×n. Then the mean projection matrix M(Y ) ∈
T

n×n, as defined in (2.2), obeys

∥
∥M(Y ) – X

∥
∥

F ≤ ‖Y – X‖F . (3.5)

Lemma 3.3 Let {Yk} and {Xk} be the sequences generated by Algorithm 2.4. Then

‖Yk – Xk‖2
F = ‖Yk – Yk+1‖2

F + ‖Yk+1 – Xk‖2
F . (3.6)

Proof It is known that

‖Yk – Xk‖2
F = ‖Yk – Yk+1 + Yk+1 – Xk‖2

F

= ‖Yk – Yk+1‖2
F + ‖Yk+1 – Xk‖2

F + 2〈Yk – Yk+1, Yk+1 – Xk〉.

According to Lemma 3.2 and PΩ̄ (Yk+1) = M(PΩ̄ (Xk)) for the Toeplitz matrix sequence Yk ,
we have

2〈Yk – Yk+1, Yk+1 – Xk〉 = 2
〈

PΩ̄ (Yk – Yk+1), Yk+1 – Xk
〉

= 2
〈

Yk – Yk+1,PΩ̄ (Yk+1 – Xk)
〉

= 0,

and then (3.6) holds true. �

Lemma 3.4 ([32]) The d(Y , r) satisfies

d(Y , r) ≤
(

1 –
1

n – r + 1

)

d(Y , r – 1). (3.7)

Theorem 3.5 Let {Yk} and {Xk} be the matrix sequences generated by Algorithm 2.4. Then
they obey

‖Yk+1 – Xk+1‖2
F ≤ ‖Yk – Xk‖2

F – ‖Yk – Yk+1‖2
F . (3.8)

Proof According to the fact ‖Yk+1 – Xk+1‖2
F ≤ ‖Yk+1 – Xk‖2

F and Lemma 3.3, (3.8) holds
true. �

Lemma 3.6 Suppose that the low-rank r is known in problem (2.1), if rank(Xk) = r, k ≥ k0

(k0 is a positive integer) and there exists a parameter 0 < θ < 1 such that ‖Yk–1 – Yk‖F ≥
θ‖Yk–1 – Xk–1‖F . Then there exists a positive constant 0 < c < 1 such that

∥
∥PΩ (D) – PΩ (Xk)

∥
∥

F ≤ c
∥
∥PΩ (D) – PΩ (Xk–1)

∥
∥

F . (3.9)
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Proof According to Theorem 3.5 and the assumptions of Lemma 3.6, we have

‖Yk – Xk‖2
F ≤ (

1 – θ2)‖Yk–1 – Xk–1‖2
F .

Let c =
√

1 – θ2. Then

‖Yk – Xk‖2
F ≤ c2‖Yk–1 – Xk–1‖2

F ,

and then (3.9) holds. �

Theorem 3.7 Let {Yk} be the matrix sequence generated by Algorithm 2.4. And suppose
that the low-rank r is known in problem (2.1), if rank(Xk) = r, k ≥ k0 (k0 is a positive integer)
and there exists 0 < θ < 1 such that ‖Yk–1 – Yk‖2

F ≥ θ‖Yk–1 – Xk–1‖2
F . Then there exists c

(0 < c < 1) to satisfy

∥
∥PΩ

(

R(Yk , r)
)∥
∥

2
F ≤

r
∏

i=1

(

1 –
1

n – i + 1

)
(

c2)mi
∥
∥PΩ (D)

∥
∥

2
F , (3.10)

where
∑r

i=1 mi = k – r, 0 < c < 1.

Proof Suppose rk = r(Yk) = r(Yk–1) + 1. From the definition of d(Y , r), we have

d(Yk , rk – 1) ≤ ‖Yk – Xk–1‖2
F

=
∥
∥PΩ (Yk – Xk–1)

∥
∥

2
F +

∥
∥PΩ̄ (Yk – Xk–1)

∥
∥

2
F

and

∥
∥PΩ̄ (Yk–1 – Xk–1)

∥
∥

2
F =

∥
∥PΩ̄ (Yk–1 – Yk)

∥
∥

2
F +

∥
∥PΩ̄ (Yk – Xk–1)

∥
∥

2
F (3.11)

+ 2
〈

PΩ̄ (Yk–1 – Yk),PΩ̄ (Yk – Xk–1)
〉

. (3.12)

(3.11) can be reformulated as by Lemma 3.2:

∥
∥PΩ̄ (Yk – Xk–1)

∥
∥

2
F =

∥
∥PΩ̄ (Yk–1 – Xk–1)

∥
∥

2
F –

∥
∥PΩ̄ (Yk–1 – Yk)

∥
∥

2
F .

Hence,

d(Yk , rk – 1) ≤ ∥
∥PΩ (Yk–1 – Xk–1)

∥
∥

2
F +

∥
∥PΩ̄ (Yk–1 – Xk–1)

∥
∥

2
F

= ‖Yk–1 – Xk–1‖2
F

= d(Yk–1, rk – 1).

Thus, we obtain the following inequality from Lemma 3.4:

d(Yk , rk) ≤
(

1 –
1

n – k + 1

)

d(Yk , rk – 1)

≤
(

1 –
1

n – k + 1

)

d(Yk–1, rk – 1).
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Suppose that (3.9) holds for k – mk and r – 1. Then, from Algorithm 2.4 and Lemma 3.6,
we have

∥
∥PΩ

(

R(Yk , r)
)∥
∥

2
F ≤ (

c2)mk
∥
∥PΩ

(

R(Yk–mk , r)
)∥
∥

2
F .

From Lemma 3.4, the following inequality holds true:

∥
∥PΩ

(

R(Yk–mk , r)
)∥
∥

2
F ≤

(

1 –
1

n – r + 1

)
∥
∥PΩ

(

R(Yk–mk–1, r – 1)
)∥
∥

2
F .

Thus, (3.10) holds for k and r. �

4 Numerical experiments
This section provides the comparison of the new algorithm with OLRMA, MOR1MP, and
MEOR1MP algorithms through numerical experiments. And all of the experiments are
performed on a double-precision PC with MATLAB (R2016) and a central processor of
2.40 GHz [Intel(R) Core(TM)i745 CPU], 8GB Microsoft Windows 7 operating system.

In the experiments, we suppose that p = q/(2n – 1) is an observation ratio, where q de-
notes the number of the observed entries and set p = 0.1, 0.3, 0.5, respectively. The true
matrix is denoted by D, Ŷ stands for the output matrices. Here, we report the running
time in seconds (denoted by CPU (s)), the iteration number (denoted by IT), and the error
of the reconstruction matrix is ‖Ŷ – D‖F /‖D‖F . We generate the Toeplitz matrices or gen-
eral matrices of rank r by sampling uniformly at random, which is the same as the method
in [12], and hence the true matrix D is indeed of low-rank.

Brief comparison results of four algorithms are provided in Table 1. The changes of the
CPU time of four algorithms with respect to the different matrix size are shown in Fig. 1,
and Fig. 2 shows the convergence behavior of the relative error in MOLRMA runs. Table 1
describes the comparison between the OLRMA, MOLRMA, MOR1MP, and MEOR1MP
algorithms in iteration number, CPU time, and error when the rank of the completion
matrix is not known and ‖PΩ (D) – PΩ (Xk)‖F /‖PΩ (D)‖F ≤ ε = 10–4.

From Table 1 and Figs. 1–2, we can see that the MOLRMA algorithm performs better
than the OLRMA algorithm in computing time, iteration number, and error. Compared
with the MEOR1MP algorithm, the new algorithm is better than the MEOR1MP algo-
rithm in error, computing time, and iteration number when p=0.3 and 0.5.

5 Conclusion
In this paper, we have presented a new algorithm for solving the TMC problem based
on the mean projection matrix operator. The approximation matrices are of the Toeplitz
structure so that the fast SVD is used in the whole iterative process. Meanwhile, the MOL-
RMA algorithm has a much better performance in precision than the OLRMA, MOR1MP,
and MEOR1MP algorithms, and it is also better in computing time and iteration number
when the sampling ratio is large. It is exciting that the iteration number of the new algo-
rithm is less than the rank of the objective matrix. In addition, the iterative error of the
MOLRMA algorithm is inversely related to the sampling ratio, which has little relation to
the rank of the completion matrix.
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Table 1 Comparison results by the OLRMA, MOLRMA, MOR1MP, and MEOR1MP algorithms

Size Rank Algorithm IT Error CPU (s)

p = 0.1 1000× 1000 10 OLRMA 266 1.8287e-04 43.9130
MOLRMA 100 9.5156e-05 21.4129
MOR1MP 44 0.0067 15.0032
MEOR1MP 153 0.0062 26.4640

2000× 2000 20 OLRMA 263 1.7149e-04 197.5546
MOLRMA 90 8.7707e-05 54.6367
MOR1MP 41 0.0038 48.4347
MEOR1MP 142 0.0022 81.4922

3000× 3000 30 OLRMA 265 1.6723e-04 431.3533
MOLRMA 96 9.2752e-05 131.9760
MOR1MP 33 8.5365e-04 111.2912
MEOR1MP 76 3.7742e-04 118.4843

4000× 4000 40 OLRMA 268 1.6898e-04 819.2812
MOLRMA 91 9.7550e-05 219.3732
MOR1MP 37 8.6217e-05 560.2542
MEOR1MP 76 8.9173e-04 196.4370

6000× 6000 60 OLRMA 401 1.7439e-04 1431.3180
MOLRMA 229 8.0599e-05 573.8510
MOR1MP 96 9.17761e-05 739.6281
MEOR1MP 173 7.5456e-04 422.0345

p = 0.3 1000× 1000 10 OLRMA 65 1.1271e-04 12.6467
MOLRMA 31 6.9591e-05 7.3826
MOR1MP 38 0.0056 14.7507
MEOR1MP 133 5.9827e-04 27.3510

2000× 2000 20 OLRMA 81 1.1414e-04 71.3466
MOLRMA 29 7.8758e-05 21.4323
MOR1MP 42 0.0039 43.8531
MEOR1MP 76 1.8037e-04 53.5867

3000× 3000 30 OLRMA 95 1.0055e-04 192.2244
MOLRMA 30 6.2416e-05 47.2527
MOR1MP 24 8.2915e-04 57.6813
MEOR1MP 34 1.4846e-04 59.7383

4000× 4000 40 OLRMA 104 1.0439e-04 431.3887
MOLRMA 29 7.9599e-05 73.8210
MOR1MP 26 9.5761e-04 441.7280
MEOR1MP 37 1.5356e-04 122.6703

6000× 6000 60 OLRMA 256 5.0709e-04 807.3127
MOLRMA 69 7.0006e-05 269.0210
MOR1MP 62 9.2231e-04 841.7006
MEOR1MP 78 1.8767e-04 322.7073

p = 0.5 1000× 1000 10 OLRMA 40 6.8513e-05 11.1373
MOLRMA 15 6.0908e-05 4.0905
MOR1MP 35 0.0056 14.0694
MEOR1MP 101 3.4127e-04 43.2039

2000× 2000 20 OLRMA 59 6.1059e-05 64.6733
MOLRMA 15 7.1152e-05 12.6355
MOR1MP 40 0.0036 32.0520
MEOR1MP 59 1.3530e-04 43.2039

3000× 3000 30 OLRMA 75 7.5076e-05 201.1902
MOLRMA 15 5.9226e-05 26.1235
MOR1MP 22 8.3420e-04 45.8642
MEOR1MP 25 9.7553e-05 49.7393

4000× 4000 40 OLRMA 84 6.3463e-05 442.6043
MOLRMA 15 5.7589e-05 42.0574
MOR1MP 20 8.5081e-04 282.0811
MEOR1MP 34 1.0397e-04 116.6770

6000× 6000 60 OLRMA 184 1.0921e-04 871.3769
MOLRMA 39 7.9005e-05 93.0778
MOR1MP 76 9.1161e-04 561.0980
MEOR1MP 98 1.3216e-04 229.0367
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Figure 1 The changes in the CPU time of four algorithms with respect to the different matrix size

Figure 2 Convergence behavior of the relative error in the MOLRMA algorithm runs
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